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Abstract: Monocrystalline silicon is an important raw material in the semiconductor and photovoltaic
industries. In the Czochralski (CZ) method of growing monocrystalline silicon, various factors may
cause node loss and lead to the failure of crystal growth. Currently, there is no efficient method to
detect the node loss of monocrystalline silicon at industrial sites. Therefore, this paper proposed a
monocrystalline silicon node-loss detection method based on multimodal data fusion. The aim was to
explore a new data-driven approach for the study of monocrystalline silicon growth. This article first
collected the diameter, temperature, and pulling speed signals as well as two-dimensional images of
the meniscus. Later, the continuous wavelet transform was used to preprocess the one-dimensional
signals. Finally, convolutional neural networks and attention mechanisms were used to analyze and
recognize the features of multimodal data. In the article, a convolutional neural network based on
an improved channel attention mechanism (ICAM-CNN) for one-dimensional signal fusion as well
as a multimodal fusion network (MMFN) for multimodal data fusion was proposed, which could
automatically detect node loss in the CZ silicon single-crystal growth process. The experimental
results showed that the proposed methods effectively detected node-loss defects in the growth process
of monocrystalline silicon with high accuracy, robustness, and real-time performance. The methods
could provide effective technical support to improve efficiency and quality control in the CZ silicon
single-crystal growth process.

Keywords: CZ silicon single crystal; node-loss detection; continuous wavelet transform; convolutional
neural network; attention mechanism; multimodal data fusion

1. Introduction

Monocrystalline silicon is an important semiconductor material that can be classified
into solar-grade and IC-grade, based on its quality [1]. High-quality IC-grade monocrys-
talline silicon is the main material used for manufacturing integrated circuit chips. The
Czochralski method is the main method used to prepare single-crystal silicon. With the
development of ultra-large-scale integrated circuits, higher requirements have been placed
on the quality and yield of silicon wafers, which need to increase in size while meeting
industry requirements for resistivity, uniformity, crystal integrity, crystal orientation, oxy-
gen, carbon content, purity, etc. Solar-grade monocrystalline silicon has lower quality
requirements, but needs to be grown without dislocations. Dislocation defects are the core
defects in the quality of monocrystalline silicon. Once dislocations occur during crystal
growth, other quality parameters do not need to be considered [2]. Possible reasons for
dislocation generation include impurities, fluctuations of unreasonable process parameters,
etc. [3,4]. Node loss is the main manifestation of dislocations in the growth process of
monocrystalline silicon and is also one of the basic judgment factors for the quality of CZ
silicon ingots. Different crystal directions of single-crystal silicon have different numbers of
nodes. Ingots grown in the [1 0 0] direction have four nodes. Figure 1 shows a normally

Sensors 2023, 23, 5855. https://doi.org/10.3390/s23135855 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23135855
https://doi.org/10.3390/s23135855
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23135855
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23135855?type=check_update&version=1


Sensors 2023, 23, 5855 2 of 18

grown ingot and two states of an ingot, one with a normal node and one with node loss.
As Figure 1 demonstrates, a normally grown CZ silicon ingot has sharp nodes. However,
the node of the node-loss crystal ingot disappears and the surface is very smooth.
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During the growing process of a CZ silicon single crystal, the ingot needs to be
regrown by re-melting and re-pulling if node loss occurs. If the loss can be promptly,
quickly, and accurately identified, it not only saves costs, but also increases production
efficiency. Otherwise, dislocation extension occurs and the ingot becomes polycrystalline,
which results in the meaningless growth of crystals and significantly consumes production
costs. Therefore, it is necessary and meaningful to research the node loss of CZ silicon
single crystals.

Currently, most industrial sites still rely on manual inspections and identification to
identify the node loss. Due to the high randomness of node loss, it is difficult to promptly
and accurately detect node loss when relying on manual inspections. Certain companies
only use related single-dimension information such as image features to identify node loss
during the crystal growth process to achieve a higher detection efficiency, but the accuracy
of this method is not high. Based on the conventional Faster R-CNN, Zhang et al. [5] used
the ResNet-50 residual neural network as the backbone to extract the image features at the
meniscus, which effectively improved the accuracy of the node—loss detection. However,
their methods do not take into account the influence of directly related variables such as
diameter, temperature, and pulling speed. Therefore, there is a large space for improvement
in the node-loss detection field of CZ Silicon single crystals.

