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Abstract: This article classifies the dynamic response of rolling bearings in terms of radial internal
clearance values. The value of the radial internal clearance in rolling-element bearings cannot be
described in a deterministic manner, which shows the challenge of its detection through the analysis
of the bearing’s dynamics. In this article, we show the original approach to its intelligent detection
through the analysis of short-time intervals and the calculation of chosen indicators, which can be
assigned to the specific clearance class. The tests were carried out on a set of 10 brand new bearings
of the same type (double row self-aligning ball bearing NTN 2309SK) with different radial internal
clearances corresponding to individual classes of the ISO-1132 standard. The classification was carried
out based on the time series of vibrations recorded by the accelerometer and then digitally processed.
Window statistical indicators widely used in the diagnosis of rolling bearings, which served as
features for the machine learning models, were calculated. The accuracy of the classification turned
out to be unsatisfactory; therefore, it was decided to use a more advanced method of time series
processing, which allows for the extraction of subsequent dominant frequencies into experimental
modes (Variational Mode Decomposition (VMD)). Applying the same statistical indicators to the
modes allowed for an increase in classification accuracy to over 90%.

Keywords: ball bearings; radial internal clearance; time-series analysis; machine learning

1. Introduction

Rolling bearings are the basic element of transferring rotational motion in many
mechanical systems, and thus they are exposed to many changes, causing a decrease in
their life as well as reducing work safety. One such change is also a change in the value
of the radial internal clearance. Radial internal clearance in ball bearings is important
because it helps to ensure that the bearing runs smoothly and without excessive vibration
or noise. It also allows for proper lubrication, which reduces wear, tear, and fatigue on the
components of the bearing. Radial internal clearance ensures that there is enough space
between each ball and its inner race so that they can move freely within their respective
shape errors. Without adequate radial internal clearance, the balls will rub against each
other as they rotate, resulting in increased friction and heat buildup, which can cause
premature failure of the rolling-element bearing. Its change also causes a change in the
physical effects of the bearings and, consequently, a qualitative and quantitative change in
the non-linear system’s dynamic response [1–4].

To present the importance of radial internal clearance on the performance of rolling-
element bearings, it is worth referring to the historical background when both the mathe-
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matical model and experimental approach were studied. Tiwari et al. [5] in an experiment
studied the influence of the radial internal clearance on the dynamic response of the rotor,
presented in the form of orbit plots, cascade plots, and frequency plots. He proved the
influence of the radial internal clearance on the unbalance of the whole rotor, showing both
periodic, sub-harmonic, and chaotic responses of the system depending on the clearance
value and the rotating velocity of the shaft. The first advanced mathematical model of
rolling-element bearing was discussed by Changqing et al. [6], in which the influence of
the following features, such as the radial internal clearance, shape errors, and high-speed
effect, was related to the centrifugal force and gyroscopic moment. In the mentioned
research, it was shown that clearance, axial preload, and radial force play a significant
role in affecting system stability. Another mathematical modeling approach was discussed
by Upadhyay et al. [7]. The results obtained showed the appearance of instability and
chaos in the dynamic response as the speed of the rotor-bearing system and value of radial
internal clearance changed. There are some features regarding the variability of the radial
internal clearance, which, without doubt, the contamination and thermal effects are. In the
thermographic inspection, Miskovic et al. [8] found a dependence between the amount of
contamination and its effect on the operating clearance value during rotation [9]. The recent
trend is focused on the automatic diagnosis of radial internal clearance by studying the dy-
namics of rolling-element bearings. Xu et al. [10,11] looked for accurate indicators allowing
an automatic diagnosis of radial internal clearance in wind turbines. He showed that such
indicators as modulation signal bispectrum-sideband (MSB-SE), root mean square (RMS),
and spectral centroid can be used for clearance diagnostics in ball bearings, showing their
high potential in studying the dynamical response obtained with the mathematical model.
The recent trend in studying the impact of radial internal clearance on bearing dynamics
gives motivation towards the automatic diagnostics of radial internal clearance value,
which can be achieved with finding accurate diagnostic indicators and the application of
nonlinear time-series analysis combined with artificial intelligence methods (AI) [12,13].
The Machine Learning (ML) methods are so useful and provide such high accuracy in clas-
sification that they have already been applied in the following areas of research: maritime
installations [14], smart homes [15], cognitive behavior [16], fault diagnostics [17], analysis
of climate changes [18], environmental protection [19], and many more.

