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Abstract: Traditional stiffness modeling methods do not consider all factors comprehensively, and
the modeling methods are not unified, lacking a global stiffness model. Based on screw theory,
strain energy and the virtual work principle, a static stiffness modeling method for redundant over-
constrained parallel mechanisms (PMs) with clearance was proposed that considers the driving
stiffness, branch deformation, redundant driving, joint clearance and joint contact deformation. First,
the driving stiffness and branch deformation were considered. According to the strain energy and
Castiliano’s second theorem, the global stiffness matrix of the ideal joint mechanism was obtained. The
offset of the branch was analyzed according to the restraint force of each branch. The mathematical
relationship between the joint clearance and joint contact deformation and the end deformation was
established. Based on the probability statistical model, the uncertainty of the offset value of the
clearance joint and the contact area of the joint caused by the coupling of the branch constraint force
was solved. Finally, taking a 2UPR-RR-2RPU redundant PM as an example, a stiffness simulation of
the mechanism was carried out using the finite element method. The research results show that the
high-precision stiffness modeling method proposed in this paper is correct, and provides an effective
method for evaluating the stiffness performance of the PM.

Keywords: redundant parallel mechanism; stiffness; joint clearance; joint contact deformation;
probability statistical model

1. Introduction

The stiffness reflects the displacement of the end of the mechanism relative to the
expected position under external forces. The stiffness of the parallel mechanism (PM) often
determines the kinematic positioning accuracy and kinematic characteristics of the end
effector. In addition, insufficient stiffness may reduce the natural frequency and dynamic
performance of the system. Therefore, the stiffness performance should be evaluated in the
product design phase.

In terms of stiffness modeling methods of PM, the main methods include screw
theory [1], the semi-analytical method [2], the virtual joint method [3], strain energy [4,5],
the structural stiffness matrix method [6], etc. The factors considered in the modeling
method are gradually developing toward moving platform flexibility [7], driving stiff-
ness and branch flexibility [8,9] and gravity [10-12], making the accuracy of analytical
model building more accurate and closer to perfection. Compared with non-redundant
mechanisms, redundant mechanisms have many advantages, such as avoiding kinematic
singularity, improving stiffness distribution, enhancing bearing capacity and improving
dynamic characteristics. Therefore, redundant driving branches are usually added to the
mechanism to improve the stiffness distribution in its workspace [13-17].

When the mechanism has clearance joints, the end position depends on the attitude,
load, geometric parameters of the joint and the joint force, and the relative position inside
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the joint is uncertain. In order to solve this problem, the commonly used methods are
the worst-case method, probability statistical model, interval analysis method, virtual
connection method and hybrid dimension reduction method. Choi et al. [18] put forward a
probability model for the output error analysis of a four-bar mechanism considering the
joint clearance and its tolerance effect. Frisoli [19] maximized the attitude error function
by combining the analytical solution with the numerical solution. The worst-case angular
position accuracy and linear position accuracy of the parallel mechanism with clearance
were determined. Wang et al. [20] proposed a hybrid dimension reduction method for the
motion reliability analysis of a slider crank mechanism with clearance. Yao [21] analyzed
the error space of a Stewart mechanism with an interval analysis method. Chouaibi [22]
established the mathematical model between the end error of RAF PM and the external load,
structural parameters, attitude and joint clearance through the principle of virtual work.
Zhang [23] regarded the joint clearance as a massless virtual connection and obtained the
error boundary and distribution of the 3-RPR PM. Cammarata [24] proposed a new method
for solving the displacement and rotation of clearance joint nodes of over-constrained
mechanisms. It was used to determine the position and direction errors of over-constrained
mechanisms with clearance. Ding [25] modeled and numerically estimated the attitude
error of 3-RPR PM caused by clearance and branch deformation from the perspective of
inverse kinematics.

The static stiffness model that considers the joint clearance needs to study the lin-
ear deformation and angular deformation of the end in all directions. In particular, the
deformation of the end constraint direction needs to be considered.

In order to establish a static stiffness model of the mechanism considering hinge
clearance, it is necessary to study the line deformation and angular deformation in each
direction of the end, considering the deformation in the direction of the end constraint
in particular. Most of the existing error models are based on inverse kinematics, which
can only obtain the deformation in the direction of the end output DOF, and they are not
suitable for stiffness models. The over-constrained PM is affected by the coupling of the
constraint force and constraint couple at the joint. The line deflection and angular deflection
of the joint with clearance in the branch is coupled. The offset/deflection of the joint with
clearance is affected by multiple factors; for example, the clearance size, external load,
mechanism attitude, redundant branch and the constraint force/torque amplitude of the
branch. This makes the modeling and analysis of its clearance model more difficult. For
PMs used in a heavy-load field, the constraint force between joints is large. According
to Hertz contact theory, the greater the contact force between two objects in contact, the
greater the contact deformation of the hinge.

To summarize, previous stiffness studies focused on local factors, resulting in inaccu-
rate stiffness modeling. This paper studied the position distribution of the clearance joints
under the branch-coupling constraint of redundant over-constrained mechanisms under
different external loads. The mathematical relationships between the driving stiffness,
branch deformation, redundant driving, joint clearance, joint contact deformation and end
stiffness of the mechanism were established. The influence of each factor on the stiffness of
the mechanism was analyzed. A novel 2UPR-RR-2RPU redundant over-constrained PM
was taken as an example to verify the correctness of the proposed model.

2. High-Precision Stiffness Modeling Method of Redundant Over-Constrained PMs
Considering Multiple Factors

2.1. High-Precision Stiffness Modeling Process of Redundant Over-Constrained PMs Considering
Multiple Factors

High-precision stiffness modeling method of redundant over-constrained PMs consid-
ering multiple factors:

(1) According to the screw theory, the drive screw and constraint screw of a redundant
branch and non-redundant branch are analyzed. Then, the drive Jacobian matrix and
constraint Jacobian matrix are constructed.
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(2) The driving stiffness is analyzed from the perspective of material mechanics. The
strain energy of each branch under the constraint force is calculated and the functional
relationship between the strain energy of the branch and the constraint force of the
branch is derived.

(3) Based on Castigliano’s second theorem, the partial derivatives of the strain energy
of each branch on the constraint force of the branch are calculated, respectively. The
functional relationship between the deformation of the end of the branch and the
constraint force of the branch is obtained, namely the flexibility matrix of the branch.

(4) According to the deformation compatibility equation of the mechanism and virtual
work principle, the stiffness matrix of the whole mechanism and the constraint force
of each branch are solved and the end deformation caused by the driving stiffness
and branch deformation is obtained.

(5) Based on the constraints of each branch, the position distribution of the clearance
joints and the contact area of the joints are predicted by the probability statistical
model. It solves the problem of the modeling error caused by coupling constraints
of over-constrained mechanisms. The deformation caused by the joint clearance and
joint contact deformation along the constraint direction at the connection between
each branch and the moving platform end is analyzed. Based on the principle of
virtual work, the end deformation interval caused by joint clearance and joint contact
deformation is obtained.