In recent years, with the rapid development of convolutional neural networks and
multimodal data fusion technology, excellent research and achievements have emerged. The
recent popular large-scale model ChatGPT is a typical representative of those achievements.
Multimodal fusion technology in deep learning refers to the process of handling different
forms of data where the model completes analyses and recognition tasks [6]. Its purpose is
to establish a model that can handle and correlate information from multiple modalities,
enabling machine-learning algorithms to comprehensively and efficiently understand the
controlled object. Finally, the complementarity of diverse heterogeneous information can
be realized and the limitations of single-modal data processing can be avoided. With the
rise of the attention mechanism [7], the correlation between multimodal data has been
extensively mined, enabling multi-models to fuse with higher accuracy, further improving
the robustness and anti-interference ability of the model. Finally, the accuracy of recognition
results is improved. Thanks to the technology of multimodal fusion, we proposed the
method used in this paper on the basis of fully considering the correlation between the
node-loss data of Czochralski silicon single crystal.
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Due to the complexity of the silicon single-crystal growth process, it specifically
includes the five stages of seeding, necking, shouldering, body, and tailing [8]. A large
number of sensors were assembled to monitor the parameters of the silicon single-crystal
growth process as well as the environmental parameters of a single-crystal furnace, thereby
generating a large amount of historical data. In this paper, the ICAM-CNN method was
used for the node-loss recognition of the one-dimensional diameter, temperature, and
pulling speed signals directly related to node loss. The ResNet network was used for
the node-loss recognition of the two-dimensional meniscus image. To further improve
the accuracy, we take the advantages of one-dimensional signal feature extraction and
two-dimensional image feature extraction to propose an MMFN method for multimodal
data in the body process of a CZ silicon single crystal. Ultimately, the accuracy of node-loss
detection could be improved and the timepoint of node loss could be identified in time,
thereby saving production costs and improving production efficiency.

The main contributions of this paper are as follows:

• The required data were collected and preprocessed. The diameter, temperature, pulling
speed signals, and image information at the meniscus directly related to the node loss
of the silicon single crystal were measured using a variety of sensors. The continuous
wavelet transform was also used to preprocess the signals of the diameter, temperature,
and pulling speed.

• A convolutional neural network (ICAM-CNN) based on an improved channel attention
mechanism was proposed. This method could be used to perform a feature fusion
for the one-dimensional diameter, pulling speed, and temperature signals, finally
determining the node-loss time.

• A two-dimensional image classification decision-making method based on the ResNet
network was adopted. For the collected two-dimensional image information of the
meniscus, the ResNet network was used as the image feature extraction network to
extract deep image feature information to judge whether the system demonstrated
node loss.

• A decision network based on multimodal data fusion—a multimodal fusion net-
work (MMFN)—was proposed. MMFN first obtained the fusion features of the one-
dimensional diameter, temperature, and pulling speed signals through ICAM-CNN,
then obtained the two-dimensional image features through the ResNet network. In
the feature fusion layer, MMFN used the concatenate method to achieve multimodal
data feature-level fusion. Finally, a classifier was used to identify the node-loss time.

• A comparative discussion on the results of using single-modal and multimodal data
fusion decisions was conducted. The results showed that using multimodal data fusion
was more effective than any current single-modal data decision-making method.
It could significantly improve the accuracy of CZ silicon single-crystal node-loss
detection and meet the real-time and high-accuracy requirements of production sites.

2. Related Works

This article focused on the application of multimodal data fusion in the detection of
the node loss of CZ silicon single crystals, aiming to overcome the problem of the low
diagnostic accuracy of single-dimensional data.

