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Abstract: Impedance cardiography (ICG) is a low-cost, non-invasive technique that enables the
clinical assessment of haemodynamic parameters, such as cardiac output and stroke volume (SV).
Conventional ICG recordings are taken from the patient’s thorax. However, access to ICG vital signs
from the upper-arm brachial artery (as an associated surrogate) can enable user-convenient wearable
armband sensor devices to provide an attractive option for gathering ICG trend-based indicators of
general health, which offers particular advantages in ambulatory long-term monitoring settings. This
study considered the upper arm ICG and control Thorax-ICG recordings data from 15 healthy subject
cases. A prefiltering stage included a third-order Savitzky–Golay finite impulse response (FIR) filter,
which was applied to the raw ICG signals. Then, a multi-stage wavelet-based denoising strategy on a
beat-by-beat (BbyB) basis, which was supported by a recursive signal-averaging optimal thresholding
adaptation algorithm for Arm-ICG signals, was investigated for robust signal quality enhancement.
The performance of the BbyB ICG denoising was evaluated for each case using a 700 ms frame centred
on the heartbeat ICG pulse. This frame was extracted from a 600-beat ensemble signal-averaged
ICG and was used as the noiseless signal reference vector (gold standard frame). Furthermore, in
each subject case, enhanced Arm-ICG and Thorax-ICG above a threshold of correlation of 0.95 with
the noiseless vector enabled the analysis of beat inclusion rate (BIR%), yielding an average of 80.9%
for Arm-ICG and 100% for Thorax-ICG, and BbyB values of the ICG waveform feature metrics A,
B, C and VET accuracy and precision, yielding respective error rates (ER%) of 0.83%, 11.1%, 3.99%
and 5.2% for Arm-IG, and 0.41%, 3.82%, 1.66% and 1.25% for Thorax-ICG, respectively. Hence, the
functional relationship between ICG metrics within and between the arm and thorax recording modes
could be characterised and the linear regression (Arm-ICG vs. Thorax-ICG) trends could be analysed.
Overall, it was found in this study that recursive averaging, set with a 36 ICG beats buffer size,
was the best Arm-ICG BbyB denoising process, with an average of less than 3.3% in the Arm-ICG
time metrics error rate. It was also found that the arm SV versus thorax SV had a linear regression
coefficient of determination (R2) of 0.84.

Keywords: armband ICG sensing methods; impedance cardiography; Arm-ICG signal enhancement;
recursive signal averaging; thorax impedocardiography; brachial-artery-based ICG surrogate;
ambulatory hemodynamics; heart contractility monitoring; two-stage Daubechies wavelet denoising;
arm stroke volume; signal-averaged ICG

1. Introduction

According to the World Health Organisation (WHO) (2023) [1], cardiovascular diseases
(CVDs) are the leading cause of death worldwide, amounting to approximately 17.9 million
deaths in 2019, representing 32% of all global deaths, of which 85% were due to heart
attacks and strokes. It is recognized that early diagnosis of such diseases can result in a
better treatment plan, and subsequently, a better outcome [1]. Hypertension, myocardial
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ischemia and infarction, and many cardiac arrhythmias can be identified by abnormalities
in a patient’s hemodynamic parameters [2]. Impedance cardiography (ICG) offers a non-
invasive method to derive hemodynamic parameters from waveform analysis [3].

Traditionally, hemodynamic parameters, such as cardiac output (CO) and stroke
volume (SV), are measured using methods such as pulmonary artery catheter (PAC) ther-
modilution (the gold standard). However, this method, as well as similar methods, are
highly invasive and require highly trained staff. Other methods, such as magnetic reso-
nance imaging (MRI) and Doppler echocardiography, are less invasive but are relatively
expensive and require highly trained professionals to administer them [3]. ICG-based meth-
ods have eradicated the issues associated with obtaining patient hemodynamic parameters
by introducing a non-invasive, relatively inexpensive and user-friendly alternative. Further-
more, ICG recordings enable continuous monitoring, giving a more accurate representation,
compared with conventional methods, which are discontinuous [4].

Conventional ICG or impedocardiography sensing is achieved by means of the
transthoracic bioimpedance approach, whereby electrodes are placed on a segment between
the patient’s chest diaphragm and neck (Thorax-ICG), wherein a constant low-amplitude
(<1 mA), high-frequency (30–100 kHz, typically) alternating current is applied [5]. Typical
ICG recording waveform dynamics and relative timing with the electrocardiogram (ECG)
signal is illustrated in Figure 1a. It is quite common to refer to the signal-conditioned
dZ/dt derivative waveform as the ICG signal, as this processed waveform provides the
key dynamic features for estimating CO and SV hemodynamic indicators. Furthermore, in
recent years, the technique of acquiring an ICG signal from the arm (Arm-ICG) has received
increasing attention [6–9], and more recently, in a study conducted in 2015, Saugel et al. [10]
investigated cardiac output measured from the radial artery along the forearm. However,
several issues related to noise interference and Arm-ICG signal quality associated with
their approach have consistently been identified. In this study, Arm-ICGs were recorded
along the left arm brachial artery.
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Figure 1. (a) Typical timing of ECG events, changes in impedance (∆Z) and the rate of change
of impedance with respect to time (dZ/dt); Bo is the zero-crossing prior to the ICG main peak.
(b) Anatomical localisation of the brachial artery and other blood vessels along the arm.

The brachial artery is located in the upper arm and is an extension of the axillary
artery (Figure 1b). It stretches along the ventral surface of the arm and then branches off at
the forearm to form arteries such as the radial and ulnar arteries. It primarily functions to
supply blood to the biceps, triceps and coracobrachialis muscles [11].

Stroke volume (SV) is defined as the volume of blood that is pumped from the left
ventricle during a single systolic cardiac contraction [12]. According to Kubicek’s method
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for estimating SV [13], the ICG signal (or the dZ/dt waveform) provides the required
signal amplitude and time metrics, namely, (dZ/dt)max and the ventricular ejection time
(VET), as depicted in Figure 1a. The product of these yields the maximum impedance
change metric (∆Z), which is linearly related to the heart (in conventional Thorax-ICG)
or the brachial artery (in the Arm-ICG) blood volume change (∆V) for every heartbeat
(∆VTHORX and ∆VARM, respectively), where the constant of proportionality depending on
the baseline characteristics (body dimension of electrically participating tissue parts and
baseline impedances) specific to each subject [5–7]. Nevertheless, when deciding on the
location of arm electrodes, the correct location along the brachial artery is important to
consider for the strongest signal. The upper arm offers some advantages over the thoracic
measurements as it is far away from the lung bioimpedance signal noise component [8].

From the estimated value of SV (cm3), the CO (L/min) can then be deduced from the
product of SV and the heart rate (HR) of the patient [8]. These clinical indicators can be
used to diagnose heart failure using various methods [14,15]. Simultaneous recording of
the ICG and the electrocardiogram (ECG) signals can be used for advanced non-invasive
diagnostic purposes [16].

When analysing the ICG signal, it is important to note that this technique can produce
signals embedded in considerable noise, which is caused by factors such as motion artifact
noises and an unstable electrode–skin interface. This can make the identification of certain
ICG waveform features relatively difficult [7,14,17,18]. To address this problem, certain
initial pre-filtering techniques are applied in order to achieve a basic level of signal quality
enhancement. The linear digital Butterworth infinite impulse response (IIR) filter and
the Savitzky–Golay (SG) filter are the most reported digital filters for the ICG signals
prefiltering stage [7,14,19]. The SG digital filter has a finite impulse response (FIR) [20,21].
It was reported that the SG filter presents the lowest error rate impact on ICG waveform
feature metrics extraction, which is relevant for determining the SV on a beat-by-beat
basis [14]. In this comparative study, for both the conventional Thorax-ICG and novel
Arm-ICG signals, prefiltering with a cascaded combination of both Butterworth and SG
processes was adopted.

Further robust denoising methods are required for addressing Arm-ICG signal quality
enhancement issues in such a way that makes the signal quality clinically acceptable and
attractive for long-term ambulatory cardiac contractility (SV) monitoring for the benefit
of cardiac patients. Based on previous knowledge of effective Arm-ICG and Arm-ECG
denoising [7,22–29] methods, a satisfactory and robust solution was investigated by means
of advanced processes, such as discrete wavelet transform (DWT)-based filtering techniques,
supported by ensemble averaging algorithms for cardiac deterministic ICG events [30], both
in the Arm-ICG and Thorax-ICG on a beat-by-beat (BbyB) basis. The widely recommended
mother wavelet configuration used in DWT-based denoising approaches for ICG signals is
the Daubechies wavelet, and more specifically, the fourth-order (Db4) and the eighth-order
(Db8) Dabechies wavelets were reported to be suitable for the ICG signal [14,17,22,28,29].
Moreover, Chabchoub et al. [17] conducted an experiment to compare different wavelet
families, i.e., Haar, Daubechie (Db), Symlet (Sym) and Coiflet. The results revealed that
the Db wavelet with order 8 (db8) exhibited superior performance, surpassing the other
wavelet families. Nonetheless, there is ongoing interest by some research teams who have
reported the promising performance of the Sym wavelet for denoising the conventional
ICG signals (Thorax-ICG) [31,32], and other studies reported the suitability of both the
Db and the Sym wavelet families for other biomedical signals, such as EEG, EMG and
ECG [33–36]. However, the refined question of which of these wavelets would be more
suitable for denoising the Arm-ICG waveform characteristics on a BbyB basis needs to
be addressed. Therefore, at this pilot research level, an initial step for addressing this
refined question was taken by focussing on the Db wavelet family and investigating their
optimisation for Arm-ICG signals denoising for the BbyB mode of operation due to its wide
use in ECG and ICG signals filtering reported in the literature and the team’s expertise on
using this particular wavelet family [22,28,29].
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In this article, the materials and methods for simultaneous ICG and ECG recording
modes and adequate ICG signal linear prefiltering design, including the SG filter, are
described first. Then, the advanced data-driven denoising methods of optimized Db
wavelet orders for arm and thorax ICG recording modes, assisted by the ensemble and
recursive signal averaging processes to enable effective BbyB operation and the respective
denoising performance and output ICG signal quality assessment metrics, are presented.
This is followed by definitions of the four main ICG waveform features considered for this
study, as well as the metrics for a functional relationship between arm and thorax ICGs
assessment, associated with the effectiveness of Arm-ICG signal quality enhancement. In
the Section 3, the results of the denoising performance and accuracy/precision of the ICG
waveform features and SV measurements are presented. A discussion of the results is
presented in Section 4, and the concluding remarks and acknowledgements are given in
the final sections.