(6) Assuming that there is no coupling between rigid body displacement and elastic
deformation, the four factors are regarded as mutually independent and can be
linearly superposed. A high-precision static stiffness model considering multiple
factors is obtained.

2.2. General Equation of High-Precision Stiffness Model of Redundant Over-Constrained PMs
Considering Multiple Factors

Based on the above assumptions and modeling process, the high-precision static
stiffness model considering multiple factors can be expressed as

AX = AXS + AX 4 AX™" )
= (Ka,e) 1w + TacKSee + JiacKGe + oKt Tnac + JracKSo Trac

In the Equation, AX represents the total deformation interval in the direction of
six DOFs of the end, and AX® represents the end deformation caused by the driving stiffness,
branch deformation and redundant driving. AX“ represents the end deformation interval
caused by the joint clearance corrected based on the statistical model. AX®" represents the
end deformation interval caused by the joint contact deformation corrected based on the
statistical model. w represents the six-dimensional load of the moving platform.

Viae=ding( ()" Tie)™ ) = ding( (72)" (7)™

T
)
1 1
Kle — K Kcle — Ky
nac K?llce 7 Nrac K%e ?)
Kign=ding ( KiK' ), Kgndiag (K53 KG2" )
|Thal |Tral
T, = , T =
nac |: |Tnc | rac |Trc ‘

In the Equation, [}, represents the mapping matrix of the non-redundant branch drive
force and external load. J;;. represents the mapping matrix of the non-redundant branch
constraint force and external load. J}, represents the mapping matrix of the redundant branch
drive force and external load. J}, represents the mapping matrix of the redundant branch
constraint force and external load. K% represents the offset matrix of the end of the branch
caused by the driving force of the non-redundant branch with clearance. K¢ represents the

offset matrix of the end of the branch caused by the constraint force of the non-redundant
branch with clearance. K& represents the offset matrix of the end of the branch caused by
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the driving force of the redundant branch with clearance. KS° represents the offset matrix of
the end of the branch caused by the constraint force of the redundant branch with clearance.
K" represents the contact stiffness matrix of the joint at the end of the branch caused by the
driving force of the non-redundant branch. K represents the contact stiffness matrix of
the joint at the end of the branch caused by the restraint force of the non-redundant branch
chain. K" represents the contact stiffness matrix of the joint at the end of the branch caused
by the driving force of the redundant branch. K$2" represents the contact stiffness matrix
of the joint at the end of the branch caused by the restraint force of the redundant branch
chain. T, represents the non-redundant branch driving force matrix. T, represents the
non-redundant branch constraint matrix. T, represents the redundant branch driving force
matrix. T, represents the redundant branch constraint matrix.

2.3. Stiffness Matrix Derivation and Restraint Force Analysis of Redundant PMs with Ideal Joints

The force analysis of over-constrained PMs is statically indeterminate, and the struc-
tural stiffness of each branch needs to be considered. In this paper, the moving platform
was assumed to be rigid, and the spatial composite elastic deformation of the branch
bending, stretching and torsion was considered. The driving force/restraint stiffness matrix
of the branch is defined as the mapping relationship between the driving force/restraint
amplitude and the elastic deformation of the end along the driving force/restraint direction.

The moving platform of the mechanism is acted on by a six-dimensional external force
w. According to the static equilibrium equation of the moving platform, we can obtain

W = ] Tna + JyaTra + e Tne + Jietre 3)

Tua, Tne Tepresent the column vectors composed of the driving force and constraint
force amplitude of each non-redundant branch, respectively. T;,, T represent the column
vectors composed of the driving force and constraint force amplitude of each redundant
branch, respectively.

=] = s g
=[] =1 0

In Equations (4) and (5), §,; represents the driving force screw of branch i acting on
the moving platform, and $. ; represents the constraint force screw of branch 7 acting on
the moving platform. n represents the number of all constrained screws of non-redundant
branches in the mechanism, m, and i represents the number of all constraint forces of
redundant branches in the mechanism.

Assuming that the branch driving force T,; and the branch terminal deformation
Aq,; caused by the driving force and the branch restraint force t,; and the deformation
Agq_; of the branch terminal caused by the constraint force satisfy the basic linear elasticity
assumption, we can obtain

Thna = knaAqm; Tra = kmAqm (6)
Tne = knchnc; Tre = krchrC ()
where ko= diag (ks koo -+ kak), kne=diag(key koo -+ ken) and koj(1 < j < k) are

defined as the stiffness of the non-redundant branch in the direction of the driving force.
kcj(l < j < n) is defined as the stiffness of the non-redundant branch in the direction of
the constraint force. ky,= diag (kg Katkr1) - kai), kre= diag (ken kena1y - kem)
and k;;(k < j < i) are defined as the stiffness of the redundant branch in the direction of
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the driving force. k;j(n < j < m) is defined as the stiffness of the redundant branch in the
direction of the constraint force.

W AXE = 3,00, + Tho A + T A, + T, (8)

InEquation (8), AX® = (Ax Ay Az Aa AR Avy) ! represents the micro-deformation
of the moving platform under the external forces when only the driving stiffness and branch
deformation are considered.

Sorting Equation (3) and Equations (6)—(8) simultaneously, we can obtain

T;l;a (]naAXg - Aqnu) + TrTa (ImAXg - Aqm)

9
TR DX = 8,) + Tk (e AXF = M) = 0 ®
In order for Equation (9) to be established, it is necessary to satisfy
InaAXg*Aqna: O;]mAngAqm =0 (10)
J.cAXe—Aq,.= 0;], . AX*—Aq,. = 0 (11)

Combining Equations (3), (6), (7), (10) and (11), the relationship between the external
force on the moving platform and the micro-deformation of the moving platform when
considering the driving stiffness and the deformation of the branch can be obtained.

W = JugknaluaAXE + Jiakral g AX

Hncknel e AXE + Jickre] , AXE (12)
= ko AXC
In the Equation,
kua O
TS | e
Koc = ne e (13)

S ]

kg, represents the stiffness matrix of the over-constrained PM considering the driving
stiffness of the mechanism and the deformation of the branches.

Combining Equations (5), (6) and Equations (9)—(11), the expressions of the driving
force, constraint force and external force of the moving platform can be obtained.

Ty = kni]nik,;clw) Tra = kri]rikt;,clw (14)

where subscript a represents the driving force, c represents the constraint force (i = 4, c), n
represents a basic branch and r represents a redundant branch.
Rearranging the above equation can obtain

Tha knal nak;,il J ;;a

T = Tra | _ km]mka:cl w = Ijr:a w (15)
Tne knC]ncka,c Jac
Tre k’r‘C] rck{;cl I ;kc

2.4. Stiffness Modeling Method of Over-Constrained Redundant PMs Considering Joint Clearance
and Joint Contact Deformation

The offset/deflection of a branch with joint clearance under an external force is affected
by multiple factors, such as the clearance size, attitude of mechanism, redundant branch
and branch constraint force/couple. Over-constrained redundant PMs generally belong
to statically indeterminate structures, and the constraints between branches are complex.
Under a certain static attitude and load, the joint with clearance will produce tiny line
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deflection/angular deflection in its constraint direction under the action of constraint
force/torque. It is difficult to judge the joint contact area caused by the branch compound
constraint, and it is difficult to establish an accurate mathematical model. In this section,
based on certain assumptions, the approximate change interval of the mechanism end
is obtained when the joint clearance and joint contact deformation are considered. The
specific process is as follows:

(1) Firstly, the drive force fi, constraint force f! and constraint couple f}, of redundant
and non-redundant branches are solved by using the system stiffness matrix of the
ideal joint.