At present, there are only a few articles researching the node loss of CZ silicon single
crystals. The problem of the node loss of silicon single crystals is mainly studied and
predicted from the aspects of the mechanism and the means of preventing node loss.
Zhijun et al. [9] studied the problem of shoulders and broken edges in the preparation
of 4-inch 111-oriented silicon single crystals and discussed the causes of dislocations.
Dong et al. [10] analyzed dislocation formation from a theoretical point of view, discussing
the specific reasons for node loss and bud drop. Choudhary et al. [11] studied the behavior
of linear propagation dislocation along the growth direction in CZ silicon single crystals
and also discussed the dislocation formation mechanism in heavily and lightly doped
growth processes. Jing et al. [12] used a finite element numerical simulation to explain the
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cause of the liquid flow line in the front part of the shoulder and proposed a method of
crystal transformation for the crystal-pulling process to reduce the occurrence of node loss.
Du [13] used the method of data mining to establish an online prediction model for the
problem of node loss in the body stage of silicon single crystals. Zhai et al. [14] proposed
a feature-selection-based prediction study on node loss at the shouldering stage, but the
data used did not directly correlate with the factors causing node loss, and the prediction
accuracy was low.

The current approach to the problem of node-loss detection is mainly to extract features
from the data, then perform classification and recognition tasks. The data feature extraction
is mainly divided into one-dimensional data feature extraction and two-dimensional data
feature extraction.

One-dimensional signal feature extraction methods are mainly divided into sta-
tistical feature-based, model-based, transformation-based, and fractal-based methods.
Kankar et al. [15] extracted features such as statistical parameters and spectral features from
vibration signals collected from faulty and healthy rolling bearings as inputs for different
machine-learning algorithms. The performance of the model was evaluated according to
indicators such as accuracy, sensitivity, and specificity, which had a certain contribution to
the fault diagnosis using machine-learning techniques. In [16], the EEMD algorithm was
used to decompose a signal into multiple intrinsic mode functions; these functions were
then used as the input for a convolutional deep belief network. The method recognized the
characteristics of different fault states by training the convolutional deep belief network and
finally realized the automatic diagnosis of reciprocating compressor faults. Yang et al. [17]
introduced the principle and algorithm of wavelet threshold denoising in detail, using
an improved wavelet threshold denoising algorithm to suppress the noise in the signal
and, at the same time, used the Savitzky–Golay filter to smooth the signal, resulting in a
higher signal-to-noise ratio. Compared with other commonly used denoising methods, this
method was more effective and robust.

For the feature extraction of two-dimensional images and with the rapid development
of image processing technology, many scholars have focused on applying automatic inspec-
tion technology based on machine vision to inspection tasks. Traditional image processing
algorithms have been proposed earlier or developed maturely, such as the principal com-
ponent analysis (PCA) [18]. With continuous developments in the manufacturing industry,
traditional algorithms have difficulty meeting the increasing detection accuracy and real-
time requirements. In recent years, deep learning has achieved continuous progress in life
as well as academic research. Deep learning models have shown strong feature extraction
capabilities, gradually replacing traditional algorithms and becoming a research hotspot in
the field of target detection and recognition. The most representative deep learning models
are convolutional neural networks (CNNs) [19], recurrent neural networks (RNNs) [20],
and autoencoders (AEs) [21], which can be applied to image classification tasks. In this
paper, the convolutional neural network was mainly used to extract the features of the
image and finally classify the image. With the popularity of CNNs, many evolutionary
networks have been proposed. Examples include AlexNet, proposed in 2012 and published
in 2017 [22]; VGGNet, proposed in 2014 [23]; and ResNet, proposed in 2015 and published
in 2016 [24]. They all have excellent image feature extraction abilities.