2. Materials and Methods
2.1. Data Acquisition and Sensor Systems

Simultaneous recording of ICG and ECG signals was implemented using the BioPac
MP160 Data Acquisition Hardware Systems and associated AcqKnowledge 5.0 software
(BIOPAC Systems, Inc., Goleta, CA, USA) with two wireless front-end devices: BN-NICO-T
for ICG signals and BN-RSPEC-T for ECG signal, as illustrated in Figure 2. These devices
are digital RF transmitters (2.4 GHz) linked to NICO-R and RSPEC-R ECGs, respectively,
while these receivers attached to the MP-160 central module are also connected to the
laptop computer through an ethernet cable. It operates with a fixed bioimpedance constant
AC source at 100 kHz frequency and 1 mA (rms) regulated amplitude.
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2.2. ICG and ECG Recording Modes and Analysis Tools

Recorded ICG and ECG data from healthy subjects were taken while sitting and at rest
for two modes of recording: (a) conventional Thorax-ICG and (b) experimental Arm-ICG.
In each mode session, data recording was for 8 min (480 s) continuously, having their left
arm resting on a desk whilst remaining silent and motionless. The recordings were taken at
a sampling rate of 2000 Hz. Data signal processing was carried out using the Mathworks
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Matlab (9.9 R2021b) programming environment, and descriptive statistical analysis was
carried out using MS Excel (within Microsoft 365).

2.3. Arm ICG Electrode Location

The Arm-ICG electrode locations for both the bioimpedance current source and voltage
sensing followed the expertise gained in previous work for sensing the strongest Arm-ICG
signal along the ventral-inner surface of the upper left arm [7]. This approach enabled
stable ICG signal quality pick up from the brachial artery systolic and diastolic blood
volume changes, which are in proportional relation to the sensed arm impedance changes
(∆ZARM), from which the Arm-ICG waveform is derived (see Figure 1a). Thus, current and
voltage electrodes were placed along the same arm axial line from near the axilla point
to the lower end of the upper left arm, as depicted in Figure 3, and the electrodes had a
longitudinal placement to mimic the parallel electrode arrangement for the conventional
Thorax-ICG (also shown in Figure 3).
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2.4. ICG Pilot Study Data Set

Simultaneous ICG and ECG recordings were performed on different days on 15 healthy
volunteer subjects aged between 22–65 years, with a proportion of 53.3% male. Each subject
case and mode recording (conventional Thorax-ICG and experimental left Arm-ICG modes)
were 8 min long (480 s) at a data sample rate of 2000 Hz. Conventional electrodes (MBS-3BF3
Disposable Ag/AgCl ECG/EMG Monitoring Electrodes, Multi Bio Sensors Inc., El Paso,
TX, USA) gelled with highly conductive, hypoallergenic electrode gel (Signa gel, Parker
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Laboratories, Inc., Fairfield, NJ, USA) were used for both the ICG and ECG recordings
(two simultaneous channels for each ICG recording mode). The electrodes were placed as
illustrated in Figure 3. Channels 1 to 3 were for recording the ECG (chest standard Lead I;
in any ICG recording mode), channels 4 to 11 were for recording the Thorax-ICG, while
channels 12 to 15 were for recording the left upper Arm-ICG (axially along the arm). The
recorded data from the 15 volunteers were managed using the BioPac AcqKnowledge 5.0
software and exported as Matlab data files (.mat). Table 1 summarises the main baseline
demographic characteristics for the subjects (N = 15) recorded and included in this pilot
study, which were fully compliant with the project’s set protocol.

Table 1. Baseline demographics (15 subjects), of the healthy subjects included in the study: mean,
standard deviation (SD), median and interquartile range (IQR) values.

Characteristics Mean SD Median IQR

Age (y): both genders 38.60 14.45 39.00 23.00
Age (y): females (46.7%) 27.57 6.73 25.00 6.00
Age (y): males (53.3%) 48.25 12.28 48.50 17.75
Height (cm) 167.27 8.52 168.50 10.75
Weight (kg) 70.13 8.75 70.00 14.50
BMI (kg/m2) 25.21 3.85 24.65 5.91
Waist measure (cm): around 86.37 12.83 84.00 20.00
Chest measure (cm):
around at axilla level (cm) 93.30 7.97 94.00 11.75

Thorax L distance (cm):
for estimating SV 39.07 6.91 36.00 12.00

Thorax Zo impedance (Ω): for
estimating SV 50.71 9.13 55.50 14.70

Arm circumference (cm): MUAC 8.75 3.85 12.83 7.97
Arm L distance (cm):
for estimating SV 16.47 3.66 16.00 3.50

Arm Zo impedance (Ω):
for estimating SV 83.30 23.19 91.70 38.85

The in-house (Ulster University) study protocol ethics and research governance review
was considered and approved by the local Health Research Ethics Filter Committee panel
on 6 January 2023 (project application reference number: FCNUR-22-092-A).

Table 1 presents a summary of the baseline demographic characteristics of the
15 included research subjects in this pilot investigation. There the characteristics of a
good representative sample of the healthy population can be observed, with a median
age of 39 and an interquartile range of 23 years. Furthermore, there was a reasonably bal-
anced gender representation: 8 males (53.3%) and 7 females (46.7%). The body dimensions
are within a relatively narrow margin: average height of 167 cm ± 8.5 cm (SD), chest of
93 cm± 8 cm (SD), and average BMI of 25.2± 3.9 (SD) kg/m2. Important characteristics for
this study, as they enable the calculation of the stroke volume (SV) according to Kubicek’s
SV formula [13], are the thorax and arm L distances of the thorax and arm participating
tissue and the baseline off-set impedance Zo, which are specific to each subject.

2.5. ICG and ECG Prefiltering Stage with IIR Filters

The recorded raw ICG and ECG signals output from the above-described BioPac
system were presented at a wide bandwidth of 100 Hz and for this ICG monitoring study,
and both raw ICG and ECG acquired signals were subjected to low pass filtering with an at
least 40 Hz cut-off frequency. The ICG signals in both recording modes (Thorax-ICG and
Arm-ICG) were conditioned using a pre-filtering process to significantly reduce the noise
artefacts without deteriorating the main spectral content of the ICG signals, which were
expected to be not wider than the T-wave in the ECG for monitoring purposes. Therefore,
as in a previous study [7], the ICG signals pre-filtering stage consisted of 8th-order low-pass
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Butterworth filtering at an 8 Hz cut-off frequency, followed by high-pass, 4th-order filtering
at a 0.5 Hz cut-off frequency. The ECG signals provided by the BioPac ECG module were
simply low-pass-filtered at 40 Hz with a second-order Butterworth filter.

2.6. Savitzky–Golay Prefiltering of the ICG Signals Stage

The Savitzky–Golay (SG) smoothing filter is considered a type of finite impulse re-
sponse (FIR) digital filter [17,19], which is represented by polynomial equations. Based
on the least squares method [20], the SG filter is typically used to smooth a noisy signal
whose frequency range of the signal without noise is large. In this type of application, the
SG filter performs better than the standard FIR filters because these tend to attenuate a
significant portion of high frequencies of the signal and the noise. Although the SG filter
is more effective in preserving relevant high-frequency signal components, SG filters are
less effective in removing high-level noises in a signal [37]. The particular formulation of
the SG filter preserves moments of higher orders much better than other methods. As a
consequence, the widths and amplitudes of the peaks for the desired signals tend to be
preserved [14,20]. The SG filter can be considered to have input data that are denoted as an
N-dimensional vector x:

x = [x−M, . . . , x−1, x0, x1, . . . , xM]T (1)

where M is a natural number that denotes points evenly distributed on both sides of a
central point x0 and N = 2M + 1. A polynomial of degree d is then fitted using the N data
samples of x using

x̂m = c0 + c1m + · · ·+ cdmd , −M ≤ m ≤ M (2)

where x̂m represents the mth sample of the smoothed data. Next, d + 1 polynomial basis
vectors si are defined using

si(m) = mi, −M ≤ m ≤ M (3)

where the matrix S has si columns and a size of N × (d + 1), with the columns represented
by S = [s0, s1, . . . , sd]. The smoothed values can be expressed as a vector x̂ = Bx using

x̂ = Bx =
d

∑
i=0

cisi (4)

where B is a matrix created by combining the polynomial basis vectors si with the coeffi-
cients ci. The value y0, which represents the first smoothed data sample x̂0, is determined
based on the centre of the filter b0 : y0 = bT

0 x using

y0 = bT
0 x = ∑M

m=−M b0(m)xm (5)

where the filter coefficients at the centre are denoted by b0. The N-dimensional vector x can
be shifted by n instants of time, as denoted by

x → [xn−M, . . . , xn−1, xn, xn+1, . . . , xn+M]T (6)

The SG filter produces the output for smoothing noisy data using

y(n) = ∑M
m=−M b0(−m) x(n−m) (7)

where b0 represents the filter coefficients. By performing I differentiations on Equation (7),
the generic form of the filter output is derived using

yi(n) = i! ∑M
m=−M gi(−m) x(n−m) i = 0, 1, . . . , d (8)
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where gI denote the coefficients of the differentiated filter, which may not necessarily
exhibit symmetry. The use of derivatives is a usual manipulation when the removal of
signal offsets is needed during the pre-processing phase [19]. Usually, the 1st derivative
(I = 1) removes the systematic offsets of the signal, while the 2nd derivative (I = 2) can
eliminate linear variations.

For selecting the SG filter order in this study, knowledge of the intrinsic and rela-
tive ICG main pulse waveform characteristics previously reported [7] were considered.
Therefore, the SG order was fixed for both modes of ICGs, namely, the thorax and arm,
but because the Arm-ICG waveform has narrower pulse width characteristics than the
Thorax-ICG, the SG filter order suitability was checked with Arm-ICGs. In doing so, tests
of the comparative denoising performance for different polynomial orders were under-
taken in some Arm-ICG signal cases. The trial polynomial orders ranged from 2 to 8.
The exploratory results indicated that the SG filter order 3 provided the best denoising
performance, which was in accordance with the recommended SG order for ICG denoising
by other research groups [14].

