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Abstract: Even with the most cutting-edge tools, treating and monitoring patients—including chil-
dren, elders, and suspected COVID-19 patients—remains a challenging activity. This study aimed
to track multiple COVID-19-related vital indicators using a wearable monitoring device with an
Internet of Things (IOT) focus. Additionally, the technology automatically alerts the appropriate
medical authorities about any breaches of confinement for potentially contagious patients by tracking
patients’ real-time GPS data. The wearable sensor is connected to a network edge in the Internet
of Things cloud, where data are processed and analyzed to ascertain the state of body function.
The proposed system is built with three tiers of functionalities: a cloud layer using an Application
Peripheral Interface (API) for mobile devices, a layer of wearable IOT sensors, and a layer of Android
web for mobile devices. Each layer performs a certain purpose. Data from the IoT perception layer are
initially collected in order to identify the ailments. The following layer is used to store the information
in the cloud database for preventative actions, notifications, and quick reactions. The Android mobile
application layer notifies and alerts the families of the potentially impacted patients. In order to
recognize human activities, this work suggests a novel integrated deep neural network model called
CNN-UUGRU which mixes convolutional and updated gated recurrent subunits. The efficiency
of this model, which was successfully evaluated on the Kaggle dataset, is significantly higher than
that of other cutting-edge deep neural models and it surpassed existing products in local and public
datasets, achieving accuracy of 97.7%, precision of 96.8%, and an F-measure of 97.75%.

Keywords: monitoring; COVID; Application Peripheral Interface; sensors; inception; deep learning;
CNN-UUGRU

1. Introduction

As the world progresses towards real-time and remote monitoring, along with rapid
disease diagnosis, remote healthcare has emerged as a significant area of research. Remote
healthcare encompasses a range of practices that utilize technology to monitor patients
outside of traditional hospital settings. This includes approaches such as mobile health
and telehealth. The advantages of remote patient monitoring include the capability to fully
monitor sick people, the prevention of diseases that harm them and early deaths, a lowering
in the number of hospital admissions, cost savings from hospital admissions, efficiency
gains in healthcare services, and the capability to obtain additional correct information
outcomes while allowing patients to maintain their normal activity. Those that gain from
remote patient monitoring include those with chronic illnesses, patients recovering from
surgery, people with mobility issues or additional disabilities, senior patients, and babies.
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All of these people have medical conditions that require ongoing care. Making every
patient’s daily life as enjoyable as possible is the aim of outstanding healthcare [1].

A more advanced subfield of artificial intelligence (AI) is machine learning (ML).
Smarter machines can be built using artificial intelligence. ML is a strategy for implicitly
changing learning from experiences and samples. Instead of writing code, data are added
to a general algorithm, and analysis is built based on the provided information. Online
searches, banner advertising, spam detection, and trading platforms are just a few of
the applications that use machine learning [2]. By analyzing vast volumes of data and
automating the labor of information scientists, machine learning has gained the same
attention and significance as cloud computing and big data. Numerous fields, interpersonal
organizations, and businesses, including those in design sciences, biogenetic research, and
security, collect and analyze formative information on an extensive scale. Most traditional
ML techniques are created for information that is fully stored within the structure [3].

Patients who have been involved in an accident or have suffered serious injuries might
only be electronically monitored throughout their ambulance ride to the hospital. However,
the focus is on ensuring a secure transition to remote monitoring, and the health center
supports the delivery of immediate medical care in the most life-threatening circumstances.
Doctors can monitor a patient’s progress or preservation while also providing any neces-
sary advice to paramedics who are physically there with the patient. A data-gathering
system, a healthcare end terminal, an information-processing system, and a communication
network are the four essential components of a remote-monitoring system. Devices with
sensing capabilities and multiple sensors that may wirelessly send information comprise
an information-gathering system [4]. Since technology has advanced, sensors may now
include cameras and mobile phones in addition to medical sensors. Recent studies on
frictionless medical techniques, in which medical tools do not directly contact individuals,
are the basis for this technology. The most common type of sensor is used in noncontact
approaches in wireless sensor networks (WSNs). Personal area networks (PANs), wireless
body area networks (WBANs), and body area networks (BANs) could be used to further
categorize them. A system for processing information comprises a processing unit or
circuitry, as well as a system that may receive and send information. A database as a
specialized gadget, or even the physician’s smartphone, might serve as a medical device.
The data processing system and the information collection system are connected by the core
communication network, which also sends the findings and conclusions to a healthcare
practitioner who is connected to the system.

The definitions and general design for remote monitoring of patient systems are
introduced in the following section, which is then followed by the benefits of RPM. The
crucial RPM components are then discussed. The study is then completed in Section 4 after
the data are statistically analyzed. The major contributions of the proposed taxonomy are
as follows:

• This study focuses on artificial-intelligence-based IoT technology. The system was
built with three tiers: a cloud layer using an Application Peripheral Interface (API) for
mobile devices, a layer of wearable IoT sensors, and an Android mobile application
layer, where the IoT perception layer collects data from the wearable sensors with
advanced MMS systems and incorporates ZigBee for better computational handling.

• The CNN-UUGRU model combines convolutional and updated gated recurrent sub-
units to achieve high accuracy in activity recognition.

• The sensed data can be utilized to issue a warning to nearby residents, advising them
to exercise extreme caution and take preventive actions. The technology has already
been used to link physiological measurements to routine tasks.

• The remaining sections of the paper are organized as follows: In Section 2, previous
studies relevant to our research are discussed. Section 3 introduces the fundamental
concepts of the techniques employed in the proposed system, including the Tier-Based
Working Model and the Data Prioritization task using the Deep_Convolutional-LSTM.
Section 4 provides a comprehensive analysis of the proposed scenarios and presents a
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comparison between our study and previous works. Finally, Section 5 presents the
conclusion of the study and provides recommendations for future research directions.