Rolling-element bearings have strongly nonlinear characteristics due to multiple fac-
tors such as shape errors [20], defects [21], friction [22], or contamination [23]. In the case
of evident fault detection, the Fast Fourier Transform (FFT) easily describes the character-
istic frequencies corresponding to the faults of the specific element of a rolling-element
bearing [24–26]. In the diagnostics of bearings, the following trends can be specified:

• Predictive maintenance that became significant trend in the diagnostics of rolling-
element bearings, allowing for early detection of faults and potential failures [27,28].

• The integration of advanced sensor technologies, such as vibration analysis, temper-
ature monitoring, and acoustic emission analysis, has enabled more accurate and
comprehensive diagnostics of rolling-element bearings [29,30].

• The use of artificial intelligence and machine learning algorithms has gained promi-
nence, as they can analyze large volumes of sensor data and identify patterns indicative
of bearing degradation or impending failure [31].

• Non-destructive testing methods, such as ultrasound and infrared thermography, are
increasingly being employed for bearing diagnostics, providing valuable insights into
internal defects and anomalies [32,33].

• Remote monitoring and connectivity solutions have emerged as a significant trend,
enabling real-time data acquisition from bearings installed in remote or inaccessible
locations, thereby facilitating proactive maintenance and reducing downtime [34,35].

Referring to the considered problem, which is the diagnostics of radial internal clear-
ance under different operating conditions, more sophisticated methods have to be used
due to its variability and fluctuations in time. In the previous paper, the accuracy of
some recurrence quantificators was proven [4], but other statistical indicators can also
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be used for the preparation of the window analysis [36–38]. The current study refers to
the previously discussed issue; however, the window analysis is based on nine statistical
indicators. The motivation is the automatic identification of the radial internal clearance
in the self-aligning ball bearing with a conical bore, in which it is possible to control its
value in a wide range [39]. For automated prognostics of radial clearance values even
with different operational velocities, the experiment is automated with Machine Learning
algorithms [40–42]. Basic window analysis does not give an accurate ML model because
first signals are decomposed with Variational Mode Decomposition (VMD) [43,44], and
then the procedure is repeated, increasing the accuracy of the ML model to over 90%.
The novelty of this paper in reference to the previous publications is the intelligent and
subsequently automatic radial internal clearance classification by its classes. The challenge
of the considered problem is that the clearance level cannot be described in a deterministic
way and is a strictly nonlinear factor in the operation of a rolling-element bearing.

After the introduction to this paper, the remainder of this paper is as follows. In
Section 2, the test rig and the experimental procedure are discussed. Section 3 refers to the
data processing and applied methods. Additionally, a mathematical description of applied
methods is presented. In Section 4, the results of VMD and machine learning are obtained,
and a discussion of them is given. Conclusions summarize the paper.

2. Experimental Setup and Procedure

The experimental setup used in the experiment consists of two test rigs, i.e., an
automated setup used for the measurement of radial internal clearance in rolling-element
bearings and the test rig used for the dynamical test in which the rotational velocity is
under control. The experiment was conducted in the laboratory of the Institute of Product
and Process Innovation at Leuphana University of Lüneburg (Germany). The contribution
of our research group can be divided into three subgroups dealing with the preparation of
experiments and data acquisition, signal processing and application of Machine Learning
methods, and supervision over the conducted research.

2.1. The Automated Setup for Measuring Radial Internal Clearance

For the purpose of automating the process of radial internal clearance measurement,
a novel test rig has been built and patented [39]. In our experiment, we are focused on
tapered bore bearings, which refers to their conical shape and the possibility of changing
the internal clearance with the help of axial force in its wide range. Moreover, the test rig is
digitalized, which increases precision and accuracy; however, the measurement process
of clearance is still followed according to the international standard ISO-1132. The dial
gauges in the test rig are used to measure the value of clearance, the distance of shifting
the bearing onto the adapter sleeve with the conical diameter, and the influence of the test
force on the displacement on the shaft (Figure 1).

