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Abstract: This paper presents a state-of-the-art estimation technique by cross-combining a number
n of filters for high-precision, reliable and robust vehicle sideslip angle state estimation, over a full
range of vehicle operations irrespective of the driving mission and disruptions that may occur in the
system. A machine-learning algorithm based on decision trees connects several filters together to
switch between them according to the driving context, ensuring the best possible state estimate for
relatively small and large sideslip angle values. In conjunction with the above-mentioned aspects, a
seamless transition between different vehicle models is attained by observing the key parameters
characterizing the lateral motion of the vehicle. The tests conducted using a prototype vehicle on a
snow-covered track confirm the effectiveness and reliability of the proposed approach.
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1. Introduction

Once again, the automotive industry is gearing up towards another revolutionary
move. The over-actuation of future vehicles and the smart by-wire transformation offer
unique capabilities to designing new vehicle stability functions for safer and more com-
fortable driving such as torque vectoring (TV) and sideslip control logic (SCL) which have
the potential to provide significant safety benefits in global car crashes, and nicely increase
the vehicle’s steering performance. Unlike the electronic stability control (ESC), which
is curative in nature, TV prevents critical driving situations by continuously monitoring
and controlling the SSA. However, this parameter upon which the development of TV
software relies is not readily available due to the lack of on-board measurement devices
or sideslip angle (SSA) sensors in current vehicles. As a matter of fact, the interest in a
real-time application to know the SSA has motivated the completion of several studies in
the field of vehicle lateral motion control and SSA estimation due to the desire for a real-
time application that can accurately determine the SSA [1]. Estimating the sideslip angle
of a vehicle becomes particularly difficult in low grip conditions, when one or both axles
slip excessively. Under normal driving conditions, a Kalman filter would generally do the
job [2,3] providing a good design and the tuning of the covariances. However, to ensure the
robustness and reliability of our approach, we will conduct thorough tests and validation
specifically in low grip conditions. The major SSA estimation approaches presented in
the literature include: the model-based method [4], the vision-based method [5], sensor
fusion [6], the data driven method [7], and the hybrid method [8].

The model-based design is about the art of compromising between the level of com-
plexity of the process model and the expected accuracy of the state estimate.
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To achieve the best possible state estimate, refs. [9,10] use two different vehicle models
depending on the driving context. They include the kinematic model and the dynamic
model. The results show that by combining the benefits of both models, while rejecting
their penalties, a decent SSA estimate can be achieved. Likewise, the authors of [11]
cross-combined a KF fed by a kinematic model and a UKF using a dynamic model to
ensure a good SSA estimation in the face of critical driving conditions. The emphatic point
to note here is that the kinematic model with a Kalman filter (KF) is triggered through
weighting terms when the vehicle speed and yaw rate values are far from zero, without
which the states of the process model become unobservable. The dynamic filter that only
comes into play when the yaw rate is close to zero to support the kinematic filter using a
kinematic model is now unobservable. In contrast to other methods that utilize two vehicle
models or two filters, ref. [12] introduced a KF-based SSA estimator that can be used across
a broad range of vehicle operations. This approach achieves adaptability by adjusting
the covariance matrix terms, enabling a smooth transition between different tire models.
Depending on the driving situation, the linear tire model is used for reliable estimation in
case of small SSA and linear tire behavior, while the nonlinear tire model accounts for road
friction changes when the tire operates in the nonlinear range.

Despite many efforts to enhance or incorporate tire models into the SSA estimation
problem, these models still have limitations and can potentially contain biases. The authors
of [13,14] employed different methods and models to determine the optimal solution.

Even though Gaussian filtering is a useful technique to perform state estimation, it
does not work well when the model is highly nonlinear, and the posterior distribution is
significantly non-Gaussian. Hence, the particle filter (PF) gained prominence in the state
estimation research domain [15,16] due to its ability to guarantee accurate state estimation
in the face of perturbations and the availability of supercomputers in today’s embedded
systems. While [17] has proven effective in estimating SSA within the linear range of tire
operation through PF, our work takes it a step further by proposing a PF for estimating SSA
in both linear and nonlinear regions of tire operation, even when the vehicle experiences
significant variations in lateral acceleration. Moreover, our models also consider significant
fluctuations in the vehicle’s lateral acceleration, leading to deviations in vehicle models
from the actual vehicle.

This paper’s primary contribution is the provision of both small and large SSA es-
timates, independent of road adherence and driving scenario, through a combination of
multiple filters using a Dugoff tire model with constant cornering stiffness. Additionally,
this paper highlights a cross-combination approach using a machine learning algorithm
that enables the selection of the appropriate model and filtering technique based on the
driving context.

This paper is organized as follows: Section 2 presents the recent works on estimating
vehicle SSA. Section 3 expresses the Kalman filter protocol and its variant. Section 4
introduces the notion of particle filter along with the importance resampling technique.
Section 5 describes the different motion and observation models used in this work. Section 6
is devoted to the concept and challenges of cross-combining several filters using data-driven
methods. The results are presented and discussed in Sections 7 and 8, respectively. Lastly,
the conclusions and future work are presented in Section 9.

2. The Recent Works on Estimating Vehicle Sideslip Angle

The precision of sideslip angle (SSA) estimation is a key concern in the field of au-
tomotive control systems as it is the gauge measure of vehicle controllability. To ensure
that the driving behavior remains predictable, an SCL or TV algorithm requires a sensed
SSA value to surpass a critical threshold of SSA. To this end, refs. [18–20] have developed
data-driven SSA estimation algorithms giving satisfactory results even in the presence of
complex dynamics and uncertain road conditions. However, refs. [21–23] caution against
overreliance on these methods, as their accuracy is heavily dependent on the quantity
and quality of data used in the training process of the neural nets, which is not always
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guaranteed since one cannot cover all the driving scenarios in an exhaustive way. Moreover,
refs. [24–26] assert that these approaches also suffer from the problems of embeddability
and the explicability of neural networks, while bearing in mind that even in the presence of
a large amount data sets, the study of uncertainty on the prediction quality of these neural
networks is still to be demonstrated.

To tackle these challenges, the authors of [27–29] have proposed a hybrid method
combining classical model-based estimation methods with learning as already investigated
in [30,31].