Currently, there is a knowledge paucity of a suitable setting procedure for the SG filter
size (N samples) for effective denoising ICG signals. Therefore, criteria were based on the
time span of the main ICG pulse waveform feature being targetted for quality enhancement;
the VET time width value (see Figure 1a) was investigated for an adequate size of the SG
filter for this purpose, and a simple equation for determining a suitable value of N based
on a priori average VET characteristic of the Thorax-ICG (relatively low noise, after simple
IIR prefiltering as described in Section 2.5) was proposed. For this, the average measured
VET value of 10 cases in this study was estimated as 248.3 ms ± 16.1 ms (SD) (see Table 2),
which, at a 2000 Hz data sampling rate, yielded VETMEAN ≈ 497 samples. However, an
effective optimal SG filter size (NOPT) for ICG denoising was empirically determined by
scaling the VETMEAN (in samples) by a factor of (1/

√
2), or 0.71. Hence, the following

proposed empirically deduced equation for an effective GS filter size was

NOPT ≈ VETMEAN/
√

2 (9)

Table 2. Thorax-ICG waveform main heartbeat pulse event timing characterisation by the ventricular
ejection time (VET) time in 10 subjects for designing the number of SG samples (N).

Thorax-ICG Cases 1 2 3 4 5 6 7 8 9 10 Mean SD

VET (ms) 257 244 252 261 259 256 203 250 258 243 248.3 16.1

Therefore, the proposed empirical Equation (9) was used for the SG filter’s suitable
size setting in this study: N ≈ 351 samples.

2.7. Beat-by-Beat Recursive Ensemble Averaging Denoising Process
2.7.1. Beat-by-Beat Segmentation Algorithm

Beat-by-beat (BbyB) segmentation of each subject case for the simultaneous ICG and
ECG recordings (for both arm and thorax ICG modes) was based on the single fiducial
point (SFP) technique previously reported [7,23,24], which was applied to the ECG signal
recorded in a particular ICG mode and subject case as the reference signal for extracting
the accurate time position of valid ventricular depolarisation events of QRS complexes
along the whole ECG recording. Therefore, the output from the SFP process is a vector of
sample numbers (n) of valid heartbeat QRS complexes at the SFP position along the 480 s
simultaneous ICG and ECG recording length. Thus, the heartbeat sample positions SFP
vector was used for the accurate segmentation of both the simultaneous ICG and the ECG
signals by defining 1400 samples (700 ms) centred around each sample point (element) in
the SFP vector [23].
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2.7.2. ICG Ensemble Averaging Process

Ensemble averaging or signal-averaged ICG (SAICG) of segmented 700 ms ICG frames
generated by every heartbeat sample position in the SFP vector was implemented over
all detected and validated heartbeats along the 480 s ICG recording (arm or thorax ICG),
the number of which (Nb) ranged between 400 and 700 beats, depending on the heart
rate and quality of the respective chest ECG Lead I recording used for the SFP process [7].
This process provided the SAICG absolute reference of the best denoised ICG frame, or
“noiseless” ICG signal against which any denoising process performance can be assessed
on a BbyB basis [24].

2.7.3. ICG Recursive Averaging BbyB Process

This BbyB denoising process presents updated denoised 700 ms ICG frames for every
incoming heartbeat (Rq) processed by the SFP algorithm, which may be implemented
analogically and in real time [25,38], recursively included in an ensemble averaging buffer
order (Nb) of previous adjacent heartbeat ICG frames and updated in a first-in-first-out
(FIFO) order.

The recursive averaging (Rav) process may be described iteratively as follows:
Define K as the total number of valid heartbeat ICG events in the whole ICG(n)

recording data array (n = 1, 2, 3, . . . , 960,000 samples for the 480 s recording), which
were simultaneously recorded with the standard chest ECG Lead I for a particular subject
case and mode (Arm-ECG or Thorax-ICG), and SFP(k) is the associated SFP vector of the
sample position (n) of consecutive valid heartbeat ICG events Rq(k), with k = 1, 2, 3, . . . , K,
and Nb the order of the Rav process, which is the number of previous ICG beats 700 ms
frame vectors included in the ensemble averaging buffer; e.g., we explored Rav denoising
processes performance for Nb values of 16, 36 and 64. Then, for the current incoming
heartbeat Rq(k), the 1400 samples (700 ms) output frame vector from the Rav(k) BbyB
denoising process may be expressed as follows:

Rav(k) =
∑k=k

k=k−Nb ICG((SFP(k)− 600) : (SFP(k) + 799))
Nb

(10)

From this expression for the Rav denoising process, it is evident that the signal-
averaged ICG (SAICG) over all detected and valid heartbeats along the 480 s ICG recording
for obtaining the “noiseless” reference ICG 700 ms frame vector corresponds to the particu-
lar Rav(k) process having Nb set to (K − 1) beats.

2.7.4. Selection of the Number of Beats Order (Nb) of the Rav Process

As the Rav denoising process is intended to be a practical BbyB, data-driven [25]
and clinically valuable cardiac contractility monitoring tool, setting a convenient order
value for Nb would be a trade-off decision between real-time tracking of fast changes
in cardiac conditions, e.g., monitoring SV variations, and the acceptable signal quality
enhancement level needed to enable reliable ICG metric measurements, particularly for
Arm-ICG monitoring methods. Therefore, from Equation (4), the effects of large Nb values
on the Rav process are both slowness and ICG quality enhancement, limited to a maximum
of Nb = (K − 1).

With ICG recordings of 480 s in this study, of particular interest are Nb values associated
with a relatively small-time proportion of the recording time, say around 10% of it, or less.
Therefore, to investigate the relative signal quality enhancement of the Rav process for
3 convenient values of Nb, namely, 16, 32 and 64, the process was applied to simultaneous
ECG signals from the chest (standard Lead I) and arm (bipolar Lead-1) database that was
readily available from a previous investigation [22]. The outcomes of this exploratory
investigation with 9 cases (sample size) are presented in Table 3. There, the relative ECG
signal quality enhancement, arm versus chest, is reflected by the mean SNRdB figure
difference between the chest and arm using the performance metric SNRdiff (dB). The Nb
value that achieved a lower SNRdB difference between the chest control SNRdB and the
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arm-SNRdB indicates better comparative signal quality enhancement with respect to the
control chest ECG signal quality. Based on these figures and the above cardiac changes
fast-tracking trade-offs, the selected value of Nb was set to an intermediate value of 36 for
this Arm-ICG study.

Table 3. Exploratory investigation of the relative process output SNR (dB) performance of Rav16,
Rav32 and Rav64 on the standard ECG (Lead I) and Arm-ECG [23].

RecAv(#) Process
(# = Beats)

Chest-ECG SNR
Mean Value

(N = 9)

Chest-ECG SNR
Mean Value (dB)

Arm-ECG SNR
Mean Value

(N = 9)

Arm-ECG SNR
Mean Value (dB)

SNRdiff (dB):
Thorax-Arm

(SNRdB)

RecAv(16) 106.3 40.5 13.1 22.3 18.2
RecAv(32) 194.4 45.8 39.4 31.9 13.9
RecAv(64) 256.0 48.2 64.4 36.2 12.0

2.8. Beat-by-Beat Daubechies Wavelet Transform-Based Denoising of ICG Signals

An alternative, widely adopted, data-driven and advanced denoising process based
on DWT filtering methods was investigated and a suitable approach for enabling DWT
denoising on a BbyB basis was proposed. The proposed wavelet denoising process is a
refinement of the previously reported 2-stage 4th-order Daubachies (Db4) mother wavelet
method [22,29], which is applied for denoising simultaneous chest-ECG and Arm-ECG
recordings. In a similar approach for this ICG denoising study, the Db4 wavelet was
chosen since it is considered the best wavelet for the treatment of ICG signals, and its
shape (Figure 4a) is similar to the observed shape of Thorax-ICG signal SAICG 700 ms
frames [14,22]. However, it was observed in a previous study that the Arm-ICG SAICG
700 ms frames reveal a more convoluted, narrower main ICG pulse waveform (C met-
ric) [22] and have a slightly higher frequency content than the Thorax-ICG. Hence, the
Arm-ICG waveform tends to present more features that resemble the 8th-order Db8 wavelet
(Figure 4b), and thus, an exploratory investigation of Db4 versus Db8 wavelet BbyB de-
noising of Arm-ICGs showed a preference for adopting the Db8 wavelet for the Arm-ICG
wavelet denoising (WavDb8) process, as the Db8 was also recommended for ICG wavelet
denoising by other research groups [17].
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Furthermore, for enabling the Db4 and Db8 2-stage processes to operate on a BbyB
basis in this study, after the ICG signal segmentation, a Tukey tapered cosine operation
was applied to each heartbeat ICG 700 ms frame as described above. Then, their required
thresholding task was supported by ensemble averaging algorithms as previously reported
for arm-ECG wavelet denoising [22]; refined for this ICG study in an adaptive way [30] for
each ICG subject and recording mode, namely, Arm-ICG and Thorax-ICG; and executed on
a BbyB basis, as depicted in the Figure 5 block diagram.
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The ICG beat 700 ms (1400 points) frame vector data was up-sampled (interp) by
2 (2800 points) before applying a wavelet filtering process and then the output data were
down-sampled (decimated) back by 2 (back to 1400 points filtered vector). This manipula-
tion enabled adequate use of the following widely used thresholding criterion:

Thr = x × σ (11)

where σ is the raw input ICG noise standard deviation level and

X =
√

2× Log(n) (12)

where n is the number of data points of the ICG(n) input signal vector to the wavelet
denoised process after up-sampling (interpolating) by a factor of two [22].

The ICG signal noise component is defined as the 700 ms frame vector arrays difference
of the SAICG (signal) and the incoming ICG beat Rq(k) for all beats k = 1, 2, . . . , K. Hence,
the noise (k) vector is generated, and this is used by the noise sigma (σ) search algorithm
to generate the noise function, NF(σ), calculated as: (noise_RMS + noise_SD)/SNR, where
SNR = (SAICG_RMS)/(noise_RMS) for a range of thresholding sigma values input into the
wavelet denoising process to adaptively determine the optimal thresholding sigma value
that minimises NF(σ) [22], as illustrated in Figure 6.

As a preliminary task for this study and to illustrate the output from the above-
described wavelet thresholding optimisation method for estimated ICG signal noise stan-
dard deviation (sigma, σ) values, the wavelet optimal sigma (σoptim) for determining the
thresholding value was found using Equations (11) and (12) for each mode of ICG signals,
namely, the Thorax-ICG (Db4) and Arm-ICG (Db8) denoising processes, and for each of the
15 subject cases were determined as the output using the 2nd block process in Figure 5, and
are presented in Table 4.
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Figure 6. Optimal value of sigma (σ) for finding the algorithm output, i.e., sigma-NF(σ), for the Db8
wavelet denoising process of Arm-ICG, using subject case 4 as an example. The optimal σ (x-axis)
value (0.018 mV) corresponded to the minimum value of the sigma-NF(σ) amplitude (y-axis) of
0.0159 mV in this case and mode (Arm-ICG).