For complex industrial field classification and recognition tasks, one-dimensional
feature extraction and classification methods based on transformation theory and two-
dimensional feature extraction and classification methods based on convolutional neural
networks have shortcomings and cannot fully use the features of all data, resulting in
poor model generalization ability. Multimodal data fusion technology can overcome
this drawback using the complementary advantages of multimodal data and combining
the features of one-dimensional signals and two-dimensional images for fusion decision-
making. This can improve the generalization ability of the model, thus enhancing the
detection accuracy.
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Data fusion can be classified into three categories based on the level of informa-
tion fusion, namely, data-level fusion, feature-level fusion, and decision-level fusion [25].
Feature-level fusion extracts features from signals collected from multiple sensors, then
uses a network to analyze the feature information. After this, it forms a comprehensive
feature set for use in the final target recognition and classification stage [26]. Compared
with data-level and decision-level fusion, feature-level fusion is more flexible and can be
combined with network structures, making it more versatile. In recent years, with the
popularity of transformer technology [27], many attention mechanisms have been applied
to fusion operations. Compared with traditional feature fusion methods, attention mecha-
nisms can assign different weights to different parts of the input data, thereby using useful
information in the data more effectively. It can automatically learn the relationship between
features during the training process, thereby avoiding the tedious process of manually
designing feature fusion rules. It can also adapt to different input dimensions and data
types, making it highly applicable. References [28–31] all used attention mechanisms to fuse
different features. By introducing attention mechanisms in the feature extraction process,
the network can focus on important features with greater accuracy, thereby improving the
effectiveness of features and the accuracy of classification and diagnosis. These studies
all demonstrate that attention is an effective feature fusion method that can be used for
classification tasks in various fields. To the best of our knowledge, no research has applied
the attention module to node-loss detection in the growth process of single-crystal silicon.

3. Proposed Method

This article conducted a detailed study on the node-loss problem of a CZ silicon single
crystal and collected, and preprocessed the node-loss data, and made a new dataset. Two
new deep learning-based networks, ICAM-CNN and MMFN, were then proposed. The
architecture of the proposed networks is described in detail below.

3.1. Data Collection and Preprocessing
3.1.1. Data Collection

In the process of crystal growth, the node loss of a Czochralski silicon single crystal
is random. There are many factors that lead to node loss, such as changes in thermal
stress at the meniscus, the pulling speed, and temperature. As there is no technology at
present to measure the thermal stress at the meniscus, we selected three measurable and
directly related variables—temperature, pulling speed, and diameter—as the data sources
to identify node loss.

The data in this article were all collected from crystal-growing equipment on site. The
model of the single-crystal furnace was TDR-120CZ, as shown in Figure 2. The equipment
could produce 100–310 mm CZ silicon single crystals. The diameter detection range was
4–350 mm. The maximum power of the equipment was 180 kw. The adjustment range of
the crucible rotation speed was 0–15 rpm, the adjustment range of the crystal rotation speed
was 0–20 rpm, the adjustment range of the crucible lifting speed was 0–0.5 mm/min, the
adjustment range of the crystal lifting speed was 0–6 mm/min, the ultimate vacuum was
0.4 Pa, the adjustment range of the air intake was 0–150 L/min, and the adjustment range
of the liquid level was 0–100 mm. The lifting stroke of the crystal was 2.8 m and the lifting
stroke of the crucible was 600 mm. As far as the process parameters on-site were concerned,
the target setting value of the diameter was 308 mm, the adjustment range of the casting
speed was 0.2–1.1 mm/min, and the temperature adjustment was determined according to
the input of the amount of silicon material. The general rule was to cool down first, then
raise the temperature. The adjustment range was usually 2100–2500 (dimensionless).
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The crystal diameter signal used for the data fusion was acquired using a high-
temperature infrared pyrometer sensor. The crystal growth temperature signal was ac-
quired using a RAYTEK Marathon FR Infrared Thermometer sensor. The pulling speed of
the crystal was obtained after conversion using Schneider XCC Series Absolute Encoders.
The data of the temperature, pulling speed, and diameter were sampled every 2 s. The
image data during the growth process were obtained using a Microvision MV-300UC
camera. It had a resolution of 300 megapixels and used a CMOS imaging method with a
frame rate of 15 fps. All acquisition devices are shown in Figure 2.

