A Sensor-Based Feedback Device Stimulating Daily Life Upper Extremity Activity in Stroke Patients: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Ethics
2.4. Procedure
Randomisation
2.5. Intervention
2.6. Device
2.6.1. Hardware
2.6.2. Software
2.7. Data Processing
2.8. Outcomes and Measures
2.8.1. Baseline Characteristics
2.8.2. Primary Outcomes
2.8.3. Secondary Outcomes
- (1)
- The amount of activity of the paretic UE, which was measured as the average amount of energy per sitting and standing hour during baseline, control and intervention periods.
- (2)
- The UE activity ratio, which was measured as the average amount of energy per sitting and standing hour of the paretic UE divided by the average amount of energy per sitting and standing hour of the non-paretic UE during baseline, control and intervention periods.
2.9. Statistical Analysis
3. Results
3.1. Participants
3.2. Primary Outcomes
3.2.1. Adherence
3.2.2. Acceptance
3.2.3. Usability
3.3. Secondary Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feigin, V.L.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Abyu, G.Y.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; et al. Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017, 16, 877–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langhorne, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, G.; Kollen, B.J.; Wagenaar, R.C. Long term effects of intensity of upper and lower limb training after stroke: A randomised trial. J. Neurol. Neurosurg. Psychiatry 2002, 72, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Dromerick, A.W.; Geed, S.; Barth, J.; Brady, K.; Giannetti, M.L.; Mitchell, A.; Edwardson, M.A.; Tan, M.T.; Zhou, Y.; Newport, E.L.; et al. Critical Period After Stroke Study (CPASS): A phase II clinical trial testing an optimal time for motor recovery after stroke in humans. Proc. Natl. Acad. Sci. USA 2021, 118, e2026676118. [Google Scholar] [CrossRef]
- Regterschot, G.R.H.; Bussmann, J.B.J.; Fanchamps, M.H.J.; Meskers, C.G.M.; Ribbers, G.M.; Selles, R.W. Objectively measured arm use in daily life improves during the first 6 months poststroke: A longitudinal observational cohort study. J. Neuroeng. Rehabil. 2021, 18, 51. [Google Scholar] [CrossRef] [PubMed]
- Michielsen, M.E.; De Niet, M.; Ribbers, G.; Stam, H.J.; Bussmann, J.B. Evidence of a logarithmic relationship between motor capacity and actual performance in daily life of the paretic arm following stroke. J. Rehabil. Med. 2009, 41, 327–331. [Google Scholar] [CrossRef] [Green Version]
- van Kordelaar, J.; van Wegen, E.E.; Nijland, R.H.; Daffertshofer, A.; Kwakkel, G. Understanding adaptive motor control of the paretic upper limb early poststroke: The EXPLICIT-stroke program. Neurorehabil. Neural Repair 2013, 27, 854–863. [Google Scholar] [CrossRef] [Green Version]
- Taub, E.; Uswatte, G.; Mark, V.W.; Morris, D.M.M. The learned nonuse phenomenon: Implications for rehabilitation. Eur. Med. 2006, 42, 241–256. [Google Scholar]
- Morris, D.M.; Taub, E.; Mark, V.W. Constraint-induced movement therapy: Characterizing the intervention protocol. Eur. Med. 2006, 42, 257–268. [Google Scholar]
- Kwakkel, G.; Veerbeek, J.M.; Van Wegen, E.E.H.; Wolf, S.L. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015, 14, 224–234. [Google Scholar] [CrossRef] [Green Version]
- Kwakkel, G.; Winters, C.; Van Wegen, E.E.; Nijland, R.H.; Van Kuijk, A.A.; Visser-Meily, A.; De Groot, J.; De Vlugt, E.; Arendzen, J.H.; Geurts, A.C.; et al. Effects of Unilateral Upper Limb Training in Two Distinct Prognostic Groups Early After Stroke: The EXPLICIT-Stroke Randomized Clinical Trial. Neurorehabil. Neural Repair 2016, 30, 804–816. [Google Scholar] [CrossRef] [Green Version]