Table 4. Wavelet optimal sigma (σoptim) thresholding values (in µV) for the Db4 (Thorax-ICG) and
Db8 (Arm-ICG) wavelet denoising process, computed for each subject case in the study.

Case #→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thorax-ICG Db4 σoptim (µV) 16 20 10 7.0 55 14 18 7.0 5.0 22 28 10 9.0 24 12
Arm-ICG Db8 σoptim (µV) 36 20 60 18 16 85 24 60 9.0 25 60 55 45 54 6.5

Figure 7 illustrates the processed 700 ms frame vector output at beat number 639 for
the example case 4 considered in the Figure 6 wavelet Db8 σoptim determination plot, with
the values indicated in Table 4 in the Arm-ICG recording mode, including the 36-beat Rav
(Rav36) BbyB denoising process output frame vector for Rq(639) (red trace) and output for
the cascaded combination of both denoising processes (blue trace), namely, Rav36 followed
by the 2-stage Bb8 wavelet (WavDb8) process, for their qualitative comparison of denoising
effects on the Arm-ICG waveform at that particular beat number k = 639. The SAICG
reference “noiseless” vector is the ICG waveform black trace. The SAECG vector (also as a
black trace) is included for the cardiac heartbeat event timing reference.



Sensors 2023, 23, 5892 13 of 30Sensors 2023, 23, x FOR PEER REVIEW 13 of 29 
 

 

 
Figure 7. Example subject case 4 at beat #639 in a BbyB denoising process of the Arm-ICG: simulta-
neous ECG (mV) trace (black), noiseless Arm-ICG (Ω/s) 700 ms reference vector (black), plain Rav36 
denoising process output ICG (Ω/s) 700 ms vector (red), and Db8-wavelet and Rav36 denoising pro-
cess output ICG (Ω/s) 700 ms vector (blue). 

2.9. ICG Beat-by-Beat Denoised ICG Waveform Quality Assessment and Inclusion Criteria 
2.9.1. Pearson Correlation (p) BbyB with “Noiseless” SAICG Vector Reference 

In this BbyB process, the maximally denoised SAICG 700 ms frame vector reference 
was considered as the control template for the targeted ICG signal quality against every 
incoming valid heartbeat ICG 700 ms frame vector, namely, Rq(k), in a BbyB basis wave-
form correlation assessment for a particular denoising process. Thus, the Pearson correla-
tion coefficient (p) was used as a metric of similarity with the ICG signal SAICG control 
template. The conventional equation for the Pearson correlation coefficient percentage 
metric p(%) used in this study was the following one:  𝑝(%) = ∑ ൫௑௜ି௑൯൫௒௜ି௒൯೙೔సభට∑ ൫௑௜ି௑൯మ೙೔సభ  ට∑ ൫௒௜ି௒൯మ೙೔సభ  ×  100   (13)

where 𝑋 and 𝑌 and are the mean values of the Xi and Yi variable samples [22]. 
Figure 8 illustrates a plot of the above-described Pearson correlation assessment of 

the denoised ICG beats on a BbyB basis, i.e., correlation p%(k) values for every heartbeat 
number (k) along the 480 s Arm-ICG recording for the same example case 4 considered in 
Figures 6 and 7. For this case, the denoising performance on a BbyB basis of three ICG 
filtering processes can be appreciated: for the WavDb8 wavelet filtering (black), the 36 
beats Rav36 recursive averaging (red), and the Rav36+WavDb8 cascaded combination of 
the two (blue). Furthermore, the mean value of the generated p%(k) vector provides a 
simple and effective denoising performance metric for each filtering process under inves-
tigation. Another effective performance metric used for this study was found by setting p 
above 95% as the beat inclusion criteria and counting all the beats included (IncBt) out of 
the total number of valid beats (K) in the 480 s ICG recording, and then determine the beat 
inclusion rate percentage (BIR%) performance metric using BIR% = (IncBt/K) × 100. 

Figure 7. Example subject case 4 at beat #639 in a BbyB denoising process of the Arm-ICG: simultane-
ous ECG (mV) trace (black), noiseless Arm-ICG (Ω/s) 700 ms reference vector (black), plain Rav36
denoising process output ICG (Ω/s) 700 ms vector (red), and Db8-wavelet and Rav36 denoising
process output ICG (Ω/s) 700 ms vector (blue).

2.9. ICG Beat-by-Beat Denoised ICG Waveform Quality Assessment and Inclusion Criteria
2.9.1. Pearson Correlation (p) BbyB with “Noiseless” SAICG Vector Reference

In this BbyB process, the maximally denoised SAICG 700 ms frame vector reference
was considered as the control template for the targeted ICG signal quality against every
incoming valid heartbeat ICG 700 ms frame vector, namely, Rq(k), in a BbyB basis waveform
correlation assessment for a particular denoising process. Thus, the Pearson correlation
coefficient (p) was used as a metric of similarity with the ICG signal SAICG control template.
The conventional equation for the Pearson correlation coefficient percentage metric p(%)
used in this study was the following one:

p(%) =
∑n

i=1
(
Xi− X

)(
Yi−Y

)√
∑n

i=1
(
Xi− X

)2
√

∑n
i=1
(
Yi−Y

)2
× 100 (13)

where X and Y and are the mean values of the Xi and Yi variable samples [22].
Figure 8 illustrates a plot of the above-described Pearson correlation assessment of

the denoised ICG beats on a BbyB basis, i.e., correlation p%(k) values for every heartbeat
number (k) along the 480 s Arm-ICG recording for the same example case 4 considered
in Figures 6 and 7. For this case, the denoising performance on a BbyB basis of three ICG
filtering processes can be appreciated: for the WavDb8 wavelet filtering (black), the 36 beats
Rav36 recursive averaging (red), and the Rav36 + WavDb8 cascaded combination of the
two (blue). Furthermore, the mean value of the generated p%(k) vector provides a simple
and effective denoising performance metric for each filtering process under investigation.
Another effective performance metric used for this study was found by setting p above
95% as the beat inclusion criteria and counting all the beats included (IncBt) out of the total
number of valid beats (K) in the 480 s ICG recording, and then determine the beat inclusion
rate percentage (BIR%) performance metric using BIR% = (IncBt/K) × 100.
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versus the noiseless Arm-SAICG vector.

This ICG waveform quality assessment method is quite versatile and can be used to
detect bad-quality Arm-ICG episodes of ICG beats since they present p(%) values below
a certain threshold value (e.g., p < 95%), and thus, can be classified as noisy episodes,
which could be excluded for ICG features metrics determination, and hence, reducing their
measurement error rate in ambulatory scenarios.

2.9.2. BbyB Residual Noise and SNR Metrics Based on the SAICG Signal-Vector

Having defined the SAICG 700 ms frame vector as the ICG signal denoising target
reference, any denoising process output vector difference from the SAICG reference ICG
noiseless signal vector can be considered as the residual noise vector (noise), with an
amplitude characterised by its RMS value (mV) or/and by its SD value (mV), which can be
estimated on a BbyB basis to generate the noiserms(k) and the noisesd(k) vectors. Thus, the
following definitions of noise and signal were used for this study:

noise = [SAECG “noiseless” 700 ms_vector frame] − [filter process output vector frame]
and the absolute, noiseless reference signal 700 ms vector is defined as the signal,

(14)

signal = [SAECG 700 ms frame obtained by ensembled averaging all valid ICG beats] (15)

A similar noise estimation procedure can be applied to the raw ICG input vector to
the denoising process, and noise reduction figures, expressed in decibels, can be used as
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a denoising performance metric. However, for this study, the following definition of the
signal-to-noise ratio (SNR) was adopted as a BbyB denoising performance metric [14,17]:

SNR =
mean

(
signal2

)
mean

(
noise2

) (16)

2.10. ICG Waveform Basic Features Metrics Definitions

To further assess the ICG quality enhancement performance, the accuracy (error rate)
and precision (e.g., SD) of four basic ICG waveform feature metrics were studied. These ICG
waveform features were measured in the SAICG vector (as the reference errorless value) and
in every denoised heartbeat Rq(k) vector on a BbyB basis. Thus, a measurement error vector
(Err(k)) was generated for the feature metric mean absolute error rate% (ER%) accuracy
performance using the selected best-performing denoising process as described above.
Furthermore, the four ICG feature metrics enable investigating relational characteristics
between the feature metrics within the ICG recording mode and between recording modes
for the Arm-ICG versus Thorax-ICG [7]. These four basic metrics are labelled A, B, C and
VET and defined as follows (refer to Figure 9):

(A): For measuring the relative time delay (ms) of the ICG waveform main pulse with
respect to the simultaneous ECG R-wave position, namely, (SFP(k) − 80), in a particular
subject.
(B): The ICG waveform main pulse peak amplitude (Ω/s).
(C): The ICG main pulse width (ms) at mid-amplitude level (B/2).
(VET): The ventricular ejection time (ms) used to derive the stroke volume (SV).
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In this study, stroke volume (SV) was estimated using Kubicek’s equation [13], which
is widely used [5] and has the following expression:

SV = ρ· Lo
Zo2

2
·
(

dZ
dt

)
max
·VET (17)
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where SV is the estimated stroke volume of every heartbeat (cm3); ρ is the blood resistivity
(typically 150 Ω-cm); Lo is the length of the body tissue impedance [4,7,13], Zo is the ICG Z
baseline DC off-set impedance; (dZ/dt)max is the maximum value (Ω/s) of the heartbeat
ICG pulse, which occurs after the ECG R-wave; and VET is the ventricular ejection time
expressed in seconds (s).

2.11. Functional Relationship between Arm-ICG and Thorax-ICG Features Metrics

Following the ICG basic features determination and analysis within a particular ICG
recording mode (arm or thorax), the final stage of the study investigated the prospects
and extent of considering the Arm-ICG method as a scaled surrogate for the conventional
Thorax-ICG, and hence, the potential intrinsic advantages and limitations offered by Arm-
ICG methods in ambulatory, long-term cardiac contractility or SV monitoring. Therefore,
besides using scatter plots, Pearson correlation (p) and linear trend modelling with the
associated coefficient of determination (R2) [22,23], five functional relationship metrics (D,
E, F, G and H) of Arm- versus Thorax-ICGs, as ratio or difference values, were evaluated
and analysed for all subject cases in this study (N = 15) using descriptive statistics. These
Arm-Thorax relational metrics were defined as follows:

(D): The comparative metric of amplitude B values ratio (%) of Arm(B)/Thorax(B).
(E): The time metrics difference (ms) of [Thorax(C) − Arm(C)].
(F): The ICG pulse width time metric ratio [Thorax(C)/Arm(C)].
(G): The ICG time metrics ratio [Thorax(VET)/Arm(VET)].
(H): The ICG volume metric ratio [Thorax(SV)/Arm(SV)].