In the growth process, once the temperature and pulling speed exhibit large mutations,
it leads to a greater risk of node loss. There is also an immediate reaction in the diameter.
As shown in Figure 3, the horizontal axis was the sampling time from the isodiametric
process and the vertical axis was the diameter signal. Node loss occurred at the crystal
body stage. It was not difficult to ascertain from the diameter signal that once there was
node loss, the frequency of the crystal diameter change would be altered.
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For normal on-site production, inspectors usually judge node loss according to the
images. If there is node loss, the changes can be observed from the image of the meniscus
captured by the camera. Figure 4 is the image data of the crystal body stage obtained using
a TDR-120CZ single-crystal furnace. The image on the left is the meniscus taken during
normal growth, with periodic bump information. The image on the right is the meniscus
was taken when the node was lost, which was very smooth without any bump features.
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3.1.2. Data Preprocessing

Through multiple crystal-pulling experiments, 1800 sets of temperature, pulling speed,
and diameter near the time of node loss of different lots as well as images of the meniscus
of the crystal at the corresponding time were collected. When the crystal grew normally,
1844 datasets of temperature, pulling speed, and diameter signals as well as the image data
of the meniscus at the corresponding time were collected. Due to the characteristics of a
long delay and a large lag in the crystal growth process, the temperature, pulling speed,
and diameter signals in each set of data were represented by the data segment from the
previous 7 min, that is, 210 data points.

To highlight the time–frequency changes of the diameter, temperature, and pulling
speed signals and more accurately identify node loss, the continuous wavelet transform
was used and the data preprocessing method shown in Figure 5 was proposed.
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First, we took the difference of each input dataset to obtain the change in temperature,
diameter, and pulling speed every 2 s. Then, the continuous wavelet transform was used in
the signal processing to fully extract the time–frequency domain characteristic changes of
the temperature, pulling speed, and diameter signals. Finally, a processed time–frequency
spectrum of the temperature, diameter, and pulling speed signals was obtained.

The formula for continuous wavelet transform is as follows:

WTa,b(t) =
∫ +∞

−∞
f (t)•ϕa,b

∗(t)dt (1)

where f (t) is the original function, ϕ(t) is the wavelet basis function, a is the scale parameter,
and b is a time parameter. The specific form of the function is as follows:

ϕa,b(t) =
1√
a

ϕ(
t− b

a
) (2)

where a is the scale parameter and b is a time parameter. Through the transformation, the
time subdivision of the signal at a high frequency and the frequency subdivision at a low
frequency is finally achieved, which can adapt to the requirements of the time–frequency
signal analysis and focus on any detailed characteristics of the collected signals.

3.2. Method 1: ICAM-CNN

The one-dimensional signals included the diameter, temperature, and pulling speed.
For one-dimensional signal fusion node-loss detection, a network structure based on ICAM-
CNN was proposed, as shown in Figure 6.
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First, the data were preprocessed by the continuous wavelet transform. Then, the 
time–frequency spectrogram was inputted into the CNN for training. The CNN was 
mainly composed of convolutional layers, pooling layers, fully connected layers, and de-
cision layers. The features of the data were extracted by convolution and pooling opera-
tions. Below is the main calculation formula for the convolution operation. 
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Figure 6. ICAM-CNN network structure.

First, the data were preprocessed by the continuous wavelet transform. Then, the
time–frequency spectrogram was inputted into the CNN for training. The CNN was mainly
composed of convolutional layers, pooling layers, fully connected layers, and decision
layers. The features of the data were extracted by convolution and pooling operations.
Below is the main calculation formula for the convolution operation.

Zk
i = f (Wk

i ⊗ Zk
i−1 + bk

i ) (3)
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Here, Zk
i represents the feature map formed by the convolution kernel of the ith layer,

Wk
i denotes the weight matrix, bk

i represents the bias, ⊗ denotes the convolution operation,
and f represents the ReLU activation function.

Then, the improved channel attention mechanism, which is shown in Figure 7, was
used to perform a correlation fusion analysis on the diameter, temperature, and pulling
speed features extracted by the convolutional neural network. The calculation formula for
the improved channel attention is as follows:

Mc = f (MLP(Mapavg) + MLP(Mapmax))
= f (Vavg + Vmax)

(4)

where f represents the SoftMax function, Mapavg and Mapmax represents the global average
pooling feature and the global maximum pooling feature, Vavg ∈ Rc×1×1 and Vmax ∈ Rc×1×1

represents one-dimensional vectors further processed by the MLP, Mc ∈ Rc×1×1 represents
a final evaluation score for each channel.
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Finally, we sent the correlation fusion features processed by the ICAM-CNN network
into the classifier for decision-making, and obtained the result of using the one-dimensional
diameter, temperature, and pulling speed signals for the node-loss detection.