2.2. Test Rig for Dynamical Tests

After setting the specific value of radial internal clearance, the ball bearing with the
shaft was mounted in the plummer block and interconnected with a coupling to the electric
motor. The test rig allows testing of the bearing up to 3000 rpm, corresponding to 50 Hz,
while the test is conducted with the velocity step every 10 Hz. To the plummer block, two
accelerometers are attached, and one of them is used for collecting the acceleration data
(vertical direction). The sampling frequency during the test is equal to 1562.5 [Hz], which
corresponds to a sampling time of 0.64 [ms]. The type of bearing used in the experiment is
a self-aligning double-row ball bearing with a conical bore. The initial clearance in most
of the studied bearings is more than 40µm, and owing to the conical bore, it is possible to
decrease its value to around 8µm. The details of the used test rig (Figure 2) and the applied
experimental procedure are described in detail in the following paper [4]. The elements
creating the experimental test rig are specified in Table 1, while the features of the studied
bearing are specified in Table 2, and its characteristic frequencies are in Table 3.
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Figure 2. Experimental setup: 1—plummer block with installed ball bearing, 2—vertical accelerome-
ter, 3—horizontal accelerometer, 4—3-phase motor, 5—inverter, 6—coupling [4].

It was impossible to set the same value of radial internal clearance in each of the tested
bearings; this is why similar cases were induced in each of them. The values of radial
clearances were ranged according to the specific clearance classes, which are specified
in Table 4. The abbreviations in Table 4 refer to the names of clearance classes; i.e., C2L
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corresponds to lower values of radial clearance in the C2 class; CN refers to the range of
normal clearance, etc. The classes are specified according to the ISO-1132 standard.

Table 1. Equipment for experimental setup.

Component Type

Ball Bearing NTN 2309SK
Adapter Sleeve NTN H2309
Locating Ring NTN FR 100 × 4

Bearing Housings NTN SNC 511-609
Vertical Accelerometer IFM VSP001 (Piezo)

Horizontal Accelerometer IFM VSA001 (MEMS)
Diagnostic Box IFM VSE100
3-Phase Motor Siemens 1LA5090-4AA60-Z

Inverter Siemens SIMOVERT 6SE2103
Eddy Current Sensor DT 3300

Table 2. Relevant dimensions of tested bearing.

Component Type

Ball Diameter bd [mm] 15.870
Pitch Diameter dp [mm] 71.810

Pressure Angle β [◦] 15.52
Number of Rolling Elements bn 26 (13 per row)

Number of Bearings tested in the Experiment 10

Table 3. Characteristic frequencies of tested bearing.

Characteristic Frequency Value

Fundamental Train Frequency (FTF) [Hz] 0.394
Ball Spin Frequency (BSF) [Hz] 2.160

Ball Pass Frequency Inner Ring (BSFI) [Hz] 7.884
Ball Pass Frequency Outer Ring (BSFO) [Hz] 5.116

Table 4. Specified clearance classes in the experiment.

Marking Range of Clearance

C2L 8–11 [µm]
C2U 14–16 [µm]
CN 18–24 [µm]
C3 25–36 [µm]
C4 38–48 [µm]

3. Data Processing and Applied Methods

Over the years, a variety of digital signal processing (DSP) methods have been applied
to the diagnostics of rotational systems. These methods include frequency-domain tech-
niques such as the Fast Fourier Transform (FFT), Variational Mode Decomposition (VMD),
Spectral Kurtosis (SK), and others. These techniques are supported by analysis performed
in the time domain, which allows us to observe and detect dynamic changes present in the
system over a specific period of time.

In this study, we used data from 10 identical new bearings tested with different
rotational speeds and different internal clearance. In the previous case study research,
we have proved with nonlinear methods that different values of the internal clearance
(different classes of the ISO-1132 standard) result in a different dynamic response of the
system. Instead of using group statistics, machine learning models were used to classify
individual classes due to different values of internal clearance. Time series of vibrations
registered in the y direction were used (vibrations measured in this axis turned out to carry
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the most information about the state of the system). The exemplary acceleration time-series
and its power spectrum is presented in Figure 3. The methodology for preparing training
and test data can be divided into two stages. The first is raw data analysis without advanced
digital signal processing techniques. The second is the decomposition (VMD) of each series
into periodic components centered around the dominant frequency (IMFs) and treated as
new data (Figure 4). In both cases, statistical indicators were calculated (in non-overlapping
windows with a length of 2000 points each), widely used in the diagnostics of rolling
bearings [45]: Mean, Median, Variance, Kurtosis, Skewness, Peak to Peak, Crest Factor,
FM4, and NA4. The ratio of data for training and validation is equal to 75% (6300 data
points) to 25% (2100 data points) which corresponds in total 8400 data points. In Figure 5,
the flowchart of data processing is presented, choosing the analysis with and without VMD
and next the application of ML methods.
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Applying statistical condition indicators (CI) to time series data obtained from experi-
ments has proven to be an accurate method for diagnosing different types of damage or
transient states occurring in gears, bearings, shafts, and other rotational systems. These
indicators can be divided into different domains, including the time domain, frequency
domain, and time–frequency domain. In our experiment, we focus on a subset of these
indicators that we believe will have the most significant impact on identifying bearing
responses with different RICs. By selecting a subset of statistical condition indicators, we
can focus on the most relevant features for identifying bearing responses with different
RICs in our experiment. This can improve the accuracy and effectiveness of our diagnostic
approach. For most of them, their mathematical description is well known, while two of
them require better explanation.