2.12. ICG Signal Frames with Tukey Tapered Cosine Windowing

The BbyB 700 ms ICG frame vectors that had been accurately synchronised with
the PQRST events in the ECG were filtered with the various denoising processes under
investigation. To minimise the filter transient effects due to abrupt, non-zero signal values
at the frame start and end edges, to improve quality of ICG feature extraction, to enable ICG
spectral analysis, and to facilitate possible concatenation of the denoised ICG beat frames
(joined by zero value segments of respective lengths on a beat-by-beat basis), a 1400-point
Tukey tapered cosine windowing vector was multiplied by every 700 ms (1400 sample
points) frame vector, as defined in Equation (18) for an M-point Tukey cosine window [39],
using Matlab (tukeywin).

w(x) =



1
2

{
1 + cos(

2π

2

[
x− r

2

]
)
}

, 0 ≤ x <
r
2

1,
r
2
≤ x < 1− r

2
1
2

{
1 + cos(

2π

2

[
x− 1 +

r
2

]
)
}

, 1− r
2
≤ x ≤ 1


(18)

where x is an M-point linearly spaced vector generated using the Matlab linspace command.
The parameter r is the ratio of the cosine-tapered section length to the entire window length
with 0 ≤ r ≤ 1; in this study, r was set to r = 3/14.

2.13. Removing Outliers

The resulting data from each of the above-proposed denoising performance metric
processing methods and ICG feature metric functional relationships were further processed
systematically in order to eliminate outlier values. Statistically, outliers are the data points
that differ significantly from other observations, which may cause distortion and skewed
data, leading to inaccurate analysis of the results. For the exclusion of such values, output
data vectors were further processed in Matlab using the rmoutliers command [22,23,40].
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3. Results

All ICG recordings were prefiltered with the described bandpass Butterworth and
SG filters. Then, three BbyB denoising processes were considered: (a) recursive averaging
with a 36-beat-sized ensemble averaging buffer (Nb = 36), hence the acronym RAv36, that
was equally applied to both modes of ICG, namely, arm and thorax; (b) two-stage Db
wavelet filtering of the fourth order for the thorax mode, hence the acronym WavDb4, and
of the eighth order for the arm mode, hence the acronym WavDb8; and (c) the cascaded
combination of the two denoising processes, depending on the ICG mode, and thus, the
acronym ends in 4 or 8: RAv36 + WavDb4/8.

3.1. ICG Denoising Processes Performance

The ICG denoising performance of the above-indicated advanced filtering processes
was assessed using three performance metrics, as mentioned in the Materials and Methods
section: (a) the SNR (dB) increment, considering Equations (14)–(16), is the difference
between the filter output SNRdB-OUT and the input SNRdB-IN on a BbyB basis, and hence,
the SNRincre-dB(k) denoising performance vector values are in decibels; (b) the Pearson
correlation coefficient (p) between the denoised ICG incoming beat Rq(k) 700 ms frame
vector and the SAICG noiseless vector on a BbyB basis, generating the p(k) denoising
performance metric vector; and (c) the ICG beat inclusion rate percentage (BIR%) of the
heartbeat Rq(k) 700 ms vectors with p > 0.95, which were counted and divided by the total
number of beats (K) in the 480 s ICG recording, then× 100 for the % figure of this denoising
performance metric.

Table 5 presents the statistical summary results of the three denoising performance
metrics for the three proposed BbyB denoising processes, which were applied to the
Thorax-ICG and Arm-ICG recording modes used on the 15 healthy subject cases sample in
this study.

Table 5. ICG denoising processes performance on the Thorax-ICG and Arm-ICG, showing the mean
(±SD) and median (IQR) of the SNR (dB) increment of denoised ICG beats from the raw input ICG
SNR, taking the SAICG “noiseless” vector reference as the ICG signal vector (SNRincre-dB); Pearson
correlation (p) of the denoised ICG beats versus the SAICG noiseless vector; and ICG beat inclusion
rate (BIR%) with p > 0.95 out of the total beats (K) for the sample size of N = 15 in this study.

Performance Metric on ICG RAv36 WavDb4/8 RAv36 + WavDb4/8

SNRincre-dB mean (±SD): Thorax-ICG, all beats 20.72 (±4.69) 0.42 (±0.89) 16.03 (±4.38)
SNRincre-dB mean (±SD): Arm-ICG, all beats 18.36 (±4.59) −0.32 (±1.47) 8.54 (±6.91)

SNRincre-dB median (IQR): Thorax-ICG, all beats 19.56 (4.61) 0.42 (0.71) 15.84 (5.81)
SNRincre-dB median (IQR): Arm-ICG, all beats 18.06 (6.61) −0.94 (1.44) 6.71 (8.08)

p mean (±SD): Thorax-ICG, all beats 0.998 (±0.0018) 0.963 (±0.0330) 0.998 (±0.0022)
p mean (±SD): Arm-ICG, all beats 0.952 (±0.0607) 0.721 (±0.206) 0.919 (±0.1050)

p median (IQR): Thorax-ICG all beats 0.999 (0.0016) 0.978 (0.0359) 0.998 (0.0019)
p median (IQR): Arm-ICG all beats 0.982 (0.0387) 0.824 (0.318) 0.9701 (0.0845)

BIR% mean (±SD): Thorax-ICG (BbyB) 100.0 (±0.0) 88.01 (±13.06) 100.0 (±0.00)
BIR% mean (±SD): Arm-ICG (BbyB) 80.89 (±24.17) 26.69 (±29.95) 67.31 (±32.95)

BIR% median (IQR): Thorax-ICG (BbyB) 100.0 (0.0) 93.62 (10.92) 100.0 (0.00)
BIR% median (IQR): Arm-ICG (BbyB) 92.86 (25.59) 9.46 (42.13) 81.12 (47.66)

To facilitate the interpretation of the results presented in Table 5, bar charts of the three
advanced ICG denoising techniques, namely, (1) RAv36, (2) WavDb4/8 and (3) combined
RAv36 + WavDb4/8, performance analysis metrics of the mean and median values in
Table 5 are presented in Figure 10a–c for the Arm-ICG recording mode denoising and in
Figure 10d–f for the Thorax-ICG recording mode denoising.
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From the denoising performance and signal quality enhancement towards the ref-
erence signal quality target of the SAICG 700 ms clean signal vector template, of the
three BbyB denoising processes in Table 5 and Figure 10, it is evident that the proposed
wavelet-based BbyB ICG filtering process displayed relatively poor performance from
the three performance metric perspectives. The low performance is also revealed by the
p(k) plot in Figure 8 (black trace) for example case 4. Moreover, the performance analysis
results revealed that its cascaded combination with the Rav36 process tended to be detri-
mental to the denoising process (1). This was so for the more challenging low-amplitude
Arm-ICG signals, which had lower initial SNR at the input of the denoising processes, as ev-
idenced in Figure 10a,c. Therefore, the Rav36 process was selected for the following part of
this study.

3.2. RAv36 Denoised ICG Waveform Features A, B, C and VET Metrics Assessment
3.2.1. Arm-ICG Mode Waveform Features A, B and C Metrics Assessment

The Arm-ICG waveform basic features were the relative delay time position (ms) to
the R-wave of the ECG, i.e., metric A (see Figure 9); the main Arm-ICG pulse amplitude
(Ω/s), metric B, which was the maximum of the ICG beat 700 ms frame vector segment
from 300 ms to 600 ms; and the Arm-ICG main pulse width at mid-amplitude (B/2)
level, i.e., metric C. Table 6 summarises these Arm-ICG feature metric values and their
ER% values.

3.2.2. Thorax-ICG Denoised Waveform Features A, B and C Metrics Assessment

Similarly, for the less challenging stronger ICG signal (about six times larger than
in the arm mode), assessment of the denoising capacity of the BbyB ensemble averag-
ing process (RAv36) on the accurate and precise delivery of ICG features metrics A, B
and C from the conventional mode Thorax-ICG was implemented using the same fea-
ture detection and measurement algorithms as for the arm mode. These results are pre-
sented in Table 7. Similarly, the Thorax-ICG signal quality indicators resulting from the
beat inclusion filter algorithm, namely, IncBt count, p, IncBt and BIR%, are provided for
additional consideration.
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Table 6. Arm-ICG RAv36 denoised waveform metrics A, B and C: mean, SD, median, IQR and mean absolute error rate (ER%) for the included ICG beats (IncBt)
presenting a Pearson coefficient p > 0.95 for BbyB versus the SAICG frame, as well as the associated BIR% metric.