(2) Itis assumed that the additional motion of the branch with clearance is in the same
direction as the restraint force of the branch. According to the size and direction
of the restraint force of each branch, the additional motion direction of the branch
with gaps can be determined. The static stiffness modeling process of redundant
over-constrained PMs when considering joint clearance is shown in Figure 1.

(3) First, the coupling effect of the constraint and constraint couple is ignored and the
constraint is considered as a pure force or a pure couple. In most working conditions,
the drive force of each branch is much greater than the constraint force, so it is
assumed that the clearance joint offset/deflection and joint contact area in the drive
force direction reach the maximum. It is also assumed that the ratio of the drive force
fiin the branch with clearance to the offset AXi;lf along the drive force direction and

the ratio of the constraint force f! to the offset AXi;lc‘f along the constraint direction are

equal and regarded as constant (which can be approximately equivalent to a spring
system with equal stiffness)

Enter the position
and attitude

N
S0/ > 0/f >0
Y

[Axie > O/Ade" >0/ AXig > | ’Aijle <0/ AXIE <0/ AXigE <0

A,

M N ]AX:"“—O/A)G;{@=0/M§,’?=0

A)(l‘,’L =max, Ale’ Lo AXtd‘
Ja AXGLE = max, AXIS = Ja L AXGL

== ;

s
[AXGSE = G AT | AXISE = G AXiG | AXigy = GG

Y
N
Q<‘>

Mapping relationship between end offset/deflection of branch

caused by joint clearance and deformation of moving platform

Figure 1. Modeling process of static stiffness of the platform considering joint clearance.
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fo _ b _
icle icle
AXi 7. AXi 7.

Therefore, the offset of each branch along the constraint direction is

Achle _ fc AX cle
feo o fi

The offset/deflection of the end of each branch caused by the joint clearance and joint
contact deformation is mapped to the deformation of the moving platform by the
principle of virtual work. When the deviation of the restraint direction of the clearance
joint does not reach the maximum value, the direction also does not reach the contact
state and there is no contact deformation between the joints. The static stiffness
modeling process of the redundant PM when considering the contact deformation of
the joint is shown in Figure 2 (AKz?le represents the contact deformation caused by the

constraint of branch i, AKz?le represents the contact deformation caused by the driving

force of branch i and AKz‘:l‘2 represents the angular contact deformation caused by the

constraint couple of branch i. )-

Enter the position
and attitude

> 0/f] >0/fm >O

]AK,';Z" >0/ AKI" > o / AKE" > 0\ ]AKi“”" <0/ AKI™ <0/ AKIS" < o\

=1

i=i+1 AKi™" =0, AKi)" = may

’AKI‘O" =0/ MK =0/ KIS =0

m. ‘

N

l((m = max, A Klum —

]

MK = G AKIS™" | AKTE" = G AKI" | AKig" = 6 AKT"

Mapping relationship between end offset/deflection of branch caused
by joint clearance and deformation of moving platform

Figure 2. Modeling process of static stiffness of the platform considering joint contact deformation.

©)

In order to solve the uncertainty of the gap joint offset value and joint contact area
caused by the branch-coupling force, a random method can be used to describe the
variation characteristics of the gap and contact area. g; is the correction coefficient
of random physical variables. Based on the maximum value of the clearance joint
offset value and joint contact area, a specific probability distribution attribute is
assigned. Using the Monte Carlo method, the probability distribution of the stiffness
of the mechanism under a given position and attitude is obtained. The influence
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of joint clearance and joint contact deformation on the end stiffness is predicted
through the probability statistical model, and the variation range of the end stiffness
is approximately determined.

3. Example Analysis of 2UPR-RR-2RPU Redundant PM Stiffness Considering
Multiple Factors

In this paper, a 2UPR-RR-2RPU redundant over-constrained PM was taken as an
example to verify the accuracy of the proposed stiffness modeling method. The mechanism
is a loop decoupled PM that adopts the method of adding two redundant branches to
improve the overall bearing capacity and deformation resistance of the output end.

3.1. Configuration Analysis of 2UPR-RR-2RPU Redundant PM

As shown in Figure 3, the 2UPR-RR-2RPU PM consists of two UPR branches, one RR
branch and two RPU branches for a total of five branches. The fixed coordinate system
0 — xpYozo is established at the center point of the fixed platform. The x( axis along the
0A4 direction, the y axis along the 0A; direction, and the z axis is determined according
to the right-hand rule. The moving coordinate system 01 — x1y12; is established at the
center point of the fixed platform. The x; axis along the 01 B4 direction, the v, axis along
the 01B; direction, and the z; axis is determined according to the right-hand rule. The
middle branch of RR is a just-constrained branch and its axis of rotation connected to the
fixed platform is along the direction of xj in the fixed coordinate system o — xgyozg. The
revolute pair provides the x-direction DOF of rotation of the moving platform around the
axis. Its axis of rotation connected to the moving platform is along the direction y; in the
moving coordinate system 01 — x1y1z1. The R pair provides the y-direction DOF of rotation
of the moving platform around the axis. Among them, the R pairs of the two UPR branches
whose respective U pairs are connected to the fixed platform and the R pairs of the RR
just-constrained branch that are connected to the fixed platform are coaxial. The respective
R pairs of the two UPR branches are parallel to the R pairs of the RR just-constrained
branch, which is connected to the moving platform. Among them, the R pair of the two
RPU branches whose U pairs are connected to the moving platform is coaxial with the R
pair that is connected to the RR just-constrained branch and moving platform, and the
respective R pairs of the two RPU branches are, respectively, parallel to the R pairs that are
connected to the RR just-constrained branches and fixed platform.

Figure 3. Structural diagram of 2UPR-RR-2RPU redundant PM.

3.2. Stiffness Analysis of 2UPR-RR-2RPU Over-Constrained Redundant PM with Ideal Joint
3.2.1. Full Jacobian Matrix Solution for 2UPR-RR-2RPU Redundant PM

In order to obtain the full Jacobian matrix of the mechanism, the constraint Jacobian
matrix and the driving Jacobian matrix of the mechanism should be solved first.

A;B;(i =1,2,3,4) represents the direction vector of the kinematics pair of the
four driving branches, i = 1,2 is the non-redundant branch and i = 3, 4 is the redundant
branch. A; indicates the coordinates of the joint center between each branch and the fixed
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platform, and B; indicates the center coordinates of the joint that connects each branch and
the moving platform.
It can be represented by a screw as

$ai = (Si; 11 x i)' (16)
In Equation (16), S; = A;B;/|A; — B;], r; indicates the vector diameter of each drive branch.