3.3. Method 2: MMFN

On the basis of one-dimensional node-loss fusion detection, two-dimensional meniscus
image data were introduced and a fusion decision method based on multimodal data
features was proposed to further improve the accuracy of node-loss detection. The specific
network structure is shown in Figure 8.

First, using the ICAM-CNN method, the features for all the one-dimensional signals
were extracted. Then, using the ResNet network, the features for all the two-dimensional
meniscus images were extracted. After, feature concatenation technology was used to fuse
the extracted features at the feature layer, achieving a feature-level fusion of the multimodal
data. Finally, a fusion decision based on the features of the multimodal data was achieved
through a classifier.
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For the two-dimensional image data, the ResNet network, which is shown in Figure 8,
was used as the feature extraction network. It is mainly aimed at solving the problems of
gradient disappearance and model degradation in deep networks. The residual learning
structure consists of a feedforward neural network and a skip connection method, as shown
in Figure 9.
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Figure 9. Residual block structure.

The forward propagation formula for the residual structure is:

H(x) = F(x) + x (5)

where, x represents the input, F(x) represents the residual, and H(x) represents the desired
target. Through such a residual structure, the number of layers can be continuously
superimposed to improve the accuracy of the final node-loss detection.

4. Experimental Setup and Result
4.1. Model Training

The validity of the method was verified using the Czochralski silicon single-crystal
node-loss dataset collected and produced by ourselves. The algorithms proposed in this
paper were implemented using the open-source TensorFlow deep learning framework. The
CPU used was Intel(R) Xeon(R) Gold 5318Y CPU @ 2.10 GHz (2 processors) and the GPU
used Nvidia Grid V100D-8Q.

A total of 3644 datasets of temperature, casting speed, diameter, and images were
collected in the one-dimensional dataset, including 1800 sets of node-loss data and 1844
sets of normal growth data. Each dataset of pulling speed, temperature, diameter, and
images shared the same label. The split ratio of the training set, validation set, and testing
set in the data was 7:2:1 and the size of the input image was normalized to 224 × 224.
The Adam, proposed by Kingma et al. [32], was used as the overall optimizer and the
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backpropagation algorithm to realize the optimization of the entire network model. For
training, the cross-entropy loss function was selected as the loss function. After parameter
optimization, the batch size of all datasets was set to 32 and the epoch was set to 20. To
avoid overfitting, the dropout was set to 0.5 in the FC layer of the proposed network
model and the L2 regularization coefficient of the convolution kernel was set to 0.01 in
the convolution layer. The data enhancement on the collected image information of the
meniscus was also performed.

4.2. Evaluation Method

This article drew a confusion matrix on the final test set and calculated the recall rate
(Recall), precision (Precision), F1 score, and accuracy (Accuracy) as evaluation indicators to
accurately evaluate the effectiveness of the proposed method.

The calculation formulas for these values are as follows.

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

F1Score =
P× R

2(P + R)
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

In the above formulas, TP represents the cases where the classifier correctly identified
positive samples as positive, TN represents the cases where the classifier correctly identified
negative samples as negative, FP represents the cases where the classifier incorrectly
identified negative samples as positive, and FN represents the cases where the classifier
incorrectly identified positive samples as negative.

4.3. Analysis of the Training Results
4.3.1. The Result of CNN and ResNet

An ordinary CNN network was used to separately formulate decisions on the diameter,
pulling speed, and temperature signals. We then obtained the decision result of a single
signal. After, the ResNet network was used to obtain the results of the two-dimensional
image data. Among the 3644 sets of data, there were 730 sets in the testing set.

The structure diagram of different inputs is shown in Figure 10.
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The historical curves of the training set and the validation set are shown on the left of
Figure 11 and the confusion matrixes of the testing sets are shown on the right of Figure 11.
The calculated evaluation indicators are shown in Table 1.