2. Literature Review

The framework of the existing literature is as follows: First, we describe human
behavior and the various HAR approaches, along with the advantages and disadvantages
of relying on an embedded system. Following a thorough discussion of the online vs.
offline approach and the numerous machine learning approaches used in earlier research
for sensor-based human-action recognition, the advantages of hybrid neural network
designs over other traditional methods are discussed.

2.1. Human Activity

Movements, hand gestures, and other physical actions that entail the release of energy
are referred to as human activity [5]. Examples include actions such as eating, drinking,
and walking. Human actions are simple or complicated. Simple human activities take into
account body motion and posture to define the different activities. Jogging, walking, and
running are examples of these activities. Human behaviors are composed of fundamental
acts and a function [6]. Imagine, for instance, a task where the individual just sits and
executes the action of eating. Simple and complex human behaviors will be categorized
into three groups using deep learning techniques dependent on smartphone and wearable
sensor readings.

2.2. The Human Activity of Recognition Methods

Human activity recognition systems may be divided into two categories: vision-
based and sensor-based systems [7], as shown in Figure 1. Three other kinds of sensor-
based technology may be identified: (a) clothing; (b) device-free; and (c) device-bound
(object-tagged) (dense sensing) [8]. A visual sensor-based system employs cameras and
movies to record and catalog the behaviors of the research participants. Privacy is the
key worry, since it may not be viable to put cameras at all sites owing to compliance and
regulatory restrictions. Additionally, computer power is required to analyze photos and
videos using computer vision-based approaches. One sort of sensor modality that may
be used to recognize and locate human behaviors is wearable sensor technology. These
sensors may be embedded in bands, smart watches, clothing, and smartphones, or worn
on the body. Numerous IoT-based sensor devices that may be worn on the body to record
movements, including accelerometers, gyroscopes, magnetometers, electromyographs
(EMGs), and electrocardiographs (ECGs), are readily accessible on the market [9]. The
appropriate positioning of wearable sensors directly affects the activity data being gathered
from a person. The most obvious places to put the sensors are the breastbone, lower
back, and waist. The exemplification of body motions improves with sensor placement
relative to the center of mass. This is where the use of smartphones and smartwatches
that have accelerometers and gyroscopes is highly practical. Smartphones are placed in
pockets, whereas wearables and watches are worn on the dominant arm. To recognize
complicated hand-based human behaviors, such as teeth brushing or sipping soup, both
technologies may be very beneficial. In sensor-bound or entity systems, detectors are
affixed to commonplace items. Individuals’ interactions with these objects are used to
identify certain activities. The user is compelled to use the item to which the gadget is
linked, which is comparable to the drawback of wearing sensors. Such gadgets include
microphones and IR sensors. Device-free detectors, also known as environment-based or
dense different sensors, offer the advantage of not requiring the person to wear anything on
their body. These sorts of non-device detectors may be directly placed in the surroundings
and can capture the subjects’ movements, interactions, and action-based tasks. The most
popular detectors are RFID, FM and microwave, Wi-Fi, and ZigBee Radio [10], which are
common radio-frequency-based detection types.
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3. Proposed Methodology: Tier-Based Working Model

This section explains the wearable sensors for remote healthcare monitoring systems.
The physical features of physiological signals are depicted in Table 1. Figure 2 shows the
three-phase system.
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The system is made up of:

(1) WBAN, or wireless body area network
(2) IPDA-based personal server (PPS);
(3) A Medical Server for Healthcare Monitors (MSHM).

Phase 1

The patient is the system’s user. Wearable technologies establish a WBAN to detect
the vital signs of patients and deliver feedback to maintain proper health [11]. Medical
sensors include five essential parts:

(1) Sensor: A sensor chip used to gather physiological signals from the patient’s body.
(2) Microcontrollers: This device is utilized for local data acquisition, such as compression

algorithms, and it also regulates the operation of other detector network devices.
(3) Memory: This is used to temporarily store the detected information.
(4) Radio transceivers: Send/receive wireless physical information between nodes.
(5) Power source: The battery-operated sensor nodes have a lifespan of many months [12].

Detectors can detect, collect, and analyze one or more physiological parameters. An
EKG sensor may be used to monitor cardiac activity, a blood flow meter can be used to
regulate blood pressure, a respiration detector can be used to detect respiration, an EMG
device can be used to monitor muscle contraction, and an EEG device can be used to detect
neurological activity.
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We designed a WBAN that incorporates a high-tech sensor, the MSS. Compared
to other networks, this detector has more storage, processing power, and connections
(Figure 3) to communicate with body sensors through the MSS and the personal server via
ZigBee.
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Both the Bluetooth and ZigBee protocols were considered in this concept. The Wireless
specification only permits a maximum of seven functionality slaves. This device will
contain more than seven sensing devices; thus, Bluetooth is not an option.

Second, the ZigBee/IEEE 802.15.4 standard is equipped with a low-cost, low-power,
short-range architecture that can manage huge sensing devices with up to 65,000 nodes
and provide reliable information transport. It utilizes the Industrial, Scientific, and Medical
(ISM) free band, or 2.4 GHz, and can handle up to 250 kbps. ZigBee transmits physiological
data from WBAN to the patient network.