The goal is to leverage the knowledge of the hidden dynamics of the vehicle since
neural nets offer the opportunity to learn the relationship between sensor measurements
and the sideslip angle through data analysis. Examples of data-driven approaches include
artificial neural networks (ANNs) [32], support vector machines (SVMs) [19,33], and ran-
dom forests [34]. Thus, the estimation errors of the filter are corrected, for example, by
learning the gain of the observer.

Robustness of the estimation algorithm in the presence of perturbations and model
uncertainties is also a critical consideration. Although [35,36] have demonstrated the
robustness of their solution in various driving scenarios, most algorithms presented in the
literature are limited to estimating SSAs below 10◦, apart from [37], which goes beyond
that. To this end, refs. [38–40] promote the estimation of both the SSA and the road friction
coefficient allowing for the adaptation of the estimated SSA signal to the ground truth. In a
similar vein, refs. [41,42] employ nonlinear tire models with an adaptation protocol on the
value of the tire stiffness coefficient to reflect the adhesion levels at the tire–ground interface.
Ref. [43] proposes a Kalman filter with a covariance matrix adaptation law, allowing for the
transition between linear and nonlinear tire models for reliable SSA estimation regardless
of the tire behavior. In contrast, refs. [44–46] proposed approaches that do not require the
knowledge of the grip conditions but only use the inertial measurement data. The results
are favorable even in the presence of strong lateral acceleration variation occurring in the
linear zone [47] of the tire operation. On the other hand, other nonlinear model-based
filtering methods such as fuzzy logic [48], sliding mode [49], or H- infinite [50] have also
been applied to SSA estimation, as in [51–53]. In 2018, the authors of [54] formulated the
estimation problem as an optimization problem using the gradient descent method. The
cost function was designed using the nonlinear tire model, the magic formula [55] and the
gradient formula. The results show that the method can accurately and reliably estimate
the vehicle’s SSA and road friction coefficient under different test conditions. With the
advent of more accurate sensing devices on vehicles, new approaches to SSA estimation,
known as vision-based observers, have emerged. These approaches use cameras and image
processing algorithms to estimate the sideslip angle [56–58]. They require visual features
such as road markings or landmarks to be visible in the camera images, without which
the estimation may result in failure. However, the transmission of visual information from
on-board cameras to the filter may introduce delay and a low sampling rate; this issue was
addressed by adding a delay compensator, which resulted in a decrease in the mean square
error of estimation by a factor between 2 and 10, depending on the type of maneuver.

Sensor fusion [59,60] methods merge data from several sensors to estimate the SSA.
These methods typically use a combination of sensors such as accelerometers, gyroscopes,
GPS, and vision sensors to provide more accurate estimates. A common approach involves
a Kalman filter [61,62], which uses a combination of measurements from sensors and
a vehicle dynamics model to estimate the SSA. An interacting multiple model (IMM)
Kalman filter combining two extended Kalman filters (EKFs), each incorporating kinematic
and dynamic equations related to the vehicle’s lateral velocity, is investigated in [63]. This
method estimates vehicle SSA by leveraging sensor fusion using both in-vehicle sensors and
a low-cost standalone global positioning system (GPS). In a similar vein, the authors of [64]
proposed a double Kalman filter (DKF) for state and parameters estimation, where two
estimation stages are based on cascade stability theory in the continuous time domain. The
first stage ensures global convergence, while the second stage compensates for the potential



Sensors 2023, 23, 5877 4 of 32

loss in performance by utilizing the estimate obtained from the first stage through local
linearization techniques. The performance of a two-stage update filter was demonstrated
by [65], where an ensemble Kalman–Bucy filter for the continuous time filtering problem is
used concurrently with a generalized ensemble transform particle filter for intermittent
parameter updates. Further, to improve the accuracy of error covariance matrix estimation
in the uncentered Kalman filter (UKF), ref. [66] presented a mixed Kalman filter (MKF) for
passive radar target tracking models with significantly enhanced performance. Finally, the
results in [67] revealed that multiple model (MM) filters provide more reliable estimations
by employing multiple filters with different models running in parallel and the outputs
of each filter are fused by assigning probabilities to each filter’s estimations, either using
multiple model adaptive estimation (MMAE) or the interacting multiple model (IMM).

3. The Kalman Filtering Approach
3.1. The Kalman Filter

The Kalman filter belongs to the family of the Bayesian filters proposed by Rudolf
E. Kalman, answering the question: “how to estimate the state of a system supposed
linear assuming a Gaussian distribution”. The KF estimates a state x ∈ Rn of a discrete
time-controlled process that is governed by the linear stochastic difference equation:

x̂k|k−1 = Ak−1 x̂k−1|k−1 + Bk−1uk−1 + qk−1, (1)

with a measurement y ∈ Rm that is:

yk = Hkxk + rk, (2)

The matrices A, B, and H represent, respectively, the state matrix, the input matrix
related to the actuation, and the output matrix. The process noise qk and measurement
noise rk are random variables independent of each other and considered Gaussian. In
practice, the covariance of the measurement and process noise vary with each time instant
or measurement. Here, we assume both are constant. The Kalman filter aims at minimizing
an estimation error by tackling or counteracting deviation between the a posteriori state
(corrected state after prediction) and the a priori state (predicted state according to the plant
model) called estimation error.

The newly estimated state is a linear combination of an estimate of the a priori state
and a weighted difference between the real measurement that is the ground truth and the
predicted measurement, as described by the equation:

x̂k|k = x̂k|k−1 + Kk

(
yk − Hk x̂k|k−1

)
(3)

with Kk the Kalman gain, yk the measurement at time k, and x̂k|k the current state estimate.
As for all Bayesian filters, a KF algorithm involves a prediction phase where the state
transition function is used to forecast the evolution of the system over time:

x̂k|k−1 = Ak−1 x̂k−1|k−1 + Bk−1uk−1 (4)

Pk|k−1 = Ak−1Pk−1|k−1 AT
k−1 + Qk−1 (5)

where x̂k|k−1 indicates the prior state estimate at time step k given the previous state
estimate at time k− 1, and Pk|k−1 is the covariance (the probability density) associated to
that state.