Table 1. Classification results for single-modal data without any fusion method.

Accuracy Recall Precision F1 Score

V
Abnormal

81.23%
72.78% 87.04% 79.27%

Normal 89.46% 77.16% 82.85%

T
Abnormal

74.11%
70.56% 75.37% 72.89%

Normal 77.57% 73.03% 75.23%

D
Abnormal

95.48%
94.44% 96.32% 95.37%

Normal 96.49% 94.70% 95.58%

G
Abnormal

67.12%
33.89% 98.39% 50.41%

Normal 99.46% 60.73% 75.41%

As seen in Figure 11a–d and Table 1, the model started to converge after 20 rounds
of training. The highest accuracy rate of 95.48% was obtained by relying on the diameter
signal. Combined with the F1 Score, the overall recognition rate and the classification effect
were the best depending on the diameter signal. A reliance on pulling speed followed.
Compared with the pulling speed signal, the diameter signal did not have a hysteresis
effect on node loss; therefore, the recognition accuracy was higher, which coincided with
the theory and practice. Due to the large hysteresis effect of temperature on node loss
and as the crystal length continued to grow, the ability of the system to resist temperature
disturbances continued to increase. Therefore, relying on a temperature classification
achieved poor results, with an accuracy rate of only 74.11%.

The effect of training with the ResNet network on the two-dimensional image data
was not ideal, with the lowest accuracy of only 67.12%. The model quickly converged, and
the training accuracy curve significantly fluctuated. From the Recall value, the recognition
rate of the abnormal data was only 33.89% and the false detection rate was high. Compared
with relying on manual inspections and identification on an industrial site, the effect was
improved, but not by much. Objectively speaking, the low classification accuracy was
mainly due to unclear image features.
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4.3.2. The Result of Method 1: ICAM-CNN

To verify the effectiveness of the proposed ICAM-CNN method, it was compared with
the concatenate method to directly splice the feature layers of the diameter, pulling speed,
and temperature signals.
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The structure diagram of the different algorithms is shown in Figure 12.
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The historical curves of the training set and the validation set are shown on the left of
Figure 13 and the confusion matrixes on the testing set are shown on the right of Figure 13.
The calculated evaluation indicators are shown in Table 2.
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Table 2. Evaluation indicators using different fusion methods.

Accuracy Recall Precision F1 Score

Concatenate
Abnormal

96.71%
94.17% 99.12% 96.58%

Normal 99.19% 94.59% 96.83%

ICAM
Abnormal

97.95%
97.22% 98.59% 97.90%

Normal 98.65% 97.33% 97.99%

From Figure 13 and Table 2, it could be observed that using the diameter, pulling
speed, and temperature for multi-sensor mixed training was more effective and had a
higher accuracy compared with using single diameter, temperature, and pulling speed
data separately to formulate a node-loss decision. Table 2 shows that the accuracy of the
direct fusion of multiple signals using the concatenate method was not as high as that
of the ICAM-CNN network using ICAM for correlation fusion. The network with the
attention mechanism had a fast convergence speed and could perform feature extraction
and correlation fusion on different sensor data more effectively.

4.3.3. The Result of Method 2: MMFN

To further improve the accuracy of classification recognition, enhance the generaliza-
tion ability of the model, and fully use the features of multiple types of data, we fused
the features obtained by the ResNet and ICAM-CNN networks at the final feature layer,
based on one-dimensional signal node-loss detection and two-dimensional image node-loss
detection. Then, the final multimodal data fusion results using MMFN were obtained.

The structure diagram of MMFN is shown in Figure 14.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 18 
 

 

Resnet

Input (G)

Concatenate

Output

Conv 64

Max pool 32

Conv 32

Max pool 64

Input (D)

Conv 64

Max pool 32

Conv 32

Max pool 64

Input (T)

ICAM

Conv 64

Max pool 32

Conv 32

Max pool 64

Input (V)
 

Figure 14. Structure diagram of MMFN. 