- Kantak, S.; Jax, S.; Wittenberg, G. Bimanual coordination: A missing piece of arm rehabilitation after stroke. Restor. Neurol. Neurosci. 2017, 35, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Noorkõiv, M.; Rodgers, H.; Price, C.I. Accelerometer measurement of upper extremity movement after stroke: A systematic review of clinical studies. J. Neuroeng. Rehabil. 2014, 11, 144. [Google Scholar] [CrossRef] [Green Version]
- Porciuncula, F.; Roto, A.V.; Kumar, D.; Davis, I.; Roy, S.; Walsh, C.J.; Awad, L.N. Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances. PM&R 2018, 10, S220–S232. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.; Powell, L.; Mawson, S. Effectiveness of Upper Limb Wearable Technology for Improving Activity and Participation in Adult Stroke Survivors: Systematic Review. J. Med. Internet Res. 2020, 22, e15981. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, H.; Berger, M.; Bussmann, J. Effectiveness of healthcare interventions using objective feedback on physical activity: A systematic review and meta-analysis. J. Rehabil. Med. 2019, 51, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Hayward, K.S.; Eng, J.J.; Boyd, L.A.; Lakhani, B.; Bernhardt, J.; Lang, C.E. Exploring the Role of Accelerometers in the Measurement of Real World Upper-Limb Use After Stroke. Brain Impair. 2016, 17, 16–33. [Google Scholar] [CrossRef] [Green Version]
- Regterschot, G.R.H.; Selles, R.W.; Ribbers, G.M.; Bussmann, J.B.J. Whole-Body Movements Increase Arm Use Outcomes of Wrist-Worn Accelerometers in Stroke Patients. Sensors 2021, 21, 4353. [Google Scholar] [CrossRef]
- Julious, S.A. Sample size of 12 per group rule of thumb for a pilot study. Pharm. Stat. 2005, 4, 287–291. [Google Scholar] [CrossRef]
- Held, J.P.; Klaassen, B.; van Beijnum, B.-J.F.; Luft, A.R.; Veltink, P.H. Usability Evaluation of a VibroTactile Feedback System in Stroke Subjects. Front. Bioeng. Biotechnol. 2017, 4, 98. [Google Scholar] [CrossRef] [Green Version]
- Kieser, M.; Wassmer, G. On the Use of the Upper Confidence Limit for the Variance from a Pilot Sample for Sample Size Determination. Biom. J. 1996, 38, 941–949. [Google Scholar] [CrossRef]
- Fanchamps, M.; Selles, R.; Stam, H.; Bussmann, J. Development and validation of a clinically applicable arm use monitor for people after stroke. J. Rehabil. Med. 2018, 50, 705–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanchamps, M.H.J.; Horemans, H.L.D.; Ribbers, G.M.; Stam, H.J.; Bussmann, J.B.J. The Accuracy of the Detection of Body Postures and Movements Using a Physical Activity Monitor in People after a Stroke. Sensors 2018, 18, 2167. [Google Scholar] [CrossRef] [Green Version]
- Platz, T.; Pinkowski, C.; Van Wijck, F.; Kim, I.-H.; Di Bella, P.; Johnson, G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: A multicentre study. Clin. Rehabil. 2005, 19, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Lyden, P. Using the National Institutes of Health Stroke Scale. Stroke 2017, 48, 513–519. [Google Scholar] [CrossRef]
- Franke, T.; Attig, C.; Wessel, D. A Personal Resource for Technology Interaction: Development and Validation of the Affinity for Technology Interaction (ATI) Scale. Int. J. Human–Computer Interact. 2018, 35, 456–467. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Shahrabi, M.A.; Ahaninjan, A.; Nourbakhsh, H.; Ashlubolagh, M.A.; Abdolmaleki, J.; Mohamadi, M. Assessing psychometric reliability and validity of Technology Acceptance Model (TAM) among faculty members at Shahid Beheshti University. Manag. Sci. Lett. 2013, 3, 2295–2300. [Google Scholar] [CrossRef]
- Askari, M.; Klaver, N.S.; van Gestel, T.J.; van de Klundert, J. Intention to use Medical Apps Among Older Adults in the Netherlands: Cross-Sectional Study. J. Med. Internet Res. 2020, 22, e18080. [Google Scholar] [CrossRef]