1. FM4 describes how peaked or flat the amplitude of the difference signal is. The FM4
indicator is normalized by the square of the variance, which helps to reduce the
impact of changes in the overall vibration level of the machine.

FM4 =
N ∑N

n=1

(
di − d

)4

[
∑N

n=1

(
dn − d

)2
]2 (1)

where d is the difference signal, d is the mean value of difference signal, N is the
total number of interpolated data points per reading, and i is the interpolated data
point number.

2. NA4 can provide an indication of the onset of damage as well as the magnitude of the
damage as it progresses. The mentioned indicator is a measure of the variation in the
amplitude of the vibration signal from a rotating machine over a certain time period.

NA4 =
N ∑N

n=1(ri − r)4[
∑N

n=1(rn − r)2
]2 (2)
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where r is the residual signal, r is the mean value of residual signal, N is the to-
tal number of interpolated data points per reading, and n is the interpolated data
point number.

Due to the complexity of the underlying non-linear system and its sensitivity initial
conditions, it was decided to decompose each of the signals into modes (IMFs) using the
Variational Mode Decomposition (VMD) algorithm. Variational Mode Decomposition
(VMD) is a data-driven signal processing technique that decomposes signals into mean-
ingful components [46]. It is based on the variational mode analysis method, which has
been used to analyze various types of nonlinear systems. The VMD algorithm works
by finding the oscillatory components that best represent the signal using a variational
principle. VMD uses an iterative procedure to identify meaningful components from a
given signal by minimizing an energy functional associated with each IMF. The obtained
signals cover the original signal’s frequency spectrum with different frequency components.
One advantage of VMD is that it can be used for non-stationary signals with time-varying
frequencies, which is common in many real-world applications. Choosing the proper
number of intrinsic mode functions (IMFs) typically involves considering the complexity
and characteristics of the underlying signal. A general guideline is to select a sufficient
number of IMFs to capture the essential features of the signal without introducing excessive
noise or redundancy. Balancing interpretability and fidelity to the original signal are crucial
when determining the optimal number of IMFs for a specific application, in our case the
analysis of acceleration time-series by different value of radial internal clearance [47,48].
This allows for the extraction of multiple underlying modes in a single pass, resulting in
more accurate and efficient feature extraction than traditional methods such as Fourier
analysis or wavelet transform [49]. It is similar to the widely used Empirical Mode De-
composition (EMD) algorithm [50] and its variations but can be more robust to frequency
mixing between modes. The input signal is defined as a sum of amplitude and frequency
modulated signals:

x(t) = ∑N
n=1 vn(t) = ∑N

n=1 An(t) cos(ϕn(t)) (3)

where An(t) is the amplitude and ϕn(t) is the phase. Each IMF is described by slowly
varying and positive envelops and non-decreasing instantaneous frequency concentrated
around central frequency. The method finds both the modes amplitudes and corresponding
central frequencies (in the same time) by minimizing the constrained variational problem:

min
{vn,fn}

{
∑n ‖∂t

[(
δ(t) +

j
πt

)
∗vn(t)

]
e−jfnt‖2

2

}
(4)

where {vn} = {v1, v2, . . . , vN} denotes the set of all modes, {fn} = {f1, f2, . . . , fN} denotes the
set of central frequencies, δ is the Dirac function, ‖·‖ is the L2 norm, and ∗ is the convolution
operator. The term

(
δ(t) + j

πt

)
∗ vn(t) defines the analytical signal, and the term e−jfnt

defines the frequency spectrum of the baseband. Note that the choice of the number of
modes is critical. In this paper, the number of mods has been fixed at 10.