The prediction phase is followed by the update phase where the estimate (the prior)
and its covariance are updated based on the following set of equations:

Kk = Pk|k−1H′
(

x̂k|k−1

)T
Sk
−1 (6)
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Sk = H′
(

x̂k|k−1

)
Pk|k−1H′

(
x̂k|k−1

)T
+ Rk (7)

x̂k|k = x̂k|k−1 + Kk

(
yk − H(x̂k|k−1)

)
(8)

The Kalman filter is computationally efficient and provides an optimal estimate of the
state variables for linear and Gaussian systems. A complete picture of a KF combining both
the prediction and the update steps is illustrated by Figure 1.
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3.2. The Extended Kalman Filter

As mentioned above in Section 3.1, the KF addresses the general problem of estimating
the state x ∈ Rn of a discrete time-controlled process that is governed by the linear stochastic
difference equation. Alternatively, the extended Kalman filter computes the state estimate
of a process in the face of nonlinearities by applying the KF protocol to the linearized
system around the current estimate using the partial derivatives of the state transition and
observation functions.

The parameters involved in the mechanism of an EKF, as described in Figure 2, are:
A[i,j], is the Jacobian matrix of partial derivations of f with respect to x, that is,

f ′
(

x̂k−1|k−1

)
=

∂ f[i]
∂x[j]

(
x̂k−1|k−1, uk−1, 0

)
= A[i,j]

Q[i,j], is the Jacobian matrix of partial derivations of f with respect to q,

Q′
(

x̂k−1|k−1

)
=

∂ f[i]
∂q[j]

(
x̂k−1|k−1, uk−1, 0

)
= Q[i,j]

H[i,j], is the Jacobian matrix of partial derivations of de h with respect to x,

H′
(

x̂k−1|k−1

)
=

∂h[i]
∂x[j]

(x̂k, 0) = H[i,j]
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R[i,j], is the Jacobian matrix of partial derivations of h with respect to r,

R′
(

x̂k−1|k−1

)
=

∂h[i]
∂r[j]

(x̂k, 0) = R[i,j]

The plant model is discretized according to the Euler method.
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4. The Particle Filtering Approach
4.1. The Particle Filtering Methodology

Bayesian filtering is a suitable technique to perform the state estimation of a linear
system. However, it is not efficient when the system’s models are strongly nonlinear or
when the a posteriori distribution is significantly non-Gaussian.

The particle filter provides an alternative to the state estimation of a strongly nonlinear
and non-Gaussian system. Particle filtering is a recursive Monte Carlo method based on
the use of nonparametric representations (mean and covariance) to approximate the a
posteriori density P(xk|y1:k) over time by a set of N random samples called particles, where
y1:k = {y1, · · · , yk} is a set of observations stored up to k. The filtering density is calculated
as a weighted Dirac sums,

P(xk|y1:k) ≈∑N
i=1 ωi

k ∗ δ
(

xk − xi
k

)
. (9)

where xi
k are particles and ωi

k are associated weights. Each particle represents one possible
state realization and its associated weight represents how probable that state realization is.

The mechanism of a particle filter algorithm performs (or consists of) two major steps.
First, the prediction step, where the particles drawn from a known distribution q(x) are
propagated as follows,

xi
0 ∼ q(x0), with ωi

0 =
1
N

(10)

xi
k ∼ q

(
xi

k

∣∣∣xi
k−1, yk

)
, (11)
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according to the motion model f and the observation model h given by{
xk = f (xk−1, uk−1, vk)

yk = h(xk, uk, wk).
(12)

Each particle is defined by a set of parameters
{

xi
0:k, ωi

k
}N

i=1 where N, q(x0), xi
0, and

ωi
0 are, respectively, the number of particles, the initial state distribution, the initial particle

generation, and their associated weights. The particles are propagated ahead according
to a uniform and non-Gaussian distribution, with vk as the process noise and wk as the
measurement noise which are considered non-Gaussian. That is, at the initialization stage
all particles have equal probability density.

q(x) is a known distribution called importance density or the proposal density from
which samples, x(1), x(2), · · · , x(N), are generated, since it is difficult to sample from p(x)
the supposed unknown. Therefore, q(x) is equivalent to p(x) such that one over the other is
always one. The second step involves computing the state estimate, the computation, and
the normalization of the weights affected to each particle at each time instant k condition
on the previous weights. That is, the new weight is set proportional to the previous weight
scaled by the likelihood of the particles P

(
yk
∣∣xi

k
)

given the data and how probable it is

according to the motion model P
(

xi
k

∣∣∣xi
k−1

)
and normalized by the q

(
xi

k

∣∣∣xi
k−1, yk

)
proposal

density, expressed as follows:

∼
ω

i
k ∝ ωi

k−1

P
(
yk
∣∣xi

k
)

P
(

xi
k

∣∣∣xi
k−1

)
q
(

xi
k

∣∣∣xi
k−1, yk

) . (13)

Afterwards, to transition from state k− 1 to state k, the weights are normalized such
that they sum to one through the following expression:

ωi
k =

∼
ω

i
k

∑N
i=1
∼
ω

i
k

(14)

The two probability densities at the heart of the operation of the particle filter, resulting
from Equation (13), are the prior density P

(
xi

k

∣∣xi
k−1

)
and the likelihood P

(
yk|xi

k
)
. The former

is derived using the state transition function condition on the previous state distribution; the
latter is approximated based on the observations in accordance with the following equation:

L(x) =
1

(2π)N/2detΣ1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
(15)

In Equation (15), N represents the number of state variables and µ is a vector of means
associated with the state vector x and with a variance Σ. The last part of the update
step consists of deriving the best state estimate at each time step as the weighted sum of
the particles:

x̂k =
N

∑
i=1

ωi
kxi

k, (16)

The particle with the greatest weight has a larger impact on the state estimate and the
higher the number of particles, the better the convergence, provided that we have a high
computation power.

4.2. The Particle Filter Modus Operandi

In the actual implementation of the particle filter it is necessary to define four important
parameters which are the sample time, the process noise covariance, the measurement
noise covariance, and the initial distribution.
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Our proposed PF scheme includes the extended Kalman filter SSA estimation as an
additional input to the particle filtering problem, alongside the four ingredients listed above.
The EKF state estimate is leveraged to enhance the final PF estimation. By comparing the
observed balance between the EKF estimate and the PF estimate, represented as

∆εSSA = |SSAEKF − SSAPF|, (17)

we can then update the PF weights. Hence, this deviation serves as a pseudo-measure for
the PF and allows for the accurate computation of the likelihood function. In other words,
this deviation enables a more accurate recalculation of the likelihood function.