]na = [ $al $a2 ]:11:
Joa = [ $03 Sua ]

Let the rotation angle of the mechanism around the rotation axis x, be & and the
rotation angle around the rotation axis y; be 8, and let a,b be the radius of the fixed
platform and the moving platform, respectively.

According to the screw theory, the screw that is reciprocal to the non-redundant UPR
branched motion screw is its constraint screw.

(17)

8!, = (0 cosa sina; 0 —asina acosa)T (18)
m$l, = (000;0 —sina cosa )T

Redundant UPR branches and non-redundant UPR branches are symmetrically ar-
ranged in the plane of the base coordinate system with respect to the RR just-constrained
branch. In order to obtain the constraint screw $‘Z’1, m$§’2 and driving force screw $,3 of the
redundant UPR branch, it is only necessary to invert the constraint screw f $gl, m$g2 and a4,
b1 in the driving force screw $,; of the non-redundant UPR branch.

f$L = (0 cosa sina; 0 asina —acosa)"

mgl, = (000;0 —sina cosa)”

C

(19)

According to the screw theory, the screw that is reciprocal to the non-redundant RPU
branched motion screw is its constraint screw

f$2, = (100;0 bsina + dcosa —bcosa + dsina)’ (20)
m$Z, = (000;0 —sina cosa)T

The redundant RPU branches and the non-redundant RPU branches are symmetrically
arranged on the base coordinate system 1/,z, plane with the RR just-constrained branches. In
order to obtain the constraint screw $§1, m$§2 and driving force screw $,4 of the redundant
RPU branch, it is only necessary to invert the constraint screw f $§1, ’”$§2 and aq, by in the
driving force screw $,4 of the non-redundant UPR branch.

f$% = (100;0 —bsina + dcosa beosa + dsina) T
mgl = (000;0 —sina cosa)

C

(21)

The RR intermediate branch-constrained screw is expressed in the fixed coordinate
system as

f$3, = (100;0dcosa dsina)’
f$3, = (0 cosa sina; 00 0"

f$5, = (0 —sina cosa; 00 0"
m$>, = (000;0 —sina cosa)T

(22)
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From Equation (3), it can be obtained that the non-redundant constrained Jacobian
matrix J,,. and the redundant constrained Jacobian matrix J,. of the 2UPR-RR-2RPU PM are

T
Jne = {fgl "8 8 8L 82 T8 T 8 m$§4}

T (23)
Jre = [f$§1 m$§2 f$§1 m$§2}

3.2.2. Solution of Driving Stiffness Matrix of UPR-RR-2RPU Redundant PM Branch

The following assumptions are made for the stiffness model: the weight of all com-
ponents is ignored; all joint models are frictionless; the moving platform is assumed to be
a rigid body; and the spatial composite elastic deformation of the branch is considered,
including tensile, shear, bending and torsional deformation.

The branch driving stiffness can be simplified as a series spring system, and the driving
stiffness coefficient k,; can be expressed as

4
-1
k; :gkm =1,2,3,4 (24)
]:

In the Equation, it is expressed as a U pair along the rod axial stiffness k; ;, pendulum
rod stiffness k ; », telescopic rod stiffness k ; 3, and R pair seat along the rod axial stiffness
k,; 4 Among them, kyip ki are Constants kul » can be calculated by k;, = EA/(q; — ),
EA represents the tensile modulus of the pendulum rod, /1 represents the length of the
telescopic rod and g; is the distance between the joint center connected with the moving
platform and the joint center connected with the fixed platform.

3.2.3. Solution of Branch Restraint Stiffness Matrix of 2UPR-RR-2RPU Redundant PM

The force diagram of the UPR branch is shown in Figure 4. The branch coordinate
system 01 — x1y121 is established at the rotation center of the branch close to the moving
platform. The y; axis is parallel to the axis direction of the R pair and the z; axis is along
the axis of the rod. x; is determined by the right-hand screw rule. In order to analyze the
deformation of the branch under the restraint force, the restraint force f1; passing through
the U pair center and parallel to the R pair direction is translated to 0; — x1y1z1. According
to the force translation theorem, there will be an additional force couple passing through
the origin of the branch coordinate system 01 — x111z1 and the direction parallel to the axis
x1 with magnitude m1,. There will also be an additional constraint force passing through
the origin of the branch coordinate system 07 — x11z; and the direction parallel to the axis
y1 with magnitude my;. The branch is also constrained by a couple whose axis is parallel
to the U pair normal and whose magnitude is m77. f1, represents the force in the x-axis
direction at the cross-section of the RR branch, f1, represents the force in the y-axis direction
at the cross-section, f;, represents the force in the z-axis direction at the cross-section, 111,
represents the force couple in the x-axis direction at the cross-section, and m1, represents
the force couple in the z-axis direction at the cross-section.

The internal force of the section where the /; is displaced from the negative direction
of the coordinate system z; to the UPR branch can be expressed as

flx =0
fiy =fu
flz =0 (25)

myy = my"'g-ep +myp — f11l;
myy =my"g-ez =0
my; = my1"g-e3
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Figure 4. The force figure of the UPR branch chain.

In the Equation, "¢ is the direction vector of the constraint couple m1;, e; is the
direction vector of the axis x1 in the coordinate system 01 — x1Y121, e, is the direction vector
of the axis y; in the coordinate system 01 — x1y1z1, e3 is the direction vector of the axis z; in
the coordinate system 07 — x1y12z1 and myy = f11L1, where L; is the length of the chain rod.

The strain energy of UPR branches can be expressed as

2 2
I fly M7y mi,

Uurr = Jo (zcn Koy T aE g T 2Gu1)dl

iy "y dl;
+fl,1 WAy T Walay T ol

m 2 m 2 (26)
_ le fh (mll g-e1+mpp—fuili) + (mug-e3)” ) 4.
0 zlAzly 2Ej Iy 2GiaJi !

li fi (m"g-e1+mip—fuli)® | (mn™g-e3)* )
+Ji <2szAv + Ealn + o,y )l

i i2y

In the Equation, /;; is the length of the linear actuator and L is the total length of the
UPR branch and joint center that connect the moving and fixed platforms. When [; = L,

Uupr 2G1A,1yf11+2E Tix (M I+ 3fal - i1f1111~21)
+2Gﬂ],1( 11 9"33)211"‘2@1,411 4
*m M3 (L = ln) + 3 /5 ((L1)° *(lil)3>) (27)
e (Mafun (L) = (10)7) )
+ 56T (m11"g-e3)* (L — Iy

In the Equation,

(In 13— L1+313) (Mg -e1)

M = ZE I P 1(713_73
M, = ((L1—la)LE +( ;E)L11+§(L1*li1))(m9'el)
i24i2x
_ ("ge)’ly _ ("gen)*(Li—ln)
M3 = 2E; 1“] My = 2E; o, : (28)

2Ly~ ("g-e1)
Mys = < 2F; ”1)

_ (- 11) (L3-12))("g-e1)
M16 - l 2E1211'12x .