- Brooke, J. SUS: A ’Quick and Dirty’ Usability Scale. Usability Eval. Ind. 1996, 189, 4–7. [Google Scholar]
- Lewis, J.R. The System Usability Scale: Past, Present, and Future. Int. J. Hum. Comput. Interact. 2018, 34, 577–590. [Google Scholar] [CrossRef]
- Ensink, C.J.; Keijsers, N.L.W.; Groen, B.E. Translation and validation of the System Usability Scale to a Dutch version: D-SUS. Disabil. Rehabil. 2022, 1–6. [Google Scholar] [CrossRef]
- Bakeman, R. Recommended effect size statistics for repeated measures designs. Behav. Res. Methods 2005, 37, 379–384. [Google Scholar] [CrossRef]
- McGill, K.; Sackley, C.M.; Godwin, J.; McGarry, J.; Brady, M.C. A systematic review of the efficiency of recruitment to stroke rehabilitation randomised controlled trials. Trials 2020, 21, 68. [Google Scholar] [CrossRef] [Green Version]
- Da-Silva, R.H.; Moore, S.A.; Rodgers, H.; Shaw, L.; Sutcliffe, L.; Van Wijck, F.; Price, C. Wristband Accelerometers to motiVate arm Exercises after Stroke (WAVES): A pilot randomized controlled trial. Clin. Rehabil. 2019, 33, 1391–1403. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Ren, X.; Su, X.; Wang, X.; Hua, Y.; Chen, Y.; Shi, R.; Shao, P.; Lang, H.; Ni, C. Predictors and Changes of Self-Perceived Burden Among Stroke Survivors: A 3-Month Follow-Up Study. Front. Neurol. 2020, 11, 742. [Google Scholar] [CrossRef] [PubMed]
- Da-Silva, R.H.; van Wijck, F.; Shaw, L.; Rodgers, H.; Balaam, M.; Brkic, L.; Ploetz, T.; Jackson, D.; Ladha, K.; Price, C.I. Prompting arm activity after stroke: A clinical proof of concept study of wrist-worn accelerometers with a vibrating alert function. J. Rehabil. Assist. Technol. Eng. 2018, 5, 205566831876152. [Google Scholar] [CrossRef] [Green Version]
- Held, J.P.O.; Luft, A.R.; Veerbeek, J.M. Encouragement-Induced Real-World Upper Limb Use after Stroke by a Tracking and Feedback Device: A Study Protocol for a Multi-Center, Assessor-Blinded, Randomized Controlled Trial. Front. Neurol. 2018, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehead, A.L.; Sully, B.G.; Campbell, M.J. Pilot and feasibility studies: Is there a difference from each other and from a randomised controlled trial? Contemp. Clin. Trials 2014, 38, 130–133. [Google Scholar] [CrossRef]
- Buma, F.; Kwakkel, G.; Ramsey, N. Understanding upper limb recovery after stroke. Restor. Neurol. Neurosci. 2013, 31, 707–722. [Google Scholar] [CrossRef] [Green Version]
- Nishiwaki, M.; Kuriyama, A.; Ikegami, Y.; Nakashima, N.; Matsumoto, N. A pilot crossover study: Effects of an intervention using an activity monitor with computerized game functions on physical activity and body composition. J. Physiol. Anthr. 2014, 33, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolson, G.H.; Hayes, C.B.; Darker, C.D. A Cluster-Randomised Crossover Pilot Feasibility Study of a Multicomponent Intervention to Reduce Occupational Sedentary Behaviour in Professional Male Employees. Int. J. Environ. Res. Public Heal. 2021, 18, 9292. [Google Scholar] [CrossRef] [PubMed]
- van der Vliet, R.; Selles, R.W.; Andrinopoulou, E.R.; Nijland, R.; Ribbers, G.M.; Frens, M.A.; Meskers, C.; Kwakkel, G. Predicting Upper Limb Motor Impairment Recovery after Stroke: A Mixture Model. Ann. Neurol. 2020, 87, 383–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selles, R.W.; Andrinopoulou, E.-R.; Nijland, R.H.; van der Vliet, R.; Slaman, J.; van Wegen, E.E.; Rizopoulos, D.; Ribbers, G.M.; Meskers, C.G.; Kwakkel, G. Computerised patient-specific prediction of the recovery profile of upper limb capacity within stroke services: The next step. J. Neurol. Neurosurg. Psychiatry 2021, 92, 574–581. [Google Scholar] [CrossRef]