The following list includes further justifications for its usage:

Security: Protecting patient information is essential; no unauthorized person should modify
it. There is a requirement for the secure transmission of data from the WBAN to individual
and medical servers. The aggregate data transferred between an MSS and a personal server
via ZigBee are encrypted using AES 128.
Scalability: It is very scalable over a wide range of devices. Regardless of the manufacturer,
there should be interoperability between numerous medical and non-medical devices and
information management devices. The MSS undertakes inconspicuous sampling, gathers
vital signs via sensing applications, checks out unnecessary data, reduces the vast number
of details given by BSNs and saves them quickly, and analyzes and sends essential patient
data using wireless ZigBee/IEEE 802.15.4. This increases overall bandwidth usage and
decreases BS energy consumption since networks are not required to send information to
the IPDA but to the MSS, which is closer to the BSs, increasing the battery capacity of each
sensor network.

Phase 2

Individual Server

The personal server interfaces with WBAN nodes using ZigBee. It is used with smart
IPDAs. It retains patient IDs and uses the hospital’s Internet address to communicate with
hospital assets. It collects physiologically essential signals from the WBAN, evaluates them,
and prioritizes the transfer of critical information when there is a major clinical alteration
in the current patient condition or entire database, such as changes in circulation impulses,
temperatures, or oxygen saturation, and then sends it to the regional hospital.

Furthermore, the IPDA is capable of automatically evaluating physiological data and
performing local reasoning to assess the user’s health state based on information obtained
from the MSS, and giving feedback through a user-friendly and engaging GUI.
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Phase 3

Servers and personal servers are connected through 3G communications, although
other longer-range communications, including GPRS and WWANs, may also be utilized.

The IPDA has two distinctive services that enhance transmitting data latency, bandwidth,
and energy consumption. They are information minimization and priority sequencing.

Table 1. Physical features of physiological signals.

Signal of Physiological Range of Factor Data Rates (Kbps) Arriving Time (s)

Electrocardiograph (EKG) 0.5–4 mw 6.1 0.003

Body temperature 32–40 degree 0.0025 5

Respiration rate 2–50 breaths/min 0.25 0.06

Never potentials 0.02–3 mv 241 5 × 10−5

Blood pressure 10–400 mmHg 1.3 0.02

PH value of blood 6.9–7.9 PH units 0.049 0.26

Flow of blood 1–300 mL/s 0.49 0.026

Oxygen saturation (SpO2) 0.02–0.86/s 2.4 0.17

3.1. Data Compression and Prioritization of Tasks

Different physiological data are sent between sensor devices and patient servers.
Transmissions are categorized by data rate and delay. They fit into the following categories:
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Low latency indicates that the duration it takes for a system to respond to the trans-
mission of a crucial signal should be as short as feasible, while a high data rate means that
the signal must be sent quickly and reliably.

Each physiological indicator has priority weight according to Table 2 below. It shows
the order in which physiological signals will be conveyed from the IPDAs to the hospital
through 3G connectivity for additional assessment and care by medical personnel.

Table 2. Priority of physiological signals.

Signals of Physiological Rate of Data Level of Priority Latency

EKG Higher level 1 Minimum

Blood flow, heart rate, oxygen saturation Lower level 2 Minimum

Blood pressure, body temperature, rate
of respiration Lower Level 3 Maximum

Never potentials Higher Level 4 Maximum

Priority 1 physiological signs have the highest importance and will be communicated
first. The vital indicator should be given right away. It indicates that the patient needs
urgent medical attention, although higher data rates and lower latency signals are unimpor-
tant. It will be compressed to a specific proportion and stored in the IPDA’s local memory
for later communication when higher-priority physiologic indicators, including priority
1 and priority 2, have already been broadcast.

As previously mentioned, priority access to a patient’s health records is essential to
ensure appropriate care and to increase safety and quality of care. Priority scheduling
lowers transmission delays for physiological signals and transportation congestion. By
using data compression, the overall amount of data delivered is decreased. Because of the
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increased bandwidth use, the overall transmission time is decreased. However, the IPDA
relies on a battery for power and uses a lot of energy when transmitting [13].

This method saves energy on the IPDA because it only sends the most important vital
signs first. The less important signs are saved and sent later. The flowchart illustrating the
IPDA functioning modes may be seen in Figure 3 below. Active Mode and Inactive Mode
are the available modes.

To conserve energy, the IPDA is idle when it has no information to acquire from
the MSS or communicate to the patient database, but it wakes up promptly to receive
information and keep it. It prioritizes all acquired physiological data and relays them to
the healthcare server so healthcare professionals may be suitably prepared before such a
patient is brought in or dispatched to save his/her life.

3.2. Medical Server for Healthcare Monitors (MSHMs)

Phase 3 is referred to as the MSHM. It accepts information from a personal server
and supports the design. It is located in hospitals that provide healthcare services. It is
clever because it can learn patient-specific thresholds and gains knowledge from a patient’s
prior medical data [14]. The MSHM maintains EMRs for all patients who have registered,
which are accessed online by various medical staff members, including medical doctors,
specialists, and physicians inside the hospital. The doctors know the patient’s situation.
The MSHM’s duties are maintaining the user identity, getting information from personal
servers, preparing and entering the information into EMRs, and assessing statistics. The
patient’s physician may monitor information and trends from his or her office through the
internal network or Internet to ensure that health metrics are fulfilled. If information is
outside of its limits or reveals significant health issues, emergency unit personnel may be
notified. If the patient is located in a distant place, a specialist physician will assess the
patient’s physiological data, make a diagnosis, and recommend the appropriate course
of action and medications. This information will be transmitted online to the remote
doctor. Additionally, the MSHM gives patients feedback suggestions, such as workouts
recommended by doctors.

3.3. Implementation and Evaluation

The findings were generated using Tensorflow 2.4.0, Keras 2.4.3, Python 2.6.9, Pandas
1.1.5, a Numpying raw gyroscope, and acceleration location information from WISDM, and
the parameters are given in Table 3 for information.

Table 3. Hyper-parameters for CNN-UGRU.