In our study, several samples of experimental data are preprocessed offline to deter-
mine the sample time and the covariances prior to the operation of the filter. The particles
are spread out following a uniform and non-Gaussian distribution, as mentioned earlier.
Like most of the model-based estimation methods, the concept of particle filtering work
modulo the correct modelling of the state transition function and the measurement model.
However, during the full operation of a particle filter algorithm as illustrated by Figure 3, if
the covariances are well-tuned and the motion model is designed in such a manner that
it closely captures the dynamic of the system, the only compromise that may be struck to
obtain the best guess would be the selection of the number of particles.
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In contrast with the previous example, if we obtain a poor estimate irrespective of the
above-mentioned conditions, it implies that one of the particles is associated with a very
high weight, whereas the rest of the particles have a weight close to zero. It means the set of
particles generated are no longer contributing to the description of our posterior anymore.
Thus, most of our particles are no longer representative of the systems’ evolution. This
phenomenon is known as the particle’s degeneracy. To remedy such a situation, resampling
is required. The idea of resampling is to use Monte Carlo sampling to generate a better
description of our filtering density. Basically, new particles are re-generated by drawing
independent samples from our current posterior to replace the old sample set with the
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new one and set all weights to 1/N. Resampling requires some extra calculations and may
introduce some errors but improves performance immensely over time.

5. The Motion and Observation Models of the Vehicle

A comprehensive system model is required in any model-based design approach for
system analysis and algorithm development. From an observer design perspective, the
model should ideally capture the fundamental dynamics while remaining simple enough
to serve as the basis for model-based observers. On the flip side, the model must also have
sufficient fidelity to allow performance evaluation in simulation, thereby reducing the risks
and costs associated with experimental validation.

For this purpose, we have modeled various models to capture the fundamental dy-
namics that play a role in the behavior of the prototype vehicle. The tests performed on the
Alpine A110 are shown in Figure 4. It is important to note that all tests are carried out on
snow (see Figure 4).
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5.1. The Kinematic Vehicle Model

The so-called kinematic model of the vehicle is described by the empirical equations:

ax = η = vy ∗
( .

vx

vy
−

.
ψ

)
=
( .

vx −
.
ψ.vy

)
(18)

ay = γ = vx ∗
( .

β +
.
ψ
)
=
( .

vy +
.
ψ.vx

)
. (19)

The state space representation of the model (the kinematic model) of the system to be
observed is written as follows:

d
[

vx
vy

]
dt

=

[
0

.
ψ

−
.
ψ 0

][
vx
vy

]
+

[
1 0
0 1

][
ax
ay

]
(20)

y = Cx =
[
1 0

][Vx
Vy

]
, (21)

with Vx as the vehicle velocity, ax as the acceleration along the longitudinal axis, Vy as the
lateral velocity of the vehicle, ay as the lateral acceleration, and

.
ψ or r as the yaw rate.

The kinematic model does not explicitly involve the lateral forces of the axles, thus
reflecting a strong assumption about the tire model chosen in a vehicle dynamic behavior
analysis. The emphasis of this model lies in its use of easily accessible quantities, provided
by sensors found on all vehicles.
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It is also required to have an observation model relating the measurement to the
state. In this application, Vx is measurable and the observation model is described by
Equation (21). The limitations of the kinematic model are important to know.

First, the model is only observable for nonzero values of
.
ψ. When the yaw rate is zero or

close to zero, it is very probable that the vehicle is driving in a straight line. In this scenario,
SSA control logic is disabled and SSA estimation is not required. Second, the model assumes
that there is no slope and that the tire–road contact is always slip-free. Therefore, in some
cases, a more complete model should be considered which considers other intrinsic aspects
of the car as well as its dynamics that the kinematic model does consider.

5.2. The Dynamic Vehicle Model

The nonlinear dynamic model is based on the fundamental principle of dynamics;
the accelerations at the center of gravity and the forces at the tires are expressed (see
Appendix A). The complete four-wheel model can be simplified into a two-wheel model
called “bicycle model” where we consider a symmetry along the longitudinal axis of the
car and no rear steering. The nonlinear bicycle model is expressed as,

d

[ .
ψ
β

]
dt

=


..
ψ =

a1

(
Fy f cos δ+Fx f sin δ

)
+a2Fyr sin δ

Iz
.
β =

Fy f cos(δ−β)+Fyr sin δ+Fx f sin(δ−β)

mvx
−

.
ψ

(22)

and the observation equations are,

y

ψ
ax
ay

 =


.
ψ =

.
ψ

ax = 1
m

(
Fx f cos δ + Fxr − Fy f sin δ

)
ay = 1

m

(
Fx f sin δ + Fyr + Fy f cos δ

) (23)

To express the front and rear axle longitudinal forces Fx f , Fxr and front and rear axle
lateral forces Fy f , Fyr , different tire models are available. One of the reference models
is the model of Hans B. Pacejka’s, also called “magic formula”. However, it requires a
thorough knowledge of the tire parameters and road conditions. A more basic linear model
is therefore used, which relates the force to the front and rear axles’ sideslip angle β f ,r
such that:

α f ,r = δ f ,r − β f ,r (24)

Fy f ,yr = Cα f ,αrα f ,r (25)

with β as the vehicle SSA, C f ,r as the front and rear axle tires cornering stiffness coefficient,
δ f ,r as the front and rear axle steer angle, and α f ,r as the tire slip angle defined in Figure 5.
Using the small angle approximation, the bicycle reads as:

.
β = −β

Cα f + Cαr

mvx
−

.
ψ

(
1 +

a1Cα f − a2Cαr

mvx2

)
+ δ f

Cα f

mvx
(26)

..
ψ = −β

a1Cα f − a2Cαr

Iz
−

.
ψ

a1
2Cα f − a2

2Cαr

Izvx
+ δ f

a1Cα f

Iz
(27)

ay = −β
Cα f + Cαr

m
+

.
ψ

a2Cαr − a1Cα f

mvx
+ δ f

Cα f

m
(28)

where a1 and a2 are the lengths outlined in Figure 5 and Iz and m are the vehicle inertia and
vehicle mass, respectively. The SSA is directly estimated in the state vector. As mentioned
before, the assumption made on the tire cornering stiffness coefficient, considered constant,
can influence the SSA estimation because it varies according to the road conditions. That
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is why the random walk dynamic model has been studied, to compensate for the lack of
knowledge of the friction coefficient, a crucial variable for an optimal SSA estimation.
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5.3. The Random Walk Dynamic Vehicle Model

The random walk dynamic model constitutes Equation (22) augmented by the tire force

dynamic. The state vector now includes six parameters
[ .
ψ β Fx f Fxr Fy f Fyr

]T
.