Ei1, Eip, Gj1, Gjp are the elastic modulus and shear modulus of the telescopic rod and
lead screw. Ajyy, Ajpy are the effective shear area along the axis y; of the telescopic rod and
the lead screw. I;14, Ijp, are the inertia moment of the cross-section of the telescopic rod and
the lead screw about the axis x;. [i1, [i» are the cross-sectional polar inertia moments of the
telescopic rod and the lead screw, respectively.
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According to Castigliano’s theorem, we can obtain
o
o = 751%%
I —1
= (ﬁ}w + éilelgy +2My1 + 2M12>f11 + (M5 + Mig)myy
au
= Gt (29)
= (M5 + Mie) f1y
("g-e3)ln | ("g-e3)*(Li-ln)
+<2M13 +2Mis + Gi13]i1 "+ sGiz]le =y
Arranging the above Equation into matrix form, we can obtain
1] -emls
=C 11 30
{ - UPR |y (30)
In the Equation
li L 711'
C _ Gilz}hly T Gz'leiZ]y +2Mun +2Ma Mis + M (31)
UPR M M 2M M ("1‘5'33)211‘1 (’"g~e3)2(L1—li1)
15 + Mg 13+ 14+ Giln + GiJia

the stiffness matrix Kyjpr of the UPR branch is the inverse of the compliance matrix Cyjpr.

Kupr = Cpr (32)

It can be seen from the UPR branch compliance matrix that the compliance matrix is
not a diagonal matrix. There is a coupling relationship between the constraint force f1; and
the constraint couple m,; and their corresponding elastic deformations. The size of the
compliance matrix is related to the direction of the normal vector "¢ of the U pair in the
UPR branch.

The force diagram of the RPU branch is shown in Figure 5. The branch coordinate
system 0y — X122 is established at the U pair center of the branch close to the moving
platform. The axis y; is parallel to the axis direction of the R pair of the U pair close to the
moving platform and the axis z; is along the axis direction of the rod. x is determined by
the right-hand screw rule. According to the screw theory, the RPU branch is subject to a
constraint force passing through the origin of the branch coordinate system 0y — x2y22z, and
the direction parallel to the axis y; with a magnitude of f,1. It is also subject to a constraint
couple whose axis is parallel to the U pair normal with a magnitude of mjy;. fo, represents
the force in the x-axis direction at the cross-section of the RR branch, f», represents the force
in the y-axis direction at the cross-section, f», represents the force in the z-axis direction at
the cross-section, 1y, represents the force couple in the x-axis direction at the cross-section,
and my, represents the force couple in the z-axis direction at the cross-section.

Figure 5. The force figure of the RPU branch.
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The internal force of the section where the displacement from the RPU branch to the
negative direction of the branch coordinate system z; is I; can be expressed as

f2x =0
foy = fn
fo: =0 (33)

moy = my"G-e1 — fnl;
My = my™"g-e2 =0
my, = my™¢-e3

In the Equation, "¢ is the direction screw of the constraint couple my;. e; is the
direction vector of the axis x1 of the coordinate system 0, — x31225. e, is the direction vector
of the axis v of the coordinate system 0 — xp1,25. e3 is the direction vector of the axis z;
of the coordinate system 0, — x21225.

The strain energy of RPU branches can be expressed as

2 2
_ [l f3y My
Ureu = Jo" | 2oy + 2550 + 2c,1111 dl; o
f fZV m%x + m%z dl:
Iin \ 2GipApy ZEizL'zx 2GipJin2 !

In the Equation, /;; is the driving displacement of the driving pair when I; = I,:

2 2 2
_ rla f3y My my, )
Ureu = fO (ZGilAily + 2EiIiny + 2GinJn dl;

2
li f2y m%x m%z .
+fli1 (ZGizAizy T 2EipIiny ™ 2Gi2]i12 dl;
3.3
— n 4 Lp=ln (L —1%) f
2Gil ily 2G12A12y 6E11111x 6E12112;\ 21 (35)

("g-e1)’l; (" -e3)l; ("E-e1)*(La—lyy)
+ 2E111[11x . + zf 11 : + ZlEizL-zi ! m2
M 21
ZGIZLZ

(e | (") (3
_< 2E111111x + zlEiz(Iéx ]))f21m21

According to Castigliano’s theorem, we can obtain

_ 9Ugpu

by = =M — Mpyym
21 aL?,{ﬁ,ll 21f1 2011 36)
V21 = Gt = — Moo for + Maziy,
In the Equation,
i Lo—I; B (L3-13)
My = Gnt}\ily GiZZAi21y (32Ei1112il)x 3521'211'21;(
_ ("ge)ly | (MEeen)(L3-0;
My = 2Eq1q L+ ZEIZI,ZZX : , (37)
_ (MEe)ly | (MEes)’ly | ("Ee))’(Lp—lin)
Mas _( gEill)zx( —L_ ) GinJn T Eipligy
"g-e3)"(La—ln
+ Gili
Arranging the above Equation into matrix form, we can obtain
521] [f ]
=C 21 38
{721 RPU 00 (38)
In the Equation,
My —Mzz}
C = 39
RPU { My Mos 39)
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The stiffness matrix of the RPU branch is the inverse of the compliance matrix
Krpu = Crpy (40)

It can be seen from the RPU branch compliance matrix that the compliance matrix is
not a diagonal matrix. There is a coupling relationship between the constraint force f,,,
the constraint couple m,,; and their corresponding elastic deformations. The size of the
compliance matrix is related to the direction of the normal vector "¢ of the U pair in the
RPU branch.

The force figure of the RR just-constrained branch is shown in Figure 6. The branch
coordinate system 03 — x31/3z3 is established at the revolute pair center of the branch close
to the moving platform. The axis y; is parallel to the direction of the R pair axis, and the
axis z1 is along the axis of the rod. x; is determined by the right-hand screw rule. In order
to facilitate an analysis of the deformation of the rod under the restraint force, the restraint
force f31 that passes the R pair center near the fixed platform and is parallel to the R pair
axis direction that is close to the moving platform is translated to 03 — x3y3z3. According
to the force translation theorem, there will be an additional force couple passing through
the origin of the branch coordinate system 03 — x3y3z3 and the direction parallel to the
axis x3 with a magnitude of m3,. There will also be an additional constraint force passing
through the origin of the branch coordinate system 03 — x3y3z3 and the direction parallel to
the axis y3 with a magnitude of f31. In addition, the branch is also subjected to a constraint
couple whose magnitude is m3;, with the axis parallel to the direction. It is also subjected
to a constraint force f33 and a constraint force whose axis is parallel to the direction of y3
with a magnitude of f35. fo, represents the force in the x-axis direction at the cross-section
of the RR branch, f,, represents the force in the y-axis direction at the cross-section, f,,
represents the force in the z-axis direction at the cross-section, m;, represents the force
couple in the x-axis direction at the cross-section, and 1, represents the force couple in the
z-axis direction at the cross-section.

Figure 6. The force figure of the RR-constrained branch chain.