Factors Ranges

Conv filters 1 32

Conv filters 2 128

Dropouts 1 0.09

UGRU units 1 64

UGRU units 2 64

Dropout 2 0.01

Epochs 25

Size of batch 64

3.3.1. Keras Model Setup

This method’s setup includes several DL models which are covered in depth in the
following subsections [15]. The CNN-UUGRU hybrid model architecture shown in Figure 4
is employed for wristwatch and smartphone datasets. It can scan huge star patterns as
bricks, extract features, and then use the UGRU layer to build the functionalities. Because a
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standard picture consisting of 10 s, or 200 time steps, was used, the time stages included in
each sequence were broken down into four subsets consisting of 50 time stages each before
being input into the CNN together with six elements. To enable the CNN architecture to
read all four input subgroups, a Time Distribution layer is wrapped around it. A max-
pooling level, with dropouts to reduce the false positive rate, and which flattens and feeds
into two layers of stacked UGRU dropouts, and SoftMax for classifiers, are used to depict
a two-layer 1D CNN. Given that classification is being performed on the information,
Cross-Entropy Losses are used as the linear transformation. Cross-Entropy Losses for
multi-class segmentation are defined as:

J = 1/N(∑N
i=1(Yi − log (ŷi))) (1)

where Yi is the true label, ŷi is the label to be precisely cited for the ith learning sample, and
N is the overall training data.
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OptKeras is a package manager for Bayesian hyper-parameter optimization utilizing
the Optuna module. Optuna automates the deep convolutional neural network and ma-
chine intelligence hyper-parameter tuning using Bayesian optimization. Table 4 shows the
CNNs-UGRU hyper-parameters configured utilizing OptKeras.

3.3.2. Inception Time

The Inception Time deep learning model setup uses McFlyAutoML. This package’s
benefit is that it makes it simple to generate numerous models, then allows one to choose
the best model based on an assessment measure after utilizing a random search to refine
the models. In this research, four cutting-edge designs were constructed using McFly,
and the best was picked. This design contains five activation functions, each having a
max-pooling layer and four Conv 1D layers, three with varying kernel sizes and one with
a constant kernel size. The time information from the smartwatches and smartphones
dataset, which is processed using a dynamic panel model of 10 s, is the input to this
model. The last layer concatenates conception modules’ input and averages it globally
to decrease parameters [16]. The hyper-parameters for the wearable device databases are
chosen randomly, as shown in Table 4.
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Table 4. Hyper-parameters for Inception Time.

Factors Ranges

No. of filters 73

Rate of learning 0.0278

Size of maximum kernel 34

Depth of network 6

Rate of regularization 0.0198

3.3.3. Deep_Convolutional-LSTM

Deep_Convolutional-LSTM is a deep learning hybrid model. It comprises multiple
Conv2D layers, followed by an LSTM layer. It was developed in the study using McFlyAu-
toML. The advantage of using McFly is that it is very straightforward to construct an ML
model by randomly selecting significant energy for numerous models. In this study, four
Deep_Convolutional-LSTM techniques were constructed, and the best one was selected
depending on recognition rate. The prototype has seven Conv2D layers using various
filter lengths to choose local features from input time series analysis, followed by three
stacked LSTM layers. The quantity of layers is a parameter that is controlled. To categorize
various human behaviors after the LSTM is introduced to reduce overfitting, a TDL and
max-pooling are used. The smartwatch dataset hyper-parameters are picked randomly
(Table 5).

Table 5. Hyper-parameters for Deep_Convolutional-LSTM.

Factors Ranges

Filters [96, 44, 43, 52, 79, 14, 18]

Rate of learning 0.0008345

LSTM-Dims [79, 57, 47]

Rate of regularization 0.006087

4. Numerical Results and Deliberations

The suggested solution uses a web-based app for medical experts and an Android app
for the patient or family responders. The two interfaces are synced to gather and notify
healthcare information. To learn more about the three-part proposed system of IoT-based
smartwatches, further details are provided. PIPs wear embedded sensors on their wrists or
ankles, or wristbands to identify physiological health concerns and transmit the position
and localization to the API cloud management software. Two or more people interact at
the receiver portion. The user login’s close relative receives a caution and alerts about the
patient’s health. The API is hosted on a webpage with cloud-style information storage
and retrieval. The serious issue involving the provision of drugs and counseling sessions
is monitored and managed by medical experts using this API. The Android application
created for smartphones is synced with the API interface to provide regular alerts of the
patient’s health problems while they are under confinement.

4.1. Device Evaluation Outcomes

The gadget was attached to the human body and went through several tests while
being worn by the user, and also recorded information on heart rate, temperature, location,
SpO2, and coughing. A source of heat from outside was utilized to assess how well heat
measurement works in the temperature settings. Due to COVID-19, the patient’s limitations
were exposed and implemented. The situation examined is described in the sections that
follow. With a successful completion time of 1 h and a synchronization time of 10 min, the
device’s operational time was determined.
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4.2. Observation of Someone Displaying Normal Symptoms

The practice management portal tracks and uploads temperature, SpO2, and pulse
data into the cloud. Moreover, the gadget provides periodic position data, comprising
the longitude and latitude of the webpage. An Arduino BLE sensor 33 is used to analyze
coughing noises every 2 s and sends the findings to a webpage for storage and processing.
The person’s location will be shown by a green indicator on the dashboard map. The
technique underwent testing at ambient temperature. Figure 5 illustrates a person with
regular indicators, suggesting that the individual has no probable COVID-19 signs, where
the temperature is within the average limits (T 37), the oxygen level content is within
standard parameters (SpO2 > 94), the heart rate is at a reasonable level (120), and the
person does not exhibit cough waveforms. During the enrolment phase, a patient ID and
device ID are issued. The patient ID and the vehicle’s license plate are presented here.
Longitude and latitude represent localization, which will not be seen until the gadget
submits the information to the webpage. All sensor information is sent to a cloud-based
system, which analyzes the measurements and decides on the final state—in this instance,
actively safe—by comparing the current numbers with the allowable ranges.
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4.3. Tracking of Individuals Displaying Potential Infection Symptoms