Case
#

IncBt
Count

(p > 0.95)

p
IncBt
Mean

IncBt
BIR%
(%)

A
Mean
(ms)

A
SD

(ms)

A
Medn
(ms)

A
IQR
(ms)

A
ER%
(%)

B
Mean
(Ω/s)

B
SD

(Ω/s)

B
Medn
(Ω/s)

B
IQR
(Ω/s)

B
ER%
(%)

C
Mean
(ms)

C
SD

(ms)

C
Medn
(ms)

C
IQR
(ms)

C
ER%
(%)

1 462 0.991 93.5 466 3.21 466 3.50 0.520 0.483 0.052 0.472 0.068 8.49 88.9 3.43 89.0 5.00 3.03
2 120 0.968 20.9 469 5.48 470 8.50 1.082 0.214 0.046 0.210 0.087 19.0 81.2 8.31 78.5 9.13 7.77
3 393 0.984 64.5 511 7.93 509 10.5 1.351 0.151 0.026 0.150 0.024 14.2 96.3 6.00 96.0 7.00 4.71
4 639 0.992 100 514 5.79 517 9.50 0.957 0.199 0.024 0.200 0.032 9.90 104.8 5.78 104.0 10.0 4.55
5 386 0.988 92.1 514 4.13 515 4.00 0.597 0.521 0.069 0.511 0.120 10.8 92.3 4.61 91.5 4.50 3.48
6 272 0.968 50.9 475 6.54 475 11.0 1.437 0.208 0.067 0.182 0.109 24.1 89.3 7.08 89.8 10.5 6.20
7 394 0.986 91.8 486 4.31 487 6.00 0.709 0.264 0.023 0.266 0.029 6.64 92.6 3.25 93.0 3.50 2.73
8 188 0.972 46.5 449 6.37 449 10.5 1.206 0.181 0.037 0.185 0.051 18.1 77.8 4.68 76.8 5.50 4.60
9 542 0.993 98.7 468 4.12 469 5.00 0.682 0.199 0.021 0.192 0.035 8.88 90.4 3.01 90.0 4.50 2.83

10 455 0.984 93.1 513 5.33 513 10.0 0.948 0.352 0.024 0.346 0.034 5.40 88.0 2.52 87.5 2.50 2.28
11 400 0.980 76.3 479 4.74 479 7.00 0.809 0.186 0.024 0.183 0.032 10.3 91.6 6.67 90.0 9.00 5.91
12 444 0.986 93.7 495 3.48 496 5.50 0.608 0.265 0.019 0.267 0.023 6.17 77.2 2.63 77.5 4.00 2.94
13 624 0.994 100 505 3.47 505 4.50 0.536 0.255 0.025 0.254 0.034 8.02 85.8 2.45 85.5 3.50 2.23
14 486 0.984 98.4 480 4.54 480 5.00 0.695 0.149 0.028 0.146 0.035 14.7 84.5 5.13 84.8 8.50 5.22
15 468 0.998 92.9 463 2.26 463 3.00 0.388 0.397 0.008 0.397 0.010 1.83 90.5 1.48 90.5 2.00 1.40

Mean --> 0.98 80.9 485.8 4.78 486 6.90 0.83 0.27 0.03 0.26 0.05 11.1 88.7 4.47 88.3 5.94 3.99
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Table 7. Thorax-ICG RAv36 denoised waveform metrics A, B and C: mean, SD, median, IQR and mean absolute error rate (ER%) for the included ICG beats (IncBts),
presenting a Pearson coefficient p > 0.95 for BbyB versus the SAICG frame.

Case
#

IncBt
Count

(p > 0.95)

p IncBt
Mean

IncBt
BIR%
(%)

A
Mean
(ms)

A
SD

(ms)

A
Medn
(ms)

A
IQR
(ms)

A
ER%
(%)

B
Mean
(Ω/s)

B
SD

(Ω/s)

B
Medn
(Ω/s)

B
IQR
(Ω/s)

B
ER%
(%)

C
Mean
(ms)

C
SD

(ms)

C
Medn
(ms)

C
IQR
(ms)

C
ER%
(%)

1 494 0.999 100 436 1.32 436 1.50 0.25 1.24 0.027 1.24 0.034 1.66 110 1.98 110 2.50 1.42
2 619 0.997 100 428 2.82 429 3.00 0.25 2.05 0.182 2.08 0.138 5.66 109 3.61 110 3.00 2.17
3 612 0.997 100 478 3.25 479 3.50 0.49 1.86 0.083 1.85 0.138 3.82 110 1.73 111 1.50 1.12
4 634 0.999 100 486 1.86 486 2.00 0.31 1.72 0.022 1.72 0.030 1.04 113 1.36 114 1.50 0.89
5 434 0.997 100 469 2.84 469 3.50 0.48 2.85 0.229 2.91 0.322 6.93 112 4.01 111 3.50 2.34
6 544 0.995 100 465 4.18 466 5.00 0.70 0.91 0.107 0.91 0.088 7.39 117 5.23 117 5.63 3.30
7 319 0.999 100 460 2.09 460 3.00 0.37 1.35 0.054 1.36 0.072 3.14 110 1.49 110 2.50 1.08
8 419 10.00 100 451 1.13 451 1.00 0.19 1.47 0.038 1.45 0.065 2.24 115 0.67 116 1.00 0.46
9 539 0.999 100 443 2.85 443 3.50 0.49 1.18 0.044 1.18 0.077 3.18 128 3.60 127 5.00 2.29

10 444 0.998 100 468 2.18 468 2.50 0.41 2.10 0.028 2.10 0.039 1.10 104 2.30 104 3.00 1.74
11 554 0.999 100 423 1.39 424 1.50 0.24 1.36 0.091 1.33 0.107 5.50 99 1.81 99 2.38 1.40
12 484 0.998 100 473 2.33 473 3.00 0.39 2.50 0.055 2.49 0.044 1.57 109 0.97 109 1.00 0.70
13 564 0.999 100 468 1.52 469 2.50 0.27 1.46 0.100 1.42 0.138 5.67 110 2.32 109 3.50 1.75
14 504 0.993 100 470 5.40 470 7.00 0.92 0.68 0.052 0.68 0.061 5.90 141 5.84 141 8.50 3.43
15 452 0.999 100 452 1.83 452 3.00 0.34 1.84 0.053 1.85 0.080 2.51 109 1.12 109 1.50 0.78

Mean --> 0.998 100 458 2.47 458 3.03 0.41 1.64 0.08 1.64 0.10 3.82 113 2.54 113 3.07 1.66
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3.2.3. Arm-ICG vs. Thorax-ICG Waveforms VET Timing Metric Assessment

Estimating the value of VET using non-invasive ICG recording methods is of clin-
ical importance and interest. Therefore, a comparative assessment of the experimental
Arm-ICG recording mode vs. the conventional thorax mode was done with regard to
clinically relevant parameters, such as the VET feature metric and the resulting estimation
of the cardiac stroke volume (SV) metric, as calculated using Kubicek’s Equation (17).
Furthermore, the average VET/C ratio within a recording mode was investigated for the
sample of 15 healthy volunteers using the C metric results in Tables 6 and 7. Table 8
summarises the VET metric value descriptive statistics for the arm and thorax modes of the
15 subject cases (N = 15). Moreover, associated ICG signal quality indicators reflected by
the BIR% and SNRincre-dB metrics, which resulted from the Rav36 denoising process, are
presented there for analysis and results interpretation support information. Furthermore,
the case-by-case mean value of the base impedance parameter Zo and the L value for the
arm and thorax modes are included in Table 8, which, in combination with the B metric
values in Tables 6 and 7, enable the estimation of the arm and thorax SV metrics for each of
the 15 cases and are presented in Table 8.

To facilitate an appreciation of the level of precision and accuracy of the four main
ICG waveform feature metric values results (A, B, C and VET) from Tables 6–8, Figure 11
presents, in a familiar way to the medical community, the box-and-whisker chart (Excel MS
Office 365) for the metrics’ mean values and respective error rate figures (ER%) per case for
the study sample of 15 cases for both the arm (green boxes) and thorax (brown boxes) ICG
recording modes. It is remarkable how short the B metric mean box for the Arm-ICG is.
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Table 8. Ventricular ejection fraction time (VET) metric values and comparative VET/C ratio, Zo, L value and calculated SV per subject (N = 15) in the arm and
thorax RAv36-denoised ICGs.

Case #→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean

A
rm

-I
C

G

BIR% at p > 0.95 (%) 93.5 20.9 64.5 100 92.1 50.9 91.8 46.5 98.7 93.0 76.3 93.7 100 98.4 92.9 80.9
SNRincre-dB mean (dB) 19.0 23.3 26.1 18.1 16.7 13.4 15.8 17.4 12.6 10.4 22.1 19.8 24.5 21.7 14.7 18.4
VET mean (ms) 194 227 202 217 192 200 206 186 200 190 185 173 187 195 224 198
VET SD (ms) 18.5 22.3 9.73 7.79 10.4 15.5 17.7 16.1 11.3 10.7 17.9 22.2 12.6 13.2 7.30 14.2
VET median (ms) 191 229 202 218 192 201 207 182 198 190 182 168 186 194 225 198
VET IQR (ms) 14.0 17.3 11.5 12.5 14.4 17.6 19.3 16.5 17.5 8.50 14.5 12.8 9.50 16.8 11.0 14.2
VET ER% (%) 6.03 6.87 3.65 3.00 4.36 6.78 7.49 6.22 4.60 4.22 6.15 6.76 3.63 5.35 3.25 5.2
VET/C (ratio) 2.19 2.79 2.10 2.07 2.08 2.24 2.22 2.39 2.21 2.16 2.02 2.24 2.18 2.31 2.47 2.24
Base imp. Zo mean (Ω) 76.4 60.2 93.6 46.7 116 91.7 54.9 54.5 57.9 113 109 97.1 92.3 98.7 87.3 83.3
LARM (cm) 10.0 18.0 15.0 12.0 16.0 16.0 12.0 19.0 17.0 17.0 15.0 20.0 19.0 19.0 25.0 16.7
SV (cm3) 0.24 0.65 0.12 0.43 0.29 0.19 0.39 0.61 0.51 0.23 0.10 0.29 0.30 0.16 1.09 0.37

T
ho

ra
x-

IC
G

BIR% at p > 0.95 (%) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
SNRincre-dB mean (dB) 21.1 19.6 12.7 28.5 16.0 18.3 21.5 23.9 17.0 28.9 19.6 27.6 17.9 19.4 18.9 20.7
VET mean (ms) 291 273 257 244 252 261 259 276 288 256 203 250 258 292 243 260
VET SD (ms) 1.22 8.53 6.45 3.39 3.48 10.92 3.03 2.24 4.42 1.30 2.19 2.78 5.29 12.97 2.85 4.74
VET median (ms) 291 274 259 244 252 262 259 277 288 256 204 250 259 297 244 261
VET IQR (ms) 1.50 2.50 4.50 4.00 4.50 10.0 5.00 3.50 7.50 1.50 3.50 3.00 6.00 10.5 3.50 4.73
VET ER% (%) 0.31 1.68 1.73 1.06 1.11 2.84 1.01 0.72 1.35 0.42 0.88 0.83 1.65 2.31 0.91 1.25
VET/C (ratio) 2.64 2.49 2.32 2.15 2.25 2.22 2.35 2.39 2.25 2.46 2.05 2.30 2.36 2.08 2.24 2.30
Base imp. Zo mean (Ω) 56.0 56.6 60.7 42.9 56.9 57.8 38.9 38.8 37.6 55.5 66.2 46.4 56.0 49.1 41.2 50.7
LTHORX (cm) 35.0 36.0 32.0 36.0 38.0 32.0 36.0 31.0 49.0 32.0 47.0 39.0 44.0 48.0 51.0 39.1
SV (cm3) 21.1 33.8 19.9 44.4 48.0 10.9 44.9 74.7 86.7 26.8 21.0 66.2 35.0 28.5 103 44.3
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3.2.4. Functional Relationship between Arm-ICG and Thorax-ICG: Metrics D, E, F, G & H

The hypothesised proportionality of the ICG-waveform-based amplitude (Ω/s) and
time (ms) feature metrics between the values measured from the conventional Thorax-ICG
(control) and from the experimental Arm-ICG as a possible brachial-artery-based surrogate
alternative was investigated by means of the five above proposed and defined comparative
metrics: D, E, F, G and H (in Section 2.11). These comparative metrics can be derived from
the measurement results for metrics B, C, VET, Zo, L and SV extracted from Tables 6–8.
Table 9 summarises the mean, SD, median and interquartile range (IQR) statistics of the
15 cases for the five comparative metrics between the ICG feature values for the arm versus
respective values for the thorax control mode.