The internal force of the section where the displacement from the RR just-constrained
branch to the negative direction of the branch coordinate system z; is /; can be expressed as

f3x = fa1
fay = fa
f3: = f33

41
mzy = m3ay — f31l; (1)
msy = faol;

mz; = M3y
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In the Equation, m3; = f31L3, where L3 is the rod length of the branch.
The strain energy of the RR-constrained branch can be expressed as
u _ li f32\f f32y f322 m%x m%y + m%z dl
RR = Jo 2GiA;; T 2GiA;, T 2EA; T 2EL, T 2B, T 2G ]i3 i
_ L @ i g i ¢ L .2 )
=ty Taca fo T A St M T e s
2 AN I, 9 42
—opMa2fa + 6E;1,-yf32 + g7 M3 (42)
_ L @ ) ) ) )
=wcasfat G Ay ot aEafntar/at 6E;I,vyf32
i .2
+ag M
According to Castigliano’s theorem, we can obtain
Sar — URR _ lif+lf'3f
31 = 9f3 — GiA;/31 7" 3EL,/31
_ OUpg _ _Ii r
032 = dfzz GiAl-yf 2T 3Eiliyf32 (43)
2
— RR — [
V3= Gy = GiT; a1
Arranging the above Equation into matrix form, we can obtain
931 fa1
032
s | = CRR fa (44)
33 f3s
Y31 Maq
In the Equation,
Lyl 0 0 0
GiAix ' 3Eiliy "
li i
Crr = 0 Gidiy ~ 3Eily ? 0 (45)
0 0 LA 0
0 0 0 4

Gili

The stiffness matrix Kgr of the RR just-constrained branch is the inverse matrix of the
flexibility matrix Cgg:
Kgr = Cyg (46)

It can be known from the RR branched compliance matrix that the compliance matrix
is a diagonal matrix and that there is no coupling relationship between the constraint force,
constraint couple and their corresponding elastic deformation.

4. Stiffness Analysis of 2UPR-RR-2RPU Redundant PM Considering Joint Clearance
and Joint Contact Deformation

The precise mathematical model of the over-constrained redundant PM with joint
clearance is very complicated. The tiny deformation transmitted by each branch with
joint clearance to the moving platform is affected by many factors, such as the driving
force, posture and attitude, clearance size and external load. The position and attitude
of the moving platform is not completely calculated by the inverse kinematic solution,
so the moving platform has an active status in the tiny working space, resulting in an
uncertain position of the moving platform. An excessive constraint force between joints
under large-load conditions will lead to slight penetration deformation, and the penetration
deformation of joints will also affect the stiffness of the moving terminal. This cannot be
ignored in the field of high precision.
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Because most parallel robots have no large deformation during operation, it is assumed
that there is no coupling between rigid body displacement and elastic deformation in the
calculation. This assumption also ensures that the end stiffness changes caused by joint
clearance can be calculated independently.

(@) The R pair shaft and the U pair cross shaft are regarded as rigid bodies, and the shaft
is in complete contact with the inner wall of the outer cylinder of the rod.

(b) The friction force of the joint, the gravity of the rod and the deformation of the branch
are ignored. The branch is regarded as a two-force rod.

(c) The clearance of the driving pair is not considered.

(d) Itis assumed that the linear/angular displacement of the joint reaches the maximum
value under the action of the constraint force/couple.

(e) The clearance at the end of the branch is approximately equal to the linear superpo-
sition of the linear/angular displacements of each joint in the branch caused by the
constraint force/couple.

(f)  Without considering the coupling effects of the constraint force and constraint couple
on the joint with clearance, the linear displacement/angular displacement of the joint
with clearance under the pure force/pure couple is calculated independently, and then a
statistical probability model is used to modify the simplified gap stiffness model.

Usually, the R pair consists of two parts: the rotating shaft and the outer cylinder of the
clearance. It is assumed that there is an assembly clearance between the rotating shaft and the
rod in the axial and radial directions of the rotating shaft. A local coordinate system o — xyz is
established. The axis y is defined as the axis direction of the R auxiliary shaft. The maximum
radial clearance is ¢ and the maximum axial clearance is cp. The length of the outer cylinder
of the rod is Ir and the diameter of the inner wall of the outer cylinder of the rod is dg. When
the joint is subjected to pure axial and radial constraints, as shown in Figure 7, an offset of the
maximum clearance c1, ¢3, occurs in the direction of the constraint force.

Axis of inner wall of
outer cylindgr })f limb

Figure 7. The offset diagram of R pair with clearance under pure constraint force.

When the constraint force is the pure constraint couple around the y-axis, as shown in
Figure 8. This axis is in the direction of rotational degrees of freedom and will not undergo
angular deformation; When the constraint force is a pure constraint moment around the
x-axis or z-axis, it can be inferred from the geometric relationship of the clearance model

_ dR —261

cos(my) = Irtan(my) 47)

dp—2¢

cos(my)

Figure 8. The offset diagram of R pair with clearance under constraint force couple.



Sensors 2023, 23, 5916 17 of 33

Solving the above equation, we can obtain

—lR + 12 +4dRC1
~ v X (48)

o = 2dx

Without considering the coupling effect of the constraint force and constraint force
couple, the simplified approximate clearance model of the R pair can be expressed as
T
AR = [AxSle Aysle AzSe Aale ABSE AfEe]

~[cveser (~teot B adaen) 20 (<t R adeer) 2]

The UPR branch is subject to the constraint couple . in the U pair normal direction,
the constraint force f. passing through the U pair center and the direction parallel to the R
pair axis direction, and the driving force f, along the P pair direction. The deflection of the
terminal of the UPR branches when they are individually constrained by forces/couples
was analyzed separately.

Figure 9 shows the movement of the U pair with clearance when it is subjected to
the driving force along the rod. The clearance model of the U pair can be simplified as
a superposition of two revolute pair clearance models with orthogonal axes. The U pair
coordinate system is established in Figure 9. Taking the center of the U axis as the coordinate
origin and establishing two local coordinate systems 0 — u/v'w’ and 0 — uvw through the
right-hand rule, the axis 1’ and the axis v are along the two orthogonal axis directions
of the U axis, respectively, and the coordinate system o — uvw is obtained by rotating the
angle a around the axis v’ of the coordinate system o — #'v'w’. The axis w direction of the
coordinate system o — uvw is the same as the P pair direction in the UPR branch.

Figure 9. The offset diagram of U pair with clearance under constraint force/moment.

Assuming that the radial and axial clearances of the two orthogonal R pairs in the

U pair are ¢, cp respectively, when the UPR branch is only subjected to the driving force

along the direction of the P pair, the rotating shaft where the U pair and the P pair are

connected will generate a clearance c; along the radial axis w direction of the rotating shaft

and a contact force f, along this direction. The spatial motion of this axis is expressed in
matrix form as

AUL = (206,000 (50)

The first lines of three represent the offsets along the three axes of the coordinate
system 0 — u'v’'w’, and the last lines of three represent the deflections around the three axes.