The temperature is the primary COVID-19 indicator according to the WHO [17–20],
and anybody with a thermometer reading of 37.5 ◦C or above may be infected. A re-
port generated by the system—which was operating at high temperatures—is shown in
Figures 6 and 7. It is also possible to monitor other indicators including coughing, SpO2,
and pulse. It is important to understand that the cough count is determined by adding
up all of the cough waveforms, which helps the case manager determine the level of
the symptoms and avoids any false positives. If (Temperature > 38; SpO2 > 94; Cough
frequency > 10), the system will indicate (active probable disease, not verified). More
importantly, the technique indicates a red color on the map to let the guidance counselor
know that the person who was tested could start showing signs of a possible COVID-19



Sensors 2023, 23, 5869 11 of 19

disease. The job will be on the system dashboards that display the number of impacted
users (Figure 5).
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4.4. Notifying in Case of Self-Quarantine Breach

The wearable device is supported by GPS Shielding, which provides periodic updates
on the patient’s latitude and longitude measurements. The patient must provide the initial
location, which must then be uploaded to the device to set the initial position. The PIP
shows up on the map with his or her location after the location has been submitted. A
distance of 5 km of virtual movement was used to test device performance. The device
sends a notification that the patient has left the quarantine zone as soon as the PIP leaves
the area. This design’s advantage is that it provides a mild reminder that the individual
has left the quarantine area, and a notification that they have done so should alert residents
to such a circumstance. This can assist in deployment and maintaining the PIP by often
indicating their location.

4.5. Case Manager for Patients

The probably infected person (PIP) should be registered on this website by selecting
new patients as the initial step. Five consecutive stages are required for this registration,
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which outlines all the conditions for patients who are under quarantine (see Figure 6). In the
initial phase, patients are registered, providing the relevant data including name, age, and
national ID. The medical history and specifics of the probably infected patient are covered
in the next stage. Further stages include emergency contact and initial geographical location
or planned quarantine place to follow the patient’s condition. Case managers have access
to their patient’s records at all times and may use labels to signify the patient’s current
health state. The patient’s health status is shown on this screen along with their patient ID
and device ID. For monitoring, analysis, and documentation, all pertinent information is
kept and preserved. Following registration, the patient information is retrieved in various
text forms from the database that has been saved.

4.6. The Website with Biomedical Data

The hardware devices on the website are used to collect, upgrade, and synchronize
time by modifying the worn sensor’s information. The device continuously monitors the
patient’s pulse, core temperature, SpO2, and coughing. This interface also must use a GPS
sensor to track the patient’s position while under quarantine. In Figure 8, the patient’s
position, including the most recent latitude and longitude, is updated. Since the privacy
of the data in this module is crucial, as it relates to an individual’s health status, adequate
measures should be taken to ensure secure data collection, transmission, and storage to
protect against unauthorized access or breaches. In addition to biomedical data, the website
also utilizes a GPS sensor to track the patient’s position during quarantine. This raises con-
cerns regarding the collection and storage of Personally Identifiable Information (PII), such
as the patient’s location, which can potentially identify the individual. Safeguards should
be implemented to protect the confidentiality of PII and limit access to this information to
authorized personnel only. Thereby, the website can enhance the protection of individu-
als’ sensitive biomedical and location data, fostering trust and ensuring compliance with
privacy regulations.
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4.7. Device Dashboard

The dashboard displays the status graphically by monitoring those with no COVID-19
signs, probable indicators, and verified COVID indications, and constantly refreshes the
data from the linked devices every minute. Normal physiological signals are indicated by
the color green, people with chronic health concerns by the color orange, verified instances
by the color red, and concluded instances by the color black. The system’s colored counter
provides a comprehensive picture of the patient count state. The main two statuses are
probable infections and cases that have been positively identified as having infections. The
dashboard tracks a person’s position and synchronizes these data with the biological data
in a sheet. The display also summarizes the overall number of confirmed instances and
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closed cases. The patient’s transgressions and the pertinent geofencing subcategories are
shown in Figure 9 below.
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The Android app notifies possible infected patients and their families about their
health, acting as a home control to communicate with the doctor on their behalf. The
Android-based application’s interface consists only of the home, dashboard, and notifi-
cation portions. First, the patient’s family responder’s cellphone number is registered
with the patient ID. After identification, the responder may receive alerts based on human
physiological vital signs in the announcements area. The following paragraphs outline the
main aspects of the Android-based app:

• Successfully registers a smartphone with a patient ID to receive their status.
• Keeps a patient’s health records in chronological order and contacts emergency ser-

vices. Figure 10 displays the android app page with his patient ID and the real-time
notification dashboards.

4.8. Wearable Sensing Devices of 3D Views

The 3D mobile-sensing gadget-level information is gathered using heart rate sen-
sors, temperature monitors, a spark fun pulse analyzer, an audio detector, an Arduino
MKR 1400 motherboard GSM, an Arduino Nano 33 BLE sensor, and an external lithium
polymer battery. All elements are 3D waterproof devices that encrypt web API communica-
tion. The three-dimensional design has a moveable form with a one-piece housing and a
microcontroller, sensors, GPS, and a power source.
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Figure 11 shows the details of the STL file used only for 3D printing, along with the
proper structure and dimensions of the design. The 3D model was made in SketchUp, then
converted to an STL file before printing. Figure 11 displays the 3D model’s extra shape,
dimensions, and data. The layers included for automated health data collection and patient
satisfaction are shown in Figure 12 below.
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Figure 11. Three-dimensional model for SketchUp software.