- Coupar, F.; Legg, L.; Pollock, A.; Sackley, C.; van Vliet, P. Home-based therapy programmes for upper limb functional recovery following stroke. Cochrane Database Syst. Rev. 2012, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Outpatient Service Trialists’ group. Therapy-based rehabilitation services for stroke patients at home. Cochrane Database Syst. Rev. 2003, 1. [Google Scholar] [CrossRef]
All Participants (n = 17) | Intervention Condition First (n = 10) | Control Condition First (n = 7) | |
---|---|---|---|
Age, years * | 61 (51–64) | 61.5 (53–64) | 55 (35–66) |
Type of stroke, n Ischemic/hemorrargic (%) | 17 (100%)/0 | 10 (100%)/0 | 7 (100%)/0 |
Time since stroke, days * | 33 (25–60) | 33 (28–60) | 27 (18–84) |
Gender male, n (%) | 10 (59%) | 4 (40%) | 6 (85.7%) |
NIHSS, score (range: 0–42) * | 4 (2.5–7) | 4 (2–5) | 5.5 (3–8) |
FMA UE, score (range: 0–66) * | 43 (35–54) | 50(41.5–62) | 51 (35–60) |
ARAT, score (range: 0–57) * | 38 (14–49) | 31 (6–49) | 38 (14–57) |
MI UE, score (range: 0–100) * | 72 (61–83) | 76 (39–83) | 70 (66–85) |
ATI, score (range: 1–6) * | 4.83 (3.75–5.85) | 4.78 (3.56–5.56) | 4.89 (4.11–5.67) |
Item TAM [27] | Median (IQR) | |
---|---|---|
Perceived usability | 1. Easy to use | 7 (6–7) |
2. Easy to learn how to use | 7 (6–7) | |
3. Clear and easy to understand how to use | 7 (6–7) | |
4. Messages are clear | 6 (5–7) | |
Perceived usefulness | 5. Stimulates arm use | 6.5 (4–7) |
6. Provides insights on arm use | 6.5 (4.5–7) | |
7. Usefulness | 6 (4.5–7) | |
8. Improves my arm rehabilitation | 6 (4–6.5) | |
Attitude towards use | 9. Would like to use | 5 (3.5–6) |
10. Good to use it for my recovery | 5.5 (4–7) | |
11. Would like to use it at home | 3.5 (1.5–6) | |
12. My family and friends would support the use | 7 (6.5–7) | |
Intention to use | 13. Intention to use when it is available | 4.5 (1–6) |
14. Intention to use it often | 4.5 (1.5–6) | |
15. Would use it when needed for my rehabilitation | 6 (6–7) | |
16. Intention to use it at home | 4.5 (3–6) | |
Total score (Range: 16–112) | 94 (77–111) |
Item SUS [31] | Median (IQR) |
---|---|
1.Use it frequently | 3.5 (3–4) |
2. Unnecessary complex * | 1 (1–2) |
3. Easy to use | 4.5 (4–5) |
4. Need support of a technical person * | 1 (1–1.5) |
5. Functions are well integrated | 3.5 (3–4) |
6. Too much inconsistency * | 1.5 (1–2.5) |
7. Learn to use it very quickly | 4 (4–4.5) |
8. Very cumbersome to use * | 1 (1–2) |
9. Very confident in using | 4 (3–4.5) |
10. Need to learn a lot to use * | 1 (1–1) |
Total (Range: 0–100) ** | 77.5 (75–78.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langerak, A.J.; Regterschot, G.R.H.; Evers, M.; van Beijnum, B.-J.F.; Meskers, C.G.M.; Selles, R.W.; Ribbers, G.M.; Bussmann, J.B.J. A Sensor-Based Feedback Device Stimulating Daily Life Upper Extremity Activity in Stroke Patients: A Feasibility Study. Sensors 2023, 23, 5868. https://doi.org/10.3390/s23135868
Langerak AJ, Regterschot GRH, Evers M, van Beijnum B-JF, Meskers CGM, Selles RW, Ribbers GM, Bussmann JBJ. A Sensor-Based Feedback Device Stimulating Daily Life Upper Extremity Activity in Stroke Patients: A Feasibility Study. Sensors. 2023; 23(13):5868. https://doi.org/10.3390/s23135868
Chicago/Turabian StyleLangerak, Anthonia J., Gerrit Ruben Hendrik Regterschot, Marc Evers, Bert-Jan F. van Beijnum, Carel G. M. Meskers, Ruud W. Selles, Gerard M. Ribbers, and Johannes B. J. Bussmann. 2023. "A Sensor-Based Feedback Device Stimulating Daily Life Upper Extremity Activity in Stroke Patients: A Feasibility Study" Sensors 23, no. 13: 5868. https://doi.org/10.3390/s23135868
APA StyleLangerak, A. J., Regterschot, G. R. H., Evers, M., van Beijnum, B. -J. F., Meskers, C. G. M., Selles, R. W., Ribbers, G. M., & Bussmann, J. B. J. (2023). A Sensor-Based Feedback Device Stimulating Daily Life Upper Extremity Activity in Stroke Patients: A Feasibility Study. Sensors, 23(13), 5868. https://doi.org/10.3390/s23135868