Figure 15 shows the training results using this approach. The calculated evaluation 
indicators are shown in Table 3. 

 
Figure 15. Results of the multimodal data fusion network. 

Table 3. Evaluation indicators using a multimodal data fusion network. 

 Accuracy Recall Precision F1 Score 

MMFN Abnormal 98.36% 97.22% 99.43% 98.31% 
Normal 99.46% 97.35% 98.40% 

Based on the overall experimental results, an accuracy of 97.95% was achieved by 
using the ICAM-CNN network for single-modal fusion. By introducing image data fea-
tures, an accuracy of 98.36% was achieved. Looking at the F1 Score, MMFN achieved a 
result of 98.31% on the testing set, which was more successful than the result obtained by 
ICAM-CNN and more successful than any result obtained using a single-dimensional sig-
nal. 

5. Conclusions 
Using machine-learning methods to identify CZ silicon single-crystal node-loss de-

tection is a novel and challenging task. In this paper, the continuous wavelet transform 
was used to preprocess one-dimensional diameters, pulling speeds, and temperature sig-
nals during the crystal growth process. A one-dimensional signal fusion decision-making 
method ICAM-CNN was proposed, which achieved an accuracy rate of 97.75%. Com-
pared with the accuracy rate of 95.48% obtained by the CNN for pure diameter signal 

Figure 14. Structure diagram of MMFN.

Figure 15 shows the training results using this approach. The calculated evaluation
indicators are shown in Table 3.
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Table 3. Evaluation indicators using a multimodal data fusion network.

Accuracy Recall Precision F1 Score

MMFN
Abnormal

98.36%
97.22% 99.43% 98.31%

Normal 99.46% 97.35% 98.40%

Based on the overall experimental results, an accuracy of 97.95% was achieved by
using the ICAM-CNN network for single-modal fusion. By introducing image data features,
an accuracy of 98.36% was achieved. Looking at the F1 Score, MMFN achieved a result of
98.31% on the testing set, which was more successful than the result obtained by ICAM-
CNN and more successful than any result obtained using a single-dimensional signal.

5. Conclusions

Using machine-learning methods to identify CZ silicon single-crystal node-loss de-
tection is a novel and challenging task. In this paper, the continuous wavelet transform
was used to preprocess one-dimensional diameters, pulling speeds, and temperature sig-
nals during the crystal growth process. A one-dimensional signal fusion decision-making
method ICAM-CNN was proposed, which achieved an accuracy rate of 97.75%. Compared
with the accuracy rate of 95.48% obtained by the CNN for pure diameter signal recognition,
the accuracy rate of 81.23% for pure pulling speed signal recognition, and the 74.11%
accuracy rate for pure temperature signal recognition, this method achieved more accurate
results. On this basis, the image information captured by the two-dimensional image sensor
was introduced and the one-dimensional signals were combined with the two-dimensional
image data for mixed training to achieve multimodal data fusion decisions. On our self-
made dataset, the MMFN finally achieved an accuracy of 98.36%. Compared to the 67.12%
accuracy achieved by using Resnet network recognition in pure two-dimensional menis-
cus images and the 97.95% accuracy achieved by using ICAM-CNN in one-dimensional
signals fusion, it has improved and can verify the effectiveness of the method. Compared
with the manual inspection at the production site, the method used in this paper is more
accurate and has higher real-time performance, which can meet the real-time and accurate
requirements in field production. The method is of great significance for improving the
automation of single crystal furnaces, reducing the labor intensity of manual inspection,
and preventing production accidents, and has practical industrial value.

Since the data used in this paper are all collected in the industrial field, there is no
need to arrange additional sensors, which have the conditions for implementation in the
industrial field. In the future, based on the existing research, we plan to further enrich the
node-loss dataset according to the field operation results, and constantly update the node-
loss detection method iteratively to improve the accuracy, generalization and robustness of
the model. At the same time, we plan to introduce more variables related to the node-loss
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to adapt to the crystal growth process with variable crucible rotation and even variable
magnetic field strength. Finally, on the basis of the node-loss detection, we will consider
the combination of data and mechanism to carry out the research on node-loss prediction.
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