The 3D design is affordable, lightweight, rigidly enclosed, and easy to use, and has a
long lifespan. Figure 12 illustrates the levels of the sensing devices used to reduce stress
on humans; the mechanism displays the results. The monitoring devices for sensing,
regulating, and controlling COVID-19 are depicted in Figure 12. After being evaluated
in real time, the design prototype is currently being utilized as an application hardware
interaction for several test case situations with healthy and possibly infected patients in
a hospital.
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4.9. Comparison with Other ML Models

In the context of classification tasks, TP, FP, and FN are performance metrics that are
used to assess the accuracy and effectiveness of a predictive model. The following provides
an explanation of each term:

4.9.1. True Positives (TPs)

True Positives refer to the number of instances that are correctly classified as positive by
the model. In other words, these are the cases where the model predicted a positive outcome,
and the actual ground truth is also positive. TP represents the successful identification of
positive instances.

4.9.2. False Positives (FPs)

False Positives represent the number of instances that are incorrectly classified as
positive by the model. These are cases where the model predicted a positive outcome, but
the actual ground truth is negative. FP represents instances that were mistakenly identified
as positive when they should have been negative.

4.9.3. False Negatives (FN)

False Negatives represent the number of instances that are incorrectly classified as
negative by the model. These are cases where the model predicted a negative outcome, but
the actual ground truth is positive. FN represents instances that were mistakenly identified
as negative when they should have been positive.

These metrics are typically used together to evaluate the performance of a binary
classification model. TP and FP are associated with the positive class, while FN is associated
with the negative class. The combination of these metrics helps to assess the model’s ability
to accurately identify positive instances (TP), the presence of false alarms (FP), and the
instances that were missed or incorrectly classified as negative (FN).

These metrics are often used to calculate other evaluation measures such as preci-
sion, recall, and F1-score, which provide more comprehensive insights into the model’s
performance.

The classifiers proposed in this study outperform the previously published findings.
Additionally, some limitations depend on a specific strategy called feature selection. An
example is given to demonstrate the reliance on this effort, as shown in the very accurate
results in Table 6. Additionally, there is a negative effect when the datasets have a higher
number of missing values. This model must handle the issues when the missing values are
somewhat notable. Even if the training dataset is significantly expanded in the proposed
approach, a larger dataset is still required to more specifically construct the model.
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Table 6. Prediction outcomes.

Iterations TP FP FN Precision Recall Accuracy

1 600 7 18 99 99 97.5

2 610 5 30 99.5 97 97

3 640 19 48 99 95 93

4 655 35 17 96 99 97

5 590 43 9 94 99 98

6 660 25 9 99 99.5 99

7 660 30 20 98 99 97

8 660 77 11 97 99.5 99

9 640 63 12 92 99 99

10 580 14 31 94 97 99

11 670 25 55 98 95 99

12 600 36 40 97 95 99

Overall 630 31.5 23 96.8 97.75 97.7

The performance measures of TP, FP, FN, precision, recall, and accuracy are all com-
pared in Table 4. The average prediction results from the proposed model are precision
of 96.8%, recall of 97.75%, and accuracy of 97.7% (see Figures 2–4). Here, a sequential
iteration of 100 epochs is taken into consideration, and the table above contains samples
of 12 iterations. For 12 iterations, the average TP is 630, the FP is 312.5, and the FN is 23.
In Iteration 1, the model achieved 600 true positives, indicating that it correctly identified
600 positive instances. There were seven false positives, meaning that seven instances were
incorrectly classified as positive. Additionally, there were 18 false negatives, indicating that
the model failed to identify 18 positive instances. The precision of this iteration was 99%,
meaning that the model had a high proportion of correctly identified positive instances
among all instances predicted as positive. The recall was also 99%, indicating that the
model effectively captured a large proportion of actual positive instances. The accuracy for
this iteration was 97.5%, reflecting the overall correctness of the model’s predictions.

In Iteration 2, the model improved its performance with 610 true positives and a
reduced number of false positives (5). However, there were 30 false negatives, indicating
some missed positive instances. The precision increased to 99.5%, indicating a higher
proportion of correctly identified positive instances among all predicted positives. The
recall decreased slightly to 97%, suggesting that the model missed a small portion of actual
positive instances. The accuracy remained at 97%.

In Iteration 3, the model achieved 640 true positives, but the number of false positives
increased to 19. There were 48 false negatives, indicating a larger number of missed positive
instances compared to the previous iteration. The precision remained at 99%, indicating
a high proportion of correctly identified positive instances among predicted positives.
However, the recall decreased to 95%, indicating that the model failed to capture some
actual positive instances. The accuracy dropped to 93%, reflecting the overall correctness
of the model’s predictions. The analysis of each subsequent iteration followed a similar
pattern, with varying numbers of true positives, false positives, and false negatives. The
precision, recall, and accuracy metrics fluctuated across iterations, reflecting the model’s
performance. The “Overall” row provides the average values across all iterations, showing
that the model achieved an average precision of 96.8%, an average recall of 97.75%, and an
average accuracy of 97.7%.

By evaluating these metrics for each iteration, we can assess the model’s performance
in terms of correctly identifying positive instances, avoiding false positives and false nega-
tives, and achieving overall accuracy in its predictions. Comparing the model performance
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to that of different existing methodologies, the proposed model is better. These findings
show that the suggested model performs well in remote prediction and creates a better
trade-off. This is similar to how better feature selection approaches enhance prediction
quality.