4. Results and Discussion

The comparison of the model’s accuracy at both the training and validation stages was
one using one of the automatic machine learning package, in this case PyCaret [51]. PyCaret
streamlines the workflow of traditional machine learning and automates many tasks such as
feature engineering, model selection, and hyperparameter tuning. As mentioned earlier, in
the first stage of the research, the window statistics were applied to the raw data generating
the features within the data set. Table 5 shows the four models with the highest learning
accuracy in the training process. The best accuracy has been obtained for models based on
decision trees.
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Table 5. Percentage comparison of the overall accuracy of the raw data model learning process.

Velocity\
Classifier 10 [Hz] 20 [Hz] 30 [Hz] 40 [Hz] 50 [Hz]

Light Gradient
Boosting 83.6% 79.7% 56.7% 57.7% 57.4%

Extreme Gradient
Boosting 83.5% 79.7% 55.8% 57.3% 56.6%

Extra Trees 83.9% 80.2% 55.6% 56.8% 57.1%
Random Forest 83.5% 79.7% 55.9% 57.1% 57.7%

Light Gradient Boosting (LGB) is a machine learning algorithm that uses gradient
boosting to make predictions. It is an efficient and versatile algorithm, which makes it
suitable for many applications such as ranking, classification, and regression problems.
LGB works by combining weak learners in a series of iterations to create an ensemble
model with the highest accuracy possible [52,53].

Extreme Gradient Boosting (XGBoost) is another machine learning algorithm based
on gradient boosting that has become popular over recent years due to its superior per-
formance compared with traditional methods such as Random Forests or Support Vector
Machines. The algorithm works by building an ensemble of decision trees with high
accuracy. It uses regularization techniques such as shrinkage and column subsampling
for better performance over traditional gradient boosting methods like GBM (Gradient
Boosted Machines) [54,55].

Extra trees (ET) are an ensemble method, combining multiple decision trees that have
been built using a random subset of the features. This allows for more accurate predictions
and greater generalization than single decision trees [56,57].

Random forests (RF) are also an ensemble method, but they use a different approach:
each tree is grown using only a randomly selected subset of the data points in the training
set and only a randomly selected subset of the features when making splits at each node.
The result is an even more robust model than extra trees, with better accuracy and less
overfitting. Detailed descriptions of the models as well as examples of implementation can
be found in [58,59].

In all cases, default model parameters have been taken, without their optimization,
that are contained in scikit-learn package. Scikit-learn is a popular Python library for
machine learning that provides a wide range of tools and algorithms for tasks such as
classification, regression, clustering, and dimensionality reduction. It is widely used for
its simplicity, versatility, and integration with other scientific computing libraries in the
Python ecosystem.

Comparing the average accuracy of the classification at the stage of learning the
models, you can notice its highest value for the lowest speeds (10 Hz and 20 Hz) and its
clear decrease for higher speeds (above 20 Hz). The obtained result is consistent with
the fact that damage (in this case, a change in the dynamics of the state of the system)
in rotary machines is usually most visible at the lowest rotational speed. On the other
hand, the classification accuracy values indicate a possible improvement of the score
especially for higher speeds. In the next stage of the research, it was decided to increase
the number of features by decomposing the signal into intrinsic modes modes using the
VMD algorithm [60,61]. Then, each of the new signals was subjected to the same window
analysis as in the first phase. Table 6 shows the percentage results of the learning stage
of the models used earlier (Table 5). When comparing the model training results on data
with more features (Table 7), you can see an increase in accuracy by up to 30% for speed
greater than 30 Hz and about a 10% increase for speed lower than 30 Hz. It is also worth
mentioning that the average learning time of the model did not exceed 5 s, amounting to
0.9 s (LGB), 4.29 s (XGBoost), 0.12 s (ET), and 0.32 s (RF), respectively.
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Table 6. Percentage comparison of the overall accuracy of the model on training data.

Velocity\
Classifier 10 [Hz] 20 [Hz] 30 [Hz] 40 [Hz] 50 [Hz]

Light Gradient
Boosting 93.9% 91.2% 85.0% 88.4% 88.6%

Extreme Gradient
Boosting 93.6% 90.1% 84.1% 88.3% 88.1%

Extra Trees 91.7% 87.6% 81.3% 86.3% 86.8%
Random Forest 91.6% 90.1% 83.2% 87.1% 87.9%

Table 7. Percentage comparison of the overall accuracy of the model on training data.