The random walk principle supposes that the forces are constant in the state model, hence
their temporal derivatives are null. Additionally, a noise is added to the filtering process
accounting for random force variations if they are not constant. The state transition
function is: 

..
ψ =

a1

(
Fy f cos δ+Fx f sin δ

)
+a2Fyr sin δ

Iz
.
β =

Fy f cos(δ−β)+Fyr sin δ+Fx f sin(δ−β)

mvx
−

.
ψ

.
Fx f =

.
Fxr =

.
Fy f =

.
Fyr = 0

. (29)

The measurement function is equivalent to Equation (23).
This model not only exhibits prompt convergence akin to the kinematic model, but

also provides an estimate of the lateral and longitudinal forces exerted on the car. This
estimation can serve as a valuable input in determining the road friction coefficient.

5.4. The Dynamic Vehicle Model Validation

The validation of the model is completed with an empirical calculation. The param-
eters of the Alpine A110, the steering wheel angle input by the driver and the speed
of the vehicle allow for the calculation of the different state variables according to the
dynamic model.

Figures 6 and 7 attest that the model design matches the target vehicle well, although
the lateral acceleration (see Figure 8) does not match as perfectly as the SSA, and the yaw
rate is not far off either.
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These signals from the calculation are then compared with the corresponding signals
from the sensors.

The lateral acceleration displayed in Figure 8 exhibits a marked variation up to the
0.6 g level. It is important to note that these measurements were obtained during tests
conducted in Sweden on snow-covered tracks, indicating a friction coefficient of approxi-
mately 0.3. As stated in [68], the lateral forces on a vehicle’s rolling axles must satisfy the
following constraint: ∣∣ay

∣∣ = ∣∣∣∣V2
x

R

∣∣∣∣ = ∣∣∣ .
ψ ∗Vx

∣∣∣ ≤ µmaxg (30)

where R is the radius of turn, g is the gravitational constant, and µmax is the maximum road
adhesion coefficient.

The lateral acceleration a vehicle can develop is constrained by the maximum lateral
friction coefficient at the tire–road interface [69]. In our example, the lateral acceleration
surpasses this constraint, indicating a significant nonlinearity (0.6 g ≥ 0.3 g) that must be
coped with by our estimator.

6. Data-Driven Cross-Combination Technique: A Variable Structure Observer Scheme
6.1. The Cross-Combination: Definition, Concept, and General Detail Functional Diagram

The core concept of data-driven cross-combination is the use of data insights to classify
the various operation regimes of a system (vehicle) for the purpose of switching between
two or more observers (see Figure 9), thereby forcing the reconstruction of the system states
towards a preferred solution by design. This leads to a variable structure observer (VSO)
that can reduce the impact of uncertainties, disturbances, and nonlinear dynamics on the
state estimation problem.
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As depicted in Figure 9, a set of estimators, carefully selected by the control engineer,
work concurrently. These estimators are fed with measurement data from both the system’s
(vehicle) sensor devices and the control inputs proceeding from the driver’s inceptors.

The optimal solution or preferred solution is influenced by both the selected machine
learning (ML) model (as shown in Figure 10) and well-established analytical metrics,
such as the root means square error and maximum error. Finally, the cross-combination
algorithm (CCA) computes an optimal solution by considering the states estimated by each
individual filter.

6.2. The Cross-Combination Paradigm and Methodology for Vehicle SSA Estimation

Every vehicle estimator design is about the art of compromise since each estimation
method offers benefits and drawbacks. Using the cross-combination method for a robust
sideslip angle estimation is (amount to) taking the benefit of two different filtering ap-
proaches or more and getting rid of their penalties, resulting in a preferred estimation
method depending on the vehicle’s operating point or desired performance gain.

Our study involves cross-combining three filtering methods, selecting the appropriate
motion model and filter for the best estimate of the sideslip angle over time, in a transient
or steady-state vehicle operating regime.
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This approach combines the benefits of different process models to achieve accu-
rate and robust estimation regardless of the driving situation. Several specific cases can
be identified:

• When the value of the lateral or longitudinal velocity is close to zero. In this case, the
kinematic model does not allow for good estimation of the sideslip angle. It is thus
preferable, for operating regions where the value of the speed is close to zero, to use
the dynamic model.

• When the yaw rate is close to zero. The matrix

[
0

.
ψ

−
.
ψ 0

]
is no longer observable.

Therefore, the kinematic model cannot estimate the sideslip angle in this case. One of
the dynamic models can then be used.

• Increasing the number of particles propagated in a particle filter can influence the
efficiency of a model to estimate the sideslip angle. On the other hand, increasing
the number of particles is not a viable solution given the limitation of the computing
power available in a vehicle. It is ingenious to use the particle filter only in the case
where the two other filters can no longer yield a good estimate of the sideslip angle.

• The choice of model and filter depends mainly on the tolerated error.

The cross-combination is performed using a machine learning algorithm that receives
data from the various vehicle’s sensor devices, like accelerometer and gyroscope, over ten
samples every 200 ms. These data are used in the training phase to predict the vehicle’s
operating regime. Our filter selection for the initial implementation of cross-combination is
motivated by the specific characteristics of the vehicle’s yaw dynamics, which include a sig-
nificant degree of nonlinearity, caused by the unpredictable irregularity (fluctuations) in the
road adhesion level at the tire–road interface. Additionally, we considered the impact of the
signal measurement noise from various sensors and the available computational resources.

This is why we have chosen the KF which is computationally efficient but limited to
linear and Gaussian systems, and the PF which allows estimating multiple modes of the
posterior distribution and to handle situations where the system is highly nonlinear, or the
noise is non-Gaussian.

As depicted in Figure 11, each filter proposes a state estimate at each time step and our
algorithm disposes of a preferred solution and subsequently sets to zero any other estimate
output, similar to a combinational logic framework.
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The machine learning algorithm, having learned from a mass of driving data, can
distinguish the operating regime and the vehicle model adapted to this regime, and then
decides, thanks to a decision tree according to a combinational logic framework, which
model and filter to select for the estimation of the sideslip angle.