Table 7 provides a comparative analysis of different algorithms, including the proposed
algorithm. It considers various factors such as FP rate, TP rate, detection rate, precision,
and F-measure. The results clearly demonstrate that the proposed ACAM algorithm
outperforms the existing methods, showcasing its superiority. Furthermore, the table
illustrates a comparison between the detection effectiveness of the suggested CNN-UUGRU
technique and the current NN technique in terms of attack detection rate. The analysis
focuses on different techniques, namely, 1NN, 2NN, 3NN, and 4NN. The findings reveal a
substantial improvement in the detection rate of the proposed approach, with a significant
increase of 35% compared to the existing techniques.

Table 7. Proposed CNN-UUGRU and existing method comparison.

Techniques Rate of TP Rate of FP Precision Rate of Detection F-Measure

1NN 32 31 27 18 81
2NN 35 39 18 21 84
3NN 26 39 14.3 15 82
4NN 42 24.5 24.7 19 71.8

CNN-UUGRU 98 6 96.5 24 97

5. Conclusions

This research work proposed the innovative CNN-UUGRU integrated deep learning
model for categorizing complicated human activities. In this investigation, raw sensor
data from the WISDM dataset were employed. The 3D prototype model for an automated
healthcare system, with the aim of decreasing stress and improving communications, com-
prises a detector, online API layer, and smartphone front-end layer. Measurements of
the temperature, pulse, oxygen level, and sneeze frequency are performed with the use
of wearable sensor layers. Each layer has a unique functionality. To relieve the family’s
tension, the patient’s GPS location information is also sent to the appropriate health experts
in real time. The application’s programmable logic layer is in charge of storing, gathering,
and analyzing the data needed to manage the individual’s social life during the epidemic.
Deploying wearable technology has been proposed as a model for screening airport visitors
at arrival and departure. This work has undergone rigorous analysis to deliver the gadget
with the highest performance possible by evaluating the existing domains. The novel
elements of this design are the measurement of health disorders, following and closely
monitoring of the patient throughout isolation, keeping data to foresee scenarios, swift
alerting of authorities for efficient evaluation, and use of Android to educate family mem-
bers about the patient’s status. The proposed model gives average prediction outcomes
of 96.8% precision, 97.75% recall, and 97.7% accuracy. Furthermore, a successive iteration
for 100 epochs is considered where the samples of 12 iterations are provided. IoT devices
are targets for scammers, hackers, and other unethical individuals who are captivated by
the vast amount of information disseminated across these devices. These data might be
extremely harmful to anyone involved if they are accessed inappropriately. An automation
algorithm that considers IoT security is therefore required for the future.

Limitation and Future Work

The issue of fraudulent activities in healthcare systems based on the Internet of Things
(IoT) is also addressed. Smart medical systems offer significant benefits to patients with
chronic conditions compared to traditional healthcare services. However, one challenge
is that remote areas often lack access to the necessary electricity required to power IoT
devices. Additionally, the need for a fast and reliable network connection poses difficulties
for real-time monitoring, especially in low-powered devices and remote locations. These
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limitations are not solely dependent on technological advancements and can be overcome
with suitable solutions.

However, it is important to acknowledge that IoT devices are attractive targets for
scammers, hackers, and other unethical individuals due to the vast amount of sensitive
information transmitted through these devices. If these data are accessed inappropriately,
there may by severe consequences for everyone involved. Therefore, there is a need
for advanced IoT security measures, including automated algorithms, to address these
concerns in the future.

Author Contributions: Conceptualization, P.P., A.R., A.P. and S.S.; methodology, P.P.; software, S.S.;
validation, P.P. and A.R.; writing—original draft preparation, P.P. and A.R.; writing—review and edit-
ing, P.P., A.R. and A.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We would like to extend our deepest gratitude to PSK. R. Periaswamy from
Kongunadu Education Institutions, for his invaluable contributions in providing exceptional re-
sources. His unwavering support has greatly enhanced the progress of our research endeavors,
enabling us to achieve significant milestones.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Spigulis, J. Multispectral, Fluorescent and Photoplethysmographic Imaging for Remote Skin Assessment. Sensors 2017, 17, 1165.

[CrossRef] [PubMed]
2. Sandryhaila, A.; Moura, J.M. Big Data Analysis with Signal Processing on Graphs: Representation and processing of massive data

sets with irregular structure. IEEE Signal Process. Mag. 2014, 31, 80–90. [CrossRef]
3. Qiu, J.; Wu, Q.; Ding, G.; Xu, Y.; Feng, S. A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process.

2016, 2016, 67. [CrossRef]
4. Al Bassam, N.; Hussain, S.A.; Al Qaraghuli, A.; Khan, J.; Sumesh, E.; Lavanya, V. IoT based wearable device to monitor the signs

of quarantined remote patients of COVID-19. Informatics Med. Unlocked 2021, 24, 100588. [CrossRef] [PubMed]
5. Gani, M.O. A Novel Approach to Complex Human Activity Recognition. Ph.D. Thesis, Marquette University, Milwaukee, WI,

USA, 2017.
6. Vrigkas, M.; Nikou, C.; Kakadiaris, I.A. A Review of Human Activity Recognition Methods. Front. Robot. AI 2015, 2, 28. [CrossRef]
7. Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep learning for sensor- based human activity recognition: Overview,

challenges and opportunities. ACM Comput. Surv. CSUR 2020, 37, 100046. Available online: http://arxiv.org/abs/2001.07416
(accessed on 7 January 2023). [CrossRef]

8. Preethi, P.; Asokan, R. Modelling LSUTE: PKE Schemes for Safeguarding Electronic Healthcare Records Over Cloud Communica-
tion Environment. Wirel. Pers. Commun. 2021, 117, 2695–2711. [CrossRef]