Then, the offset/deflection of the U pair in the coordinate system o — uovw under the
action of the driving force f, is:

a OIR 0 a
AU = AU, + <S(010’0/)°,R 0,R>AU{22 (51)
0 0



Sensors 2023, 23, 5916

18 of 33

In the Equation, §,R is the rotation transformation matrix of the coordinate system
o — u'v'w’ relative to the coordinate system 0 — uvw, and, at this time, S(°P, )= 0.

cosx. 0 —sina
f)',R =10 1 0 (52)
sine. 0  cosa

The offset AU{;” of the UPR branch U pair along the direction of the driving force f,
and under the action of the driving force f, can be obtained.

AUZ{,” = 1 4 cpsina+cicosa (53)

The R pair is acted on by the driving force f;, and the offset AR{E‘ in the direction of
the driving force is radial clearance c;.

Therefore, the total offset of the UPR branch in the direction of the driving force
produced by the driving force f, is

AUPRY = AUJ; +ARY; = 201 + cosina-+cicosa (54)

The UPR branch is subjected to a constraint couple along the normal direction of the
U axis. The deflection generated by the U pair can be equivalent to the superposition of
the deflections of the two R pairs with mutually orthogonal axes around the direction
of the constraint couple; that is, AU s = 2my. The deflection generated by the R pair is
the deflection ARZ}I,C, which is around the direction of the constraint couple, ARgf = myp.
Then, the total deflection of the UPR branch along the direction of the constraint couple .
produced by the constraint couple m, is

AUPRY= AUL+AR]; =1 +2¢, (55)

The RPU branch clearance model is the same and will not be introduced here.
The RR intermediate branch clearance model can be equivalent to a U pair, and the
branch terminal offset/deflection is

AU = [Axsle Aysle Azele Ansle ABSle Agele]”

_ [C1+C2 c1+¢c32c100 (—ZR+W)/dR]T (56)

ARRY = c1+c
ARRY =1+

ARRY = 2¢; (57)

ARRY = (—1Ig+ \/M) /dR

The method of the virtual work principle is suitable for the prediction of the position
and attitude accuracy of the mechanism under complex working conditions, and it can
achieve a more reasonable description between the joint clearance and the end position and
attitude error. The virtual work principle is used to determine the relationship between the
position error of each branch and the position error of the platform caused by the clearance.
The superposition method is used to quantify the position and attitude error of the branch
caused by the clearance of each joint. It is assumed that the offset/deflection of the end

We can obtain
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of the branch reaches the maximum under the constraint/couple of the branch. It can be
obtained from the virtual work principle.

T 2 . 4 .
(AX) w = 3 AUPR fRPUI 4+ Y3 ARPUE fHPRS
i=1 ¢ i=3 !

> [ Aupricte  auprice || iy
+)X [ I, Ume } UPRi
i=1 c
4 «cle :cle fCRPw
+y [ ARPUI  ARPUIg } { Jepu } (58)
i=3 c
RR
cl
cle ARRcle ARRcle ARRCIC £R
+|: ARRfcl fc2 ch me :| C%R
kR
Simplifying further, we can obtain
T T
(AXcle) w= (Kcle) T
(59)

cle T * cle T * cle T * cle T *
= (Knu) Ina+(Kra Im+(Knc) ]nc+(Krc> Jie |w

In the Equation, AX“ is the six-DOF deformation of the moving platform caused by

the joint clearance.
cle _
KTIIZ -
le _
Ky =

cle __
Knc -

le
Ki& =

In the Equation,

cle cle T

[AUPR1

r T
cle cle

AUPR2  ARPUA }

'Aupm;lf AUPR1j; ARPU3S® ARPUS;Y (60)
) T
ARR{ ARRY ARRY ARRS |
r T
AUPR2® AUPR2; ARPUAS ARPU4§,5§}

AXT = J :achll;c +J :acKirlzec (61)

Fiae=diag( (13)™ (5™ ) Jrae=ding( (7)™ (70" )2
(62)

cle cle

Kcle — |: Knla ] Kcle — ( Krzlz )
nac cle |7 Nrac cle
Ky K¢

Due to the coupling effect between the restraint forces, the offsets of the clearance joint
along the restraint force direction do not all reach the maximum value. Assuming that the
probabilities of the position and attitude of the offset feature elements of all gap joints in the
space of the gap joints are equal and meet the normal distribution, the gap joint offset value
is given a specific probability distribution attribute on the basis of the maximum value. For
the probability distribution of joint clearance, in most cases, it is less than 1. The correction
coefficient of random physical variables is defined as the normal distribution coefficient
¢V= (1, 1/16) whose mean value is 1. Its standard deviation is 1/16 and always meets the
left side of the mean value. Therefore, the modified random physical variable considering
joint clearance can be expressed as the multiplication of initial physical parameters and
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random numbers. It includes 16 random variables related to joint clearance. Equation (60)
is amended as follows:
K5l = oN oo Kel Kol = N @ K )
K5t = N @ K& K5t = N 0 K

In the Equation, Cy,xn= a ® By, is defined as multiplying the real number a by
each element in the matrix B to obtain the matrix C.

The contact force is approximately equal to the constraint force and is much larger
than the friction.

Contact deformation is linear elasticity, regardless of the coefficient of restitution,
contact deformation speed and initial impact speed.

The contact force of the joint is approximately equal to the constraint reaction force.

The influence of the coupling of the constraint force and constraint couple on the
contact deformation is ignored. The contact deformation under the independent action
of the restraint force/moment is calculated separately, and then the calculated results
are superposed.

When there is clearance, the restraint force of each branch is approximately equal to
that obtained by solving the stiffness matrix of the mechanism when there is no clearance.

There are three cases of the R-pair contact model: (a) plane—plane contact along the
axis of the shaft caused by axial restraint; (b) cylinder—cylinder contact along the radial
direction of the shaft caused by radial restraint; (c) line—plane contact caused by the radial
restraint couple.

The kinematics pair has two parallel contact surfaces. The contact areas of the contact
surface are known. The contact force model is expressed as

fo= 2E*,/%d;ﬂ” (64)

The corrected elastic modulus can be expressed as

E* E E,

1— 2 1— 2
1 _ yl‘i‘ M3 (65)

In the Equation, the elastic modulus and Poisson’s ratio of one contact body are E;
and p1, and the elastic modulus and Poisson’s ratio of the other contact body are E; and p».
It can be obtained that the contact deformation caused by the axial constraint force is

1 T
dgﬂi’l = kfl(mfa’ kgﬂn = 2E* Af[l (66)

Two cylinders whose axes are parallel to each other are in contact, and the contact

force can be expressed as

fy= %E*Lbdi”” 67)

The contact deformation caused by the radial constraint force is

4
" =K fo K" = (©)

For the contact deformation caused by the constraint couple in the radial direction,
the contact force can be expressed as

Tc

f c = L. (69)



Sensors 2023, 23, 5916

21 of 33

The functional relationship between the contact force and the deformation at the

contact point is

4. .1 con\ 3
szgE Rz(dc ) (70)

R is the equivalent radius of the two contact bodies, and is shown as follows:

R =4/dgr(dr — 2c1) (71)

L¢ 4lCE2* VR

2
an 1 3tc 3 _ qcoon
qcon —_ — 7( ) —k te
‘ ke ¢ (72)
3

eon — k ( ) 3
c Le\ g L.E* \/ﬁ
It can be seen from the above Equation that the functional relationship between the
contact angle deformation of the joint and the constraint couple is not linear. In order to
simplify the contact deformation model, the constraint couple within a certain range of the
contact deformation model is universal. A correction factor x :'L'Cl/ 3 is introduced to linearize
the function of the contact angle deformation as a function of the constraining couple.