6.3. Data Set Labeling

Prior to determining the structure of the machine learning algorithm to be used,
the choice of the estimation model was transformed into a classical supervised learning
problem. Given a sample of data,

(xk, yk)1≤k≤n, (31)

with xk as the state vector to be estimated, yk as a label representing the model adapted
to each time k, and n as the number of samples. This formulation reflects a classification
problem, which can be illustrated by a function:

fn : x 7→ y ∈ Y (32)

where the model shall be able to predict the values of y ∈ Y associated to each allowable
value of x ∈ X.

In the context of this paper, y is a Boolean, where 0 denotes that the model estimate
will not be selected, and 1 that the model estimate will be selected. On a dataset of
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ns = 10 samples, the root mean square (RMSE) of the sideslip angle estimate is calculated
for each model:

ε =

√
1
ns

ns

∑
k=1

(
β̂k − βk

)2
(33)

Then the model with the lowest RMSE will be selected for the sideslip angle estimation.
So, during the training, the algorithm learns which model is the most accurate based on
the lateral acceleration and yaw rate data fed into the ML algorithm. This allows for the
nonlinearities and road conditions within the estimation process to be taken into account.
In the scope of this investigation, several datasets are used for learning, and the sideslip
angle sensor measured data serve as ground truth.

6.4. The Training and Validation Data Sets Details

The dataset used to train and validate our model was collected at the Arjeplog Test
Management center in Sweden, using an Alpine A110 car and the newly released Renault
Austral shown in Figure 12. Both vehicles were equipped with a range of high precision
sensing devices, including wheel speed sensors, yaw velocity sensors, and steering wheel
angle sensors for both front and rear wheel steering systems, as well as GPS, gyroscope,
accelerometer, vehicle sideslip sensor, suspensions travel sensor, brake pressure sensors,
and more. This resulted in a comprehensive dataset that included all signals transmitted
by the vehicle’s sensors and ESC block, such as wheel braking pressure, engine torque,
SSA, vehicle longitudinal and lateral acceleration, vehicle forward and lateral speed, yaw
velocity, wheel speeds, and rear wheel steer angle. The dataset covered a range of vehicle
dynamics evaluation maneuvers, including the circle (at constant radius and speed), U-
turn, J-turn, single and double lane change, slalom, pulse steer, close circuits, combined
traction and braking phases, and front and rear steering systems triggered both separately
and simultaneously.
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To ensure the model’s performance was not overly dependent on a specific subset of
the data, we utilized standard cross-validation techniques on five folds. The datasets of
both cars were partitioned into two subsets, where 75% was used for training the model,
15% for validation, and 10% for testing the model’s performance. The signals were recorded
through CANalizer at a frequency of 100 Hz. We will provide a link giving readers access to
the datasets in the reference section. The test data which are plotted in the Results Section
only consist of the dataset relating to the Alpine 110.

The training and validation data entailed all the handling maneuvers cited above for
both cars. The test set, on the other hand, included a full driving trajectory of the Alpine
A110 car.
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6.5. The Decision Tree Mechanism

A decision tree is composed of two types of nodes: decision nodes associated with
conditions and leaves associated with labels. The tree is derived from the training data.
It partitions the training data space into subpartitions that predict the best label. The
maximum and minimum lateral acceleration and yaw rate values are filled in.

The entropy is the metric that allows us to determine the level of homogeneity of the
data associated to a partition:

E = −
N

∑
i=1

pilog2 pi, (34)

where N is the number of classes = 3 and pi is the probability of randomly drawing an
element class i. The entropy is expressed as:

E = −
(

pklog2 pk + pdlog2 pd + pplog2 pp
)

(35)

where pk is the probability of deriving an acceleration/yaw rate component consistent
with a kinematic model estimation, pd is the probability associated with a dynamic model
estimate, and pp is the probability associated with a bicycle model estimate via the particle
filter method.

The gain or information reflects the quality of the choice of a threshold or subpartition
(or son) under a parent partition (father node):

Gain = E f ather − Eson (36)

Each threshold in the tree will have a gain assigned to it, which will provide informa-
tion about its relevance, i.e., its ability to reduce entropy, thereby increasing the gain for the
lower node.

The confusion matrix (a confusion matrix is a table that is used to evaluate the perfor-
mance of a classification algorithm; it is used in machine learning to measure how well a
model is able to predict different classes of a given dataset) results indicate that 844 items
classified in the kinematic estimators belong to this class and 1152 samples classified in the
dynamic estimators belong to this class.

7. Results
7.1. Results with the Kalman Filter Using the Kinematic Vehicle Model (Experimental Data)

The results achieved in this section are compared to the test data recorded during
a complete circuit driving scenario on a snowy track at the ATM test center in Sweden.
The state estimators are initially assessed through simulation data, then followed by real
data recorded on the Alpine A110 vehicle. Since the simulation results regarding the
longitudinal velocity are conclusive because it is our measurement model, only the lateral
velocity state estimate is presented. The state vector to be estimated is:[

Vx Vy
]T , (37)

where the vehicle forward speed contributes to the estimation of the lateral speed. The
kinematic model’s capability to estimate the lateral velocity, Vy, using Kalman filtering
is supported by the findings presented Figure 13. The results reveal a maximum error
of 1.5 m/s between the measured and estimated lateral velocities, demonstrating the
model’s efficacy.

Once the two velocity components (longitudinal and lateral velocity) are estimated,
the SSA estimate is obtained using (small angle approximation):

β = arctan
(

vy

vx

)
, (38)
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It is noteworthy that, during the initial 0 to 1.8 s time interval, the longitudinal velocity
of the vehicle remains near zero while the lateral velocity remains constant. This can be
attributed to the arctangent of infinity with respect to Equation (38), which is equivalent to
pi/2 or 1.57 and corresponds to the amplitude of the peak or jump observed at the start of
Figure 14. (Division by a small number would imply a very large number.

lim
x→∞

arctan(x) =
π

2
⇐⇒ lim

vy
vx→∞

arctan
(vy

0

)
≈ 1.57 (39)
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Such observations are a direct consequence of the extremely low or zero longitudinal
velocity during the initial moments of the vehicle’s movement.

Figures 13 and 14 provide evidence for the effectiveness of the kinematic KF in esti-
mating the SSA using the kinematic vehicle model. The dynamic of the estimation error
illustrated by Figure 15 converges in the vicinity of zero as expected. The key performance
index will be provided below.
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7.2. Results with the Particle Filter Using the Kinematic Vehicle Model (Simulation Data)

The particle filter using the kinematic model was initially run on simulation data; the
results obtained for 1000 particles and, subsequently, for 10,000 particles were compared
with the measured SSA value (see Figure 16).
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Figure 16. The vehicle SSA estimation with PF using a dynamic model (SimData).