Table 9. Summary of the overall (N = 15) Arm-ICG and Thorax-ICG comparative metrics D, E, F, G
and H, which were derived based on their definitions in Section 2.11 and the results in Tables 6–8.

Comparative Metric Mean SD Median IQR

D = [Arm(B)/Thorax(B)] (%) 17.4 7.51 16.8 8.63
E= [Thorax(C) − Arm(C)] (ms) 24.4 12.7 21.3 12.9
F= [Thorax( C)/Arm(C)] (ratio) 1.28 0.16 1.24 0.19
G= [Thorax(VET)/Arm(VET)] (ratio) 1.32 0.14 1.31 0.21
H = [Thorax(SV)/Arm(SV)] (ratio) 132.8 52.8 118.7 70.6

Furthermore, within this particular investigation task, the functional relationship
of the four main feature metrics (A, B, C and VET) between the experimental Arm-ICG
method versus the Thorax-ICG control method (standard) from an overall perspective
within the 15 healthy subjects sample (N = 15) was analysed by means of the scatter plots
presented in Figure 12, including linear trend modelling with the respective coefficient of
determination R2. Moreover, the calculated Pearson correlation coefficient (p) indicator
is provided.

The scatter plots of the arm (y-axis) versus thorax (x-axis) for the A and B metrics
shown in Figure 12a,b reveal a reasonable linear (proportionality) functional relationship,
with R2 > 0.70 and correlation values p > 0.80 for N = 15. However, scatter plots (c) and
(e) for metrics C and VET, respectively, seem to indicate a clustered relationship trend; the
relatively small number of cases (N = 15) presented close timing values of the ICG pulse
width (cardiac contraction timing) in healthy subjects, i.e., they were not greatly affected
by the subjects’ variations in anatomic or demographic characteristics, mainly body size,
weight and age characteristics. Hence, it was important to present these scatter plots to
be consistent, objective and provide complementary data in this study. Nevertheless, the
respective comparative ratio (proportionality) metrics F and G in Table 9 indicate similar
proportionality and were close to unity: F = 1.28 and G = 1.32, with very small SDs. Hence,
radial (or radar) plots for metrics C and VET are presented in Figure 12d,f, to support this
observed behavior from a different plot type perspective.

3.3. Functional Relationship Analysis of Measured SV Values on the Arm-ICG and on the
Thorax-ICG

We undertook further analysis of the hypothesised proportionality hinted at by the
comparative metric H in Table 9, i.e., H = 132.8 ± 52.8 (SD), and investigate possible
underlying linear trend modelling after an outlier data pair point removal
operation [22,23,40]. Figure 13a,b present the box-and-whisker charts of statistical char-
acteristics for the SV values in both ICG recording modes (Arm-SV and Thorax-SV) for
the 15 cases, and Figure 13c depicts the scatter plot of the Arm-SV (cm3) versus Thorax-SV
(cm3) in each of the 13 remaining subject case data pair points after the outlier removal
operation (two outlier cases), and the Pearson correlation (p) value is indicated. The scatter
plot revealed a reliable positive slope linear trend model with R2 = 0.84, and the p = 0.91
confirmed a good correlation.



Sensors 2023, 23, 5892 24 of 30
Sensors 2023, 23, x FOR PEER REVIEW 22 of 29 
 

 

  

 

(d) ICG metric C (ms) radar plot: Arm-ICG and Thorax-ICG  

 

(f) ICG metric VET (ms) radar plot: Arm-ICG and Thorax-
ICG 

 
Figure 12. Scatter plots of ICG waveform features’ A, B, C and VET metrics mean values per case 
(15 subjects) for the Arm-ICG versus Thorax-ICG linear trends analysis, including the R2 value and 
the Pearson correlation (p). (d) and (f) are radar plots for C and VET. 

Table 9. Summary of the overall (N = 15) Arm-ICG and Thorax-ICG comparative metrics D, E, F, G 
and H, which were derived based on their definitions in Section 2.11 and the results in Tables 6, 7 
and 8. 

Comparative Metric Mean SD Median IQR 
D = [Arm(B)/Thorax(B)] (%) 17.4 7.51 16.8 8.63 
E = [Thorax(C) − Arm(C)] (ms) 24.4 12.7 21.3 12.9 
F = [Thorax( C)/Arm(C)] (ratio) 1.28 0.16 1.24 0.19 
G = [Thorax(VET)/Arm(VET)] (ratio) 1.32 0.14 1.31 0.21 

Figure 12. Scatter plots of ICG waveform features’ A, B, C and VET metrics mean values per case
(15 subjects) for the Arm-ICG versus Thorax-ICG linear trends analysis, including the R2 value and
the Pearson correlation (p). (d,f) are radar plots for C and VET.

Sensors 2023, 23, x FOR PEER REVIEW 23 of 29 
 

 

H = [Thorax(SV)/Arm(SV)] (ratio) 132.8 52.8 118.7 70.6 

The scatter plots of the arm (y-axis) versus thorax (x-axis) for the A and B metrics 
shown in Figure 12a,b reveal a reasonable linear (proportionality) functional relationship, 
with R2 > 0.70 and correlation values p > 0.80 for N = 15. However, scatter plots (c) and (e) 
for metrics C and VET, respectively, seem to indicate a clustered relationship trend; the 
relatively small number of cases (N = 15) presented close timing values of the ICG pulse 
width (cardiac contraction timing) in healthy subjects, i.e., they were not greatly affected 
by the subjects’ variations in anatomic or demographic characteristics, mainly body size, 
weight and age characteristics. Hence, it was important to present these scatter plots to be 
consistent, objective and provide complementary data in this study. Nevertheless, the re-
spective comparative ratio (proportionality) metrics F and G in Table 9 indicate similar 
proportionality and were close to unity: F = 1.28 and G = 1.32, with very small SDs. Hence, 
radial (or radar) plots for metrics C and VET are presented in Figures 12 (d) and (f), to 
support this observed behavior from a different plot type perspective. 

3.3. Functional Relationship Analysis of Measured SV Values on the Arm-ICG and on the 
Thorax-ICG 

We undertook further analysis of the hypothesised proportionality hinted at by the 
comparative metric H in Table 9, i.e., H = 132.8 ± 52.8 (SD), and investigate possible un-
derlying linear trend modelling after an outlier data pair point removal operation 
[22,23,40]. Figure 13a,b present the box-and-whisker charts of statistical characteristics for 
the SV values in both ICG recording modes (Arm-SV and Thorax-SV) for the 15 cases, and 
Figure 13c depicts the scatter plot of the Arm-SV (cm3) versus Thorax-SV (cm3) in each of 
the 13 remaining subject case data pair points after the outlier removal operation (two 
outlier cases), and the Pearson correlation (p) value is indicated. The scatter plot revealed 
a reliable positive slope linear trend model with R2 = 0.84, and the p = 0.91 confirmed a 
good correlation. 

 
Figure 13. Arm-ICG versus Thorax-ICG functional relationship of estimated stroke volume (SV) 
values using Kubicek’s formula and ICG waveform metrics after denoising with the RAv36 process 
and the baseline characteristics of the 15 subject cases. 

4. Discussion 

This paper presents several key findings. Some were expected and supported the in-
itial hypotheses regarding the performance of methods and the relationship between var-
iables in conventional and experimental ICG recording methods. However, some findings 
were unexpected, yet still valuable, as they help to mitigate the current knowledge paucity 
about the effectiveness of arm brachial artery plethysmography (equivalent to an ICG 
waveform) as a surrogate method for monitoring cardiac contractility [7–9]. Using elec-
trodes placed on the upper arm and forearm for ICG recordings to offer a more versatile 

Figure 13. Arm-ICG versus Thorax-ICG functional relationship of estimated stroke volume (SV)
values using Kubicek’s formula and ICG waveform metrics after denoising with the RAv36 process
and the baseline characteristics of the 15 subject cases.



Sensors 2023, 23, 5892 25 of 30

4. Discussion

This paper presents several key findings. Some were expected and supported the initial
hypotheses regarding the performance of methods and the relationship between variables
in conventional and experimental ICG recording methods. However, some findings were
unexpected, yet still valuable, as they help to mitigate the current knowledge paucity about
the effectiveness of arm brachial artery plethysmography (equivalent to an ICG waveform)
as a surrogate method for monitoring cardiac contractility [7–9]. Using electrodes placed
on the upper arm and forearm for ICG recordings to offer a more versatile alternative for
long-term ambulatory monitoring has been studied for over a decade [9,16]. However,
the success has been limited, largely due to the lack of a robust and effective denoising
process, especially on a BbyB basis, to fully exploit the deterministic characteristics of
the Arm-ICG signal waveform. This study addressed three main challenges to making
Arm-ICG methods a clinically attractive alternative, with the potential to change clinical
practice [4,6–8,10]. The addressed issues included the following:

(a) Creating an effective real-time prefilter design approach for Arm-ICGs.
(b) Developing a practical, robust, advanced and data-driven BbyB denoising process.
(c) Establishing a compelling functional relationship with the conventional Thorax-ICG

waveform feature metrics, which could be used to derive the cardiac SV from Arm-
ICG recordings, with satisfactory accuracy and precision.

In this study, a straightforward and highly effective linear IIR Butterworth band-
pass filter (ranging between 0.5 and 8 Hz) was found to be useful and necessary, as was
also seen in a previous study [7]. Enhancing this initial prefilter stage with a subsequent
third-order Savitzky–Golay (SG) linear FIR filter was beneficial. This specific filter was
designed according to the procedure described in Section 2.6, making it suitable for the
timing characteristics of the ICG signal waveform, particularly the ventricular ejection time
(VET) metric. For instance, Figure 10a indicates that the WavDb8 wavelet filter could not
denoise the Arm-ICG signal beyond the level achieved by the prefiltering stage (cascaded
Butterworth + SG filters). When the WavDb8 denoising process was used on its own, it
resulted in a negative mean SNRincre-dB = −0.32 dB, indicating no further improvement
in signal quality.