Velocity\
Classifier 10 [Hz] 20 [Hz] 30 [Hz] 40 [Hz] 50 [Hz]

Light Gradient
Boosting 94.3% 91.1% 86.2% 89.9% 89.4%

In the next phase of classification, the model with the highest average accuracy was
selected, i.e., Light Gradient Boosting, which performed the classification on a previously
unseen test data. The differences in the accuracy of the Light Gradient Boosting (LGB)
classifier between the learning process (Table 6) and testing (Table 7) are small, which
indicates no overfitting effect of the model. Average accuracy is a reliable indicator of the
model’s performance, but it does not reflect the accuracy of classification between different
classes. This can be analyzed using the confusion matrix, which allows the visualization of
the performance of an algorithm [62].

A confusion matrix is a table that is often used to describe the performance of a
classification model (or “classifier”) on a set of data for which the true values are known.
Each column of the matrix represents the instances in a predicted class while each row
represents the instances in an actual class (or vice versa). The name stems from the fact that
it makes it easy to see if the system is confusing two classes (i.e., commonly mislabeling one
as another). One vs. the rest of the classification results is shown in the graph (Figure 6).
When analyzing the confusion matrices, it can be noticed that class C2 is most accurately
predicted regardless of the rotational speed. The largest false prediction occurs for the
middle classes (C2L, CN, and C3) and reaches up to 8% for the speeds of 30 Hz and 50 Hz.

The analysis of features in terms of their importance on prediction can also provide
relevant information. In the case of the LGB model, the importance of individual features
was determined as the number of splits of data across all trees. Figure 7 presents the top
ten features of importance of the LGB classifier. The influence of individual features on the
effectiveness of the classification shows a certain repeatability (Figure 7). Firstly, in all cases
one feature is dominant, i.e., the value of FM4 for the last component (Imf_10), which is
concentrated around the lowest dominant frequency. Secondly, the first ten top features
with the highest significance in most cases were determined based on kurtosis (Fm4, Na4,
Skewness), and in a few cases it is variance (Var). As predicted, low frequency signals
(Imf_i where i ∈ {10, 9, 8, 7}) appear to be the most important, but there are also signals
with the highest frequencies (Imf_i where i ∈ {1, 3}). Another approach to the research on
reliability of results obtained is the cross-validation (CV) [63–65], which will be considered
in the next research.
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5. Conclusions

This article presents the application of machine learning methods to classify the
internal clearance of rolling bearings. The vibration signals of 10 new bearings with different
initial clearances recorded on the experimental stand were subjected to feature extraction
using window statistics widely used in bearing diagnostics. Each class corresponds to
a different range of internal clearance according to the ISO-1132 standard. In the first
approach, the determined values of statistical indicators were used as input data for various
classification models. At the learning stage, it turned out that the best classification models
were based on the structure of decision trees (Table 5). This was especially noticeable at
low rotational speeds, with a classification accuracy of greater than 83% for 10 Hz and
about 80% for 20 Hz. Higher speeds showed a decrease in accuracy, which ranged between
55% and 58%. In order to improve accuracy, the set of features was enlarged 10 times,
determining statistical indicators based on the extracted experimental components focused
around 10 dominant frequencies. The new training data set has improved the classification
accuracy depending on speed (Table 6): for low speeds (10 Hz and 20 Hz) by more than
10 percent to almost 94% and for higher speeds (30 Hz, 40 Hz, and 50%) by more than
30 percent to almost 89%. At the testing stage, the best-performing classifier was selected,
i.e., the Light Gradient Boosting model, which showed accuracy in the range of 86% to 94%
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(Table 7). Detailed insight into the classification between the individual classes using the
confusion matrix (Figure 6) showed the highest number of correct classifications (up to 96%)
for the C2 class in all cases. On the other hand, the most incorrect classifications (up to 8%
percent) were obtained for the middle classes C2L, CN, and C3. Moreover, it turned out that
low-frequency signals carry the most information, although high-frequency components
are also important (Figure 7). Summing up the above, using only the acceleration vibration
signals, it was possible to classify the internal clearance in rolling bearings at 94%. Such
a high efficiency was achieved by the Light Gradient Boosting model, although the other
models based on tree architecture were not much behind it. The obtained results may be
helpful in the classification of the dynamic condition of the bearing, which may change
depending on the size of the clearance. It should also be noted that the resulting inaccuracies
in the classification may be related to slight changes in the initial conditions associated with
each installation of a new bearing on the test bench. The next step of the research will be a
more strict analysis of the number of chosen IMFs and the analysis and cross-validation of
the data applied to testing and validation.
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