Figure 17 provides us with valuable insights into the impact of particle propagation on
the performance of the particle filter. It is evident that the number of particles propagated
significantly affects the accuracy of SSA estimation. When dealing with normal driving
conditions characterized by low SSA and acceleration variations, 1000 particles are sufficient
to achieve reliable SSA estimation. However, in situations such as the loss of an axle’s
control (when a vehicle breaks out of control) due to excessive wheel slip, as illustrated
in Figure 16, where the rear axle goes out of control around 50 to 60 s, 10,000 particles are
required to maintain the same level of performance.



Sensors 2023, 23, 5877 20 of 32

Sensors 2023, 23, x FOR PEER REVIEW 20 of 33 
 

 

Figure 17 provides us with valuable insights into the impact of particle propagation 
on the performance of the particle filter. It is evident that the number of particles propa-
gated significantly affects the accuracy of SSA estimation. When dealing with normal driv-
ing conditions characterized by low SSA and acceleration variations, 1000 particles are 
sufficient to achieve reliable SSA estimation. However, in situations such as the loss of an 
axle’s control (when a vehicle breaks out of control) due to excessive wheel slip, as illus-
trated in Figure 16, where the rear axle goes out of control around 50 to 60 s, 10,000 parti-
cles are required to maintain the same level of performance. 

 
Figure 16. The vehicle SSA estimation with PF using a dynamic model (SimData). 

 
Figure 17. The vehicle SSA estimation error with PF using a dynamic model (SimData). 

7.3. Results with the Particle Filter Using the Dynamic Vehicle Model (Experimental Data) 
In Figure 18, we can observe that, by increasing the number of particles from 1000 to 

30 000, a very strong performance of the particle filtering is obtained, regardless of the 
nonlinearities and abrupt variations in accelerations. Meanwhile, Figure 18 also reveals 
that the disparity between the two curves varies across different regions, indicating that a 
trade-off can be made between performance and computational efficiency. Therefore, it is 

Figure 17. The vehicle SSA estimation error with PF using a dynamic model (SimData).

7.3. Results with the Particle Filter Using the Dynamic Vehicle Model (Experimental Data)

In Figure 18, we can observe that, by increasing the number of particles from 1000
to 30,000, a very strong performance of the particle filtering is obtained, regardless of the
nonlinearities and abrupt variations in accelerations. Meanwhile, Figure 18 also reveals
that the disparity between the two curves varies across different regions, indicating that a
trade-off can be made between performance and computational efficiency. Therefore, it is
worthwhile to explore solutions that involve adapting the number of particles based on
specific criteria.
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7.4. Results with the Particle Filter Using the Kinematic Vehicle Model (Experimental Data) and
Comparison with the KF

From the analysis of Figure 19, it appears that the PF is much more accurate in terms
of tracking. Nevertheless, both estimators have an acceptable performance from a chassis
control point of view. Even though the error signals in Figure 20 overlap, the estimation
error of the PF is much smaller than that of the KF.
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It is critical to compare the performance of the particle filter with that of a simpler
(more straightforward), less computationally expensive filter. The SSA estimated with the
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particle filter and used for comparison is the one obtained via the dynamic model. This is
compared to a Kalman filter with a kinematic model.

7.5. Results with the Cross-Combination of Three Different Filters Using Both the Dynamic and
Kinematic Vehicle Models (Experimental Data)

The results of the cross-combination of the three filtering algorithms are obtained with
a smooth transition period representing the switch modes of the variable structure observer.
The switching frequency needs to be in sync with the sampling frequency for embeddability
purposes. Notably, the jump observed in Figures 21 and 22 is because the cross-combination
algorithm assigns control authority to the KF which is fed via the kinematic model, which
itself relies on the arctangent function to derive the SSA.
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The cross-combination method is deemed to have achieved the most accurate SSA
estimation results, as demonstrated in Figure 22 using two distinct test datasets.

Our cross-combination study underlines the importance of a variable structure ob-
server where the state is reconstructed through selecting an optimal solution (state estimate)
at each time step. By comparing the cross-combination’s signal and the measured SSA,
we notice yield-conclusive results (see Figures 23 and 24) in terms of tracking, despite the



Sensors 2023, 23, 5877 23 of 32

noisy and highly nonlinear nature of the measured lateral acceleration signal, as shown in
Figure 8.
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Figure 24. The vehicle SSA estimation error with cross-combination (Sweden 3).

Furthermore, Figure 25 demonstrates that, despite the noisy and highly nonlinear
nature of the measured lateral acceleration signal, the cross-combination SSA method
remains the most suitable state estimator for vehicle SSA estimation, offering both high
accuracy and attractive computational efficiency. Additionally, all estimators exhibited
an acceptable tracking performance and a faster convergence rate, which are crucial for
real-time implementation, but with respect to RMSE and ME, cross-combination is the best.

Even though the cross-combination outperforms the EKF, and the PF in terms of
ME and RMSE, as shown in Table 1, for safety reasons the PF can be enforced as the
cross-combination default choice if necessary. In summary, this study affirms the cross-
combination approach as the optimal method for achieving precise SSA estimation.
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Table 1. Comparison table of key performance ingredients.

Performance Index Dataset KF PF Cross-Comb

ME (deg)
Sweden 3 5.001 7.388 4.709

Sweden 4 5.884 10.225 4.795

RMSE (deg)
Sweden 3 1.999 1.852 1.352

Sweden 4 1.873 1.722 1.237

8. Discussion

In the scientific literature, there are several methods that have demonstrated their
effectiveness in estimating vehicle dynamic states including SSA. Our contribution is
positioned with respect to previous research in this field as a technique for leveraging
multiple estimators working concurrently, resulting in a variable structure estimator.

This approach ensures a robust estimation of the sideslip angle (SSA), which is essential
for real-time applications, with the provision that there is sufficient onboard computing
power available. Our study assumes constant tire cornering stiffnesses, despite variations
in vertical load and ground contact surface (grip level), which are difficult to access.

Although this hypothesis is fairly broad, it can afford to be since the cornering stiff-
nesses varies very little compared to the vertical load. Moreover, even in the case of very
low adhesion like the tests conducted in Sweden, the variations in wheel force or stiff-
ness are perceived by our estimator as disturbances to be eliminated. The results section
showcases a conclusive performance in this regard.