Ensemble averaging in cardiology is a widely accepted and established denoising tech-
nique that has been used for the last three decades [24]. It is now incorporated into many
commercially available ECG machines and other biomedical signal acquisition devices.
Nevertheless, the effectiveness of this process relies heavily on the predictable characteris-
tics of the ECG signal, specifically the timing of the ventricular depolarisation process in
the heart. In healthy subjects or most patients presenting sinus rhythm, this ECG feature
(reflected in the QRS complex duration feature) is quite deterministic. This was assumed
that this was the case with the healthy subjects included in this study, highlighting one
of the underlying limitations of ensemble averaging in cardiac signal denoising [24,38,41].
Given this context, an alternative, wavelet-based BbyB denoising process was considered in
this study. This was based on previously reported experiences with similar methods in ECG
denoising [22,29]. Furthermore, it was hypothesised that the deterministic characteristics
of the ventricular depolarisation process were transferred to both the standard Thorax-ICG
and the experimental Arm-ICG in this study [7]. This assumption was validated once again
here, as demonstrated by the consistent results obtained in this study.

The provision of a reference ICG 700 ms frame vector, or SAICG frame vector, which
was assumed to be completely noiseless, as the ICG signal vector from the experimental
Arm-ICG recording mode [7] is a powerful research method that helped with answering
the questions posed in this study and justified the selective protocol of including only
healthy subjects. The noiseless SAICG signal vectors allowed for the performance assess-
ment of the BbyB denoising processes, including the two-stage wavelet-based thresholding
optimisation strategy [22], backed by a recursive signal-averaging algorithm. The reference
vectors enabled the use of Pearson correlation (p) to evaluate the performance of three
advanced ICG denoising processes investigated in this study: Rav36, WavDB4/8 and
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Rav36 + WavDb4/8. Figure 8 clearly shows that the WavDb8 denoising process, which was
designed for the Arm-ICG mode, could not stand on its own or in cascaded combination
with the recursive averaging RAv36 process in a BbyB ICG denoising approach. Further-
more, the signal reference vectors allowed for defining the noise vector, signal vector and
SNRincre-dB denoising performance metric. These definitions confirmed the unsuitability
of the WavDb4/8 filter for a proposed BbyB ICG denoising mode, as is evidenced by Table 5
and Figure 10. However, as noted earlier, this finding helps to fill the current knowledge
gap about suitable wavelet-based ICG denoising filters applied in a BbyB mode [7,14,17].

Therefore, the refined question of which of the wavelet families would be more suitable
for denoising the Arm-ICG signal on a BbyB basis is still open. The fact of the ICG electrodes’
location on the upper arm and the relatively small size of the brachial artery, leading to
lower plethysmographic signal power and susceptibility to motion artifact contamination,
remains the most challenging issue for obtaining good fidelity Arm-ICG recordings by
means of wavelet denoising methods [42] or adaptive filtering techniques, such as least
mean squares (LMS) or its normalised approach (NLMS), which were found to be effective
for upper arm armband ECG recording [34]. The underlying trade-off issue between the
Db and the symlet wavelet families concerns the wavelet symmetry; the Db wavelet has
the largest vanishing moment, but at the expense of reducing its symmetry at the same
time, whereas the symlet wavelet gains symmetry by reducing the vanishing moment [42].
Nevertheless, it is worth noting that an optimised design of the mother wavelet, which
could be effective in retaining T-wave features in a highly noisy ECG denoising process,
such as the “fibr” wavelet [42], would be the way forward after taking into consideration
the above factors to address the above-refined question for Arm-ICG denoising on a
BbyB basis.

The third research task of this study used the “pure” signal waveform vector (700 ms
frame) from the SAICG to determine errorless values for the four main ICG waveform
feature metrics: A, B, C and VET. The respective four errorless reference metric “true” values
allowed for estimating their accuracy performance on their BbyB values by generating
corresponding error vectors, namely, Aerr(i), Berr(i), Cerr(i) and VETerr(i), for all the
included beats (IncBt), where p > 0.95. This accuracy assessment method yielded the
respective error rate percentage (ER%) associated with each of the ICG waveform metrics.
The results in Tables 6–8 show the following average error rate percentages (ER%s) for
Arm-ICG and Thorax-ICG: Arm-ICG had 0.83%, 11.1%, 3.99% and 5.2% for A, B, C and VET
metrics, respectively; Thorax-ICG had 0.41%, 3.82%, 1.66% and 1.25%, respectively. These
ER% values indicate the impact of the RAv36 ICG signal quality enhancement capacity.
On average, the overall error rate achieved with the ICG signals quality enhancement
methods in this study was 3.53% when tested with healthy subjects sitting at rest. Notably,
the ER% values were higher for Arm-ICG (mean of 5.28%) compared with Thorax-ICG
(mean of 1.79%). The highest ER% was for metric B in the arm due to anatomical variations.

The criteria used in this study for heartbeat ICG inclusion (p > p-THRESHOLD, where
the threshold was set to 0.95 in this study) effectively filtered out highly noisy ICG beat
events. This method worked as a final filter stage for “gate closing” to noisy ICG beats
episodes, or isolated events, that the RAv36 ICG denoising process was unable to sufficiently
clean. This approach is especially relevant for real-world, ambulatory long-term Arm-
ICG monitoring, where such highly noisy events are expected. The beat inclusion rate%
(BIR%) metric is directly related to the chosen p-THRESHOLD value and the noise level of
the raw ICG input signal. In this study, setting p-THRESHOLD > 0.95 resulted in an average
BIR% of 80.9% for the Arm-ICG and a clear 100% for the Thorax-ICG. This difference,
shown in Tables 6 and 7, reflects the higher signal quality expected from the conventional
Thorax-ICG mode. However, the average BIR% for the arm was not too low, which
is encouraging. Furthermore, the BIR% performance metric served as a useful tool for
choosing the preferred denoising process, supporting the selection of RAv36, as shown in
Figure 10c.
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It is worth noting the comparison of mean values and ER% values for the four ICG
waveform feature metrics shown in the pairs of box-and-whisker statistics summary charts
shown in Figures 11 and 13. Metrics B and VET are particularly crucial for calculating the
SV according to Equation (17). Assuming that the parameters L and Zo are accurate, any
standard errors in the B and VET values derived from the ICG recording will multiplica-
tively affect the standard error of the calculated SV. This relationship is evident in Figure 13.
Consequently, minimising the ER% for B and VET metrics is crucial to accurately calculate
the SV. This is especially true for the Arm-ICG mode, where the B metric has the highest
error rate (mean ER% = 11.1%), mostly due to anatomical differences between the subjects,
as noted in references [11,12]. Unfortunately, this variation issue cannot be easily corrected.
However, it can be appreciated from Figure 11b and Table 8 that the Arm-ICG mode’s VET
metric had a relatively large standard deviation (14.2 ms) and ER% (5.2%) values compared
with the C metric SD (4.47 ms) and ER% (3.99%), as presented in Table 6. This finding was
hypothesised because an algorithm measuring pulse width at the mid-amplitude threshold
level (C metric) is likely to be more accurate and precise than an algorithm measuring pulse
width at the pulse waveform minimum value (VET metric) in noisy situations. Examining
the consistent ratio of VET/C (average value of 2.24), in the Arm-ICG mode (and also in the
Thorax-ICG mode) across the 15 cases, as seen in Table 8, suggests a more robust approach.
Thus, in the challenging Arm-ICG mode, it might be beneficial to derive the VET metric
from the C metric, using the scaling factor of 2.24.

While the sample size in this study was at the pilot study level (a representative
small size), limiting the scope for broad clinical generalisation, it is clear that a larger
study would be required for that purpose. Despite this limitation, the RAv36 denois-
ing process consistently performed impressively well as a robust and effective BbyB ap-
proach throughout the small randomly gathered pilot database of healthy subjects. As
evidenced in Table 5 and Figure 10, the proposed method achieved the highest performance
metrics for the challenging Arm-ICG mode. These evaluation metrics include a mean
SNRincre-dB of 18.4 dB ± 4.6 dB (SD), a mean p of 0.952 ± 0.061 (SD) and a mean BIR% of
80.9% ± 24.2% (SD) across the 15 subject cases. This denoising performance level made it
possible to establish a promising functional relationship model between the experimental
Arm-ICG and the conventional Thorax-ICG, which is demonstrated in Table 9, as well as in
the scatter and radar plots in Figure 12. Furthermore, Figure 13 presents a compelling com-
parison of estimated SV values from the Arm-ICG and Thorax-ICG SV, and their respective
scatter plot in Figure 13c reveals a linear trend model. This model can be conveniently
expressed in the reverse as

SVTHORAX = (114.94 × SVARM) + 2.1954 (19)

with coefficient of determination of R2 = 0.84 and a Pearson correlation of p = 0.914.

5. Conclusions

This research article presents a pilot study for the possible monitoring of ambulatory
cardiac contractility from an accessible, comfortable and user-compliant body location by
means of wearable sensors technology and bioimpedance plethysmography principles
within the vicinity of a major artery vessel; this study also established a functional relation-
ship with the conventional thorax ICG method for SV measurement. The research focused
on the possibility of using the left upper arm brachial artery (Arm-ICG) for indirect SV
measurement after addressing challenges related to enhancing the quality of the ICG signals
on a beat-by-beat basis. This was achieved using a standalone 36-beat (order) recursive
ensemble averaging process (RAv36) following a prefiltering process of the raw ICG signal
using a linear bandpass of 0.5–8 Hz. An adequate Savitzky–Golay filter design for ICG
signals, which was developed using innovative design methods proposed in this study,
was used to smooth the data in the prefiltering stage. The ICG denoising process that this
study explored can be applied in real time, similar to previous studies undertaken using
ECG signals. This study successfully established a functional relationship between ICG
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waveform features’ metrics from the arm and thorax recording modes. Linear regression
trends for Arm-ICG versus Thorax-ICG were analysed and are presented herein, thus
addressing the current knowledge gap in this important research line. The determined
Arm-ICG time metrics (A, C and VET) had an average error rate of less than 3.3%. The
results of this pilot study indicated a clear linear relationship trend between the arm SV
and thorax SV, with a high coefficient of determination (R2) of 0.84.
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