9. Seshadri, D.R.; Li, R.T.; Voos, J.E.; Rowbottom, J.R.; Alfes, C.M.; Zorman, C.A.; Drummond, C.K. Wearable sensors for monitoring
the physiological and biochemical profile of the athlete. npj Digit. Med. 2019, 2, 72. [CrossRef] [PubMed]

10. Wang, H.; Zhao, J.; Li, J.; Tian, L.; Tu, P.; Cao, T.; An, Y.; Wang, K.; Li, S. Wearable Sensor-Based Human Activity Recognition
Using Hybrid Deep Learning Techniques. Secur. Commun. Netw. 2020, 2020, 2132138. [CrossRef]

11. Huifeng, W.; Kadry, S.N.; Raj, E.D. Continuous health monitoring of sportsperson using IoT devices based wearable technology.
Comput. Commun. 2020, 160, 588–595. [CrossRef]

12. Jaber, M.M.; Alameri, T.; Ali, M.H.; Alsyouf, A.; Al-Bsheish, M.; Aldhmadi, B.K.; Ali, S.Y.; Abd, S.K.; Ali, S.M.; Albaker, W.; et al.
Remotely monitoring COVID-19 patient health condition using metaheuristics convolute networks from IoT-based wearable
device health data. Sensors 2022, 22, 1205. [CrossRef] [PubMed]

13. Al Mamun, M.A.; Yuce, M.R. Sensors and systems for wearable environmental monitoring toward IoT-enabled applications:
A review. IEEE Sens. J. 2019, 19, 7771–7788. [CrossRef]

14. Reza Farsh, S.M.; Yaghoobi, M. Fuzzy Logic Expert Systems in Hos-pital: A Foundation View. J. Appl. Sci. 2011, 11, 2106–2110.
[CrossRef]

15. Preethi, P.; Asokan, R.; Thillaiarasu, N.; Saravanan, T. An effective digit recognition model using enhanced convolutional neural
network based chaotic grey wolf optimization. J. Intell. Fuzzy Syst. 2021, 41, 3727–3737. [CrossRef]

16. Muminov, A.; Mukhiddinov, M.; Cho, J. Enhanced Classification of Dog Activities with Quaternion-Based Fusion Approach on
High-Dimensional Raw Data from Wearable Sensors. Sensors 2022, 22, 9471. [CrossRef] [PubMed]

https://doi.org/10.3390/s17051165
https://www.ncbi.nlm.nih.gov/pubmed/28534815
https://doi.org/10.1109/MSP.2014.2329213
https://doi.org/10.1186/s13634-016-0355-x
https://doi.org/10.1016/j.imu.2021.100588
https://www.ncbi.nlm.nih.gov/pubmed/33997262
https://doi.org/10.3389/frobt.2015.00028
http://arxiv.org/abs/2001.07416
https://doi.org/10.1145/3447744
https://doi.org/10.1007/s11277-019-06932-8
https://doi.org/10.1038/s41746-019-0150-9
https://www.ncbi.nlm.nih.gov/pubmed/31341957
https://doi.org/10.1155/2020/2132138
https://doi.org/10.1016/j.comcom.2020.04.025
https://doi.org/10.3390/s22031205
https://www.ncbi.nlm.nih.gov/pubmed/35161951
https://doi.org/10.1109/JSEN.2019.2919352
https://doi.org/10.3923/jas.2011.2106.2110
https://doi.org/10.3233/JIFS-211242
https://doi.org/10.3390/s22239471
https://www.ncbi.nlm.nih.gov/pubmed/36502172


Sensors 2023, 23, 5869 19 of 19

17. Hussain, S.J.; Khan, S.; Hasan, R.; Hussain, S.A. Design and Implementation of Animal Activity Monitoring System Using TI
Sensor Tag. In Cognitive Informatics and Soft Computing; Springer: Singapore, 2020; pp. 167–175. [CrossRef]

18. Preethi, P.; Asokan, R. An attempt to design improved and fool proof safe distribution of personal healthcare records for cloud
computing. Mob. Netw. Appl. 2019, 24, 1755–1762. [CrossRef]

19. Kulurkar, P.; Dixit, C.K.; Bharathi, V.; Monikavishnuvarthini, A.; Dhakne, A.; Preethi, P. AI based elderly fall prediction system
using wearable sensors: A smart home-care technology with IOT. Meas. Sensors 2023, 25, 100614. [CrossRef]

20. Chen, H.; Wang, X.; Ge, B.; Zhang, T.; Zhu, Z. A Multi-Strategy Improved Sparrow Search Algorithm for Coverage Optimization
in a WSN. Sensors 2023, 23, 4124. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-981-15-1451-7_18
https://doi.org/10.1007/s11036-019-01379-4
https://doi.org/10.1016/j.measen.2022.100614
https://doi.org/10.3390/s23084124
https://www.ncbi.nlm.nih.gov/pubmed/37112465

	Introduction 
	Literature Review 
	Human Activity 
	The Human Activity of Recognition Methods 

	Proposed Methodology: Tier-Based Working Model 
	Data Compression and Prioritization of Tasks 
	Medical Server for Healthcare Monitors (MSHMs) 
	Implementation and Evaluation 
	Keras Model Setup 
	Inception Time 
	Deep_Convolutional-LSTM 


	Numerical Results and Deliberations 
	Device Evaluation Outcomes 
	Observation of Someone Displaying Normal Symptoms 
	Tracking of Individuals Displaying Potential Infection Symptoms 
	Notifying in Case of Self-Quarantine Breach 
	Case Manager for Patients 
	The Website with Biomedical Data 
	Device Dashboard 
	Wearable Sensing Devices of 3D Views 
	Comparison with Other ML Models 
	True Positives (TPs) 
	False Positives (FPs) 
	False Negatives (FN) 


	Conclusions 
	References