The trouble in estimating SSA does not arise in the linear region of the tire’s operation,
where a Kalman filter would do the job, but rather when one or both rolling axles slide
excessively, leading to understeer or oversteer behavior. For this reason, our future works
will integrate a higher layer that detects understeer or oversteer situations before planning.
The ML algorithm serving as a mode switch will be augmented with a supplementary
layer identifying these phenomena in real-time, further improving the performance of the
cross-combination dynamic.



Sensors 2023, 23, 5877 25 of 32

9. Conclusions

The sideslip angle estimation was conducted for Kalman and particle filters fed with
a kinematic and (or) dynamic vehicle model. Several filters with corresponding vehicle
models were compared. The kinematic model was found to be limited in some driving
conditions, especially for low vehicle velocities (longitudinal, lateral, or yaw). Nevertheless,
the dynamic model can be used in these cases. While a Kalman filter coupled to a kinematic
model was generally satisfactory in the linear region of the tires, tests were also performed
for a particle filter fed with the same models, which was found to be very efficient and
robust in terms of sideslip angle estimation in the face of strong nonlinearity. The particle
filter is computationally expensive; it is necessary to limit its use to these specific cases.
The efficiency of the particle filter was demonstrated, more particularly by increasing the
number of propagated particles. The computational power of embedded systems is more
and more important; it will doubtlessly be possible in the future to deploy its use for a more
optimal estimation in real-time applications. The cross-combination algorithm, which is a
key contribution of this work, offers the possibility to use the best model associated with
the best filter according to the given driving conditions. All estimators presented in this
work exhibited relatively acceptable tracking performance and faster convergence rates,
which are crucial for real-time implementation, but the SSA CCA observer outperformed
the KF, EKF, and PF in terms of accuracy, robustness, RMSE, and ME, respectively.

Therefore, our study reports evidence supporting the notion that using a combination
of multiple observers for states and parameters yields greater benefits when compared to
relying solely on an individual filter. By implementing multiple filters with distinct models
running concurrently, more reliable estimations can be achieved.

Still, there are certain limitations associated with this methodology, most notably its
high computational requirements, as all filters are continuously activated (running) in
real-time. Moreover, the transition between filters over time can potentially introduce
little fluctuations within the observation signal known as “chattering”, underscoring the
difficulty of effectively synchronizing the operation of multiple filters.

It is important to acknowledge that the limitations inherent to each coordinating filter
also affect the overall performance of the SSA CCA mechanism.

Overall, this study provides valuable insights into the selection and evaluation of state
estimators for vehicle sideslip angle estimation, which can be useful for the development of
advanced driver assistance systems and autonomous vehicles. Future research will explore
the combination of more than three different estimation methods (linear or nonlinear,
model-based or model-free) in the cross-combination scheme. Also, we will integrate a
higher layer that detects understeer or oversteer situations before planning. Hence, the
ML algorithm serving as a mode switch will be augmented with a supplementary layer
identifying these phenomena in real-time, further improving the performance of the cross-
combination dynamic. In conclusion, one of our future challenges would be to extend the
application of this SSA estimation method across the complete spectrum of vehicles within
the Renault group.

10. Patents

The research discussed in this article has led to the submission of a European patent
application, currently under examination.
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Abbreviations
Acronyms Definitions
ANN Artificial neural networks
ATM Arjeplog test management
CCA Cross-combination algorithm
DKF Double Kalman filter
EKF Extended Kalman filter
ESC Electronic stability control
GPS Global positioning system
IMM Interacting multiple model
KF Kalman filter
MKF Mixed Kalman filter
MM Multiple model
MMAE Multiple mode adaptive estimation
PF Particle filter
SCL or SAC Sideslip control logic or Sideslip angle control
SVM Support vector machines
TV Torque vectoring
UKF Unscented Kalman filter
VSO Variable structure observer

Appendix A. Coordinate Frame of the Wheel, Tires, and Car Body

The reference frame plays a crucial role in mechanics, as it allows us to accurately
describe and analyze the motion and forces acting on objects. By establishing a reference
frame, we set up a coordinate system that allows us to measure and quantify physical
quantities of interest. In vehicle dynamics, we observe several reference frames either
following the motion of the system or the fix.

The tire undergoes a transformation when it shrinks, resulting in a flat disc known as
the tire plane. To describe the orientation of this disc relative to the vehicle, three coordinate
frames are introduced: the wheel frame W, the wheel body frame C, and the tire frame T. In
Figure A1, the W and T coordinate frames are depicted, while Figure A2 illustrates the W
and C coordinate frames (Jazar 2017).

The wheel frame W (xw, yw, zw) is attached to the center of the wheel and follows all
wheel motions except for spinning. Consequently, the xw and zw axes always lie in the tire
plane, while the yw axis aligns with the spin axis.

When the wheel is straight and upright on the ground, it is in its neutral or rest position.
In this position, the W frame coincides with the wheel body coordinate frame C (xc, yc, zc),
which is fixed to the center of the neutral wheel parallel to the vehicle’s coordinate axes B.
The wheel body frame C remains stationary relative to the vehicle and does not mimic any
wheel motion. The xc, yc, zc axes are consistently parallel to the axes of the vehicle body
coordinate frame B, illustrated in Figure A3.

The vehicle body coordinate frame B (x, y, z) is attached to the vehicle’s mass center.
The x axis represents the longitudinal forward axis of the vehicle parallel to the ground,
the y axis points leftward and is parallel to the ground, and the z axis denotes the upward
axis. The vehicle body coordinate frame serves as a reference frame for determining the
global position and orientation of any vehicle component.

The tire coordinate frame T (xt, yt, zt) is positioned at the center of the tire print, which
represents the point where the tire plane intersects with the ground. The tire print, also
known as the contact patch, refers to the area where the tire meets the ground. The zt axis
is always perpendicular to the ground and points upward. The xt axis aligns with the
intersection line of the tire plane and the ground, while the yt axis completes the right-hand
orientation of the T coordinate frame.
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Although the tire frame does not mimic the rotational movements of the tire such as
spin and camber rotations, it does follow the rotation caused by the steer angle around the
zc axis (Jazar, 2017).
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The vehicle simulation model used in this research is a 15 DOF high-fidelity model
accurately mapping a real vehicle prototype.
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