The R pair approximate contact deformation model can be defined as

AR = [d}, dq dy 6. 0 6]
— diag (KEom keon eon keon () eon) o (73)
— Jcon fc
R JR

In the Equation, fj is the six-dimensional constraint matrix of the R pair.

The U pair joint contact deformation model can be equivalent to the U pair joint
clearance model, and the approximate contact deformation model in the U-axis coordinate
system o' — u/v'w’ can be defined as

AUS" = [d, +dy dg +dp 2d;, 0026,
= diﬂg(kff” + kzon kzon + kion zkzon 00 zkgon) 5/ (74)
= K ¢,

In the Equation, f;, is the six-dimensional constraint matrix in the U-axis coordinate
system o' — u'v'w’.

Assuming that each clearance joint of the mechanism reaches a permanent contact
state under a static large load, the contact force is approximately equal to the constraint
force. Taking the UPR branch as an example, the contact deformation of the driving pair is
ignored. Firstly, the contact deformation caused by the driving force f1; along the direction
of the driving pair is analyzed. The driving pair is regarded as a two-force rod. The R
pair and U pair are connected with the rotating shaft of the driving pair to produce radial
contact deformation, and the rotating shaft that the U pair and the fixed platform are
connected to produce radial contact and axial contact.

In order to analyze the contact deformation of U pair axis 1 in the direction of the
driving force f11, the constraint force fi1 is transformed from the branch coordinate system
0 — uvw to the U axis coordinate system o' — u/v'w’.

o (75)

In the Equation,
cose. 0 sinw
JR=| 0 1 0 (76)
—sine 0 cosa
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£=100f;000]" (77)

According to Equation (77), the six-dimensional contact deformation of the U pair
shaft 1 in the coordinate system o’ — u’v’w’ under the action of the driving force f1; is

AR = KO"f, (78)

The contact deformation AR{”" generated by the U pair axis 1 is transformed into the
branched coordinate system o — uvw.

'R 0
on _ |o
Al { 0 %R

] AR (79)
Therefore, the total contact deformation of the U pair in the direction of the driving

force fi1 is the superposition of the deformation AU;”" (3, 1) of the shaft 1 in the direction
of the driving force f1; and the deformation AU5” (3, 1) of the shaft 2 in the direction of the
driving force fi1.

AU = AUT" (3,1)+AUS"(3,1)

= AU (3,1) + ki fir (80)

= f11kg(’”sinzoc+f11k20”coszoc—0—f11ki””

In the Equation, AU{""(3,1) represents the element in the third row and the first
column of the matrix.

When the UPR branch is only subjected to the driving force fi1, the R pair produces
radial contact deformation AR;‘{’: in the direction of the driving force fi;

ARE'= AR™"(3,1) = fuky™ (81)
The contact offset of the UPR branch in the direction of the driving force caused by the

driving force f11 is
AUPRCOTI_ AuCO?’l+ARCOTl

T T fin
= fukSsin®at fr1 k" cos2a+2 11 k5" (82)
= AKUPRY" fiy

The UPR branch is subject to a constrained couple 11 along the direction of the U-axis
normal. The contact deflection of the U pair produced by the constraint couple 71 can
be equivalent to the superposition of the angular contact deformation of the two R pairs
whose axes are orthogonal to each other around the direction of the constraint couple; that
is, AU = 26¢”". The contact deflection of the R pair produced by the constraint couple
miy is AR?HOE = ngn‘

Then, the total angular contact deformation of the UPR branch along the direction of
the constraint couple m11 produced by the constraining couple 117 is

AUPRT = AU ARG = 300 = AKUPR;, mq (83)

The UPR branch is subjected to a constraint force fi, passing through the U pair center
and in a direction parallel to the R pair axis. Among them, the U pair produces the contact
deformation 43" in the axial direction of the rotating shaft parallel to the R pair and the
contact deformation d;”" in the radial direction of the rotating shaft orthogonal to the R
pair. The R pair produces contact deformation 45" in the axial direction. Then, the contact
offset of the UPR branch along the direction of the constraint force f, produced by the
constraint force fi, is

con con con
Aupru - Auflz +ARf12 (84)

= 2450 4 d5P"= AKUPRY" fi

The RPU branch clearance model is the same and will not be introduced here.
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The contact model of the RR intermediate branch is equivalently analyzed as the U
pair, and it can be obtained that

AKRRE™ = KEom . feon

AKRRE! = kEon 4 eon
c2

AKRRE! = 2kgom

AKRRE™ = 2jcon

(85)
The terminal 6-DOF directional deformation is quantified as the joint contact defor-
mation and the load function acting on the platform by the principle of virtual work.

2 . 4 .
(Axem)Tw = L. AUPRig" fRPUI 4 L ARPUIZ™ fUPRi
1= 1=

2 . . UPRi
+3 | AUPRig"  AUPRig" | [ I o }
i=1 c
vy [ arpuicon arpuicn [ fe (86)
= . e mRPUi
RR
cl
RR
+[ ARRE" ARRE ARREY ARRE! || i

Simplifying further, we can obtain

(Axem)Tw = (K||)
(K5 [al) T + (K52 [0a) Tra ), (87)
+ (K5 ) Tre + (K5 2al ) T

In the Equation,

con AKRP u3COl’l

K5 = diag( AKUPR1S g
con AKRPU4COH

K" = diag( AKUPR2 ;

Kig' = diag( AKUPR1S" AKUPRI1" AKRPUSY" (88)
AKRPUSS" AKRRY" AKRRS AKRRE" AKRRSS! )

K" = ding (AKupRz;g" AKUPR2" AKRPUA" AKRPU4;3;1)

AXO" = K || = JacKiae Tnac + JracKac Trac (89)
In the Equation,
K= ding( KiK' ), Kgadiag ( Kig' K2 )
_ | |l _ | |nl (90)
Tnac = [ e s Trac = T

Because of the coupling effect between the restraint forces, the contact areas of the
joint along the restraint force direction do not all reach the maximum value. This will cause
a stiffness modeling error. In order to achieve the high-precision stiffness modeling of the
mechanism, it is assumed that all the characteristic elements of the joint contact area are
located in all the contact areas within the joint with equal probability and meet the normal
distribution. Therefore, the joint contact area is given a specific probability distribution
attribute on the basis of the maximum value. For the probability distribution of the joint
contact area, in most cases, it is distributed at around less than 1. The correction coefficient
¢N = (1,1/16) of random physical variables is defined as the normal distribution coefficient
whose mean value is 1. The standard deviation is 1/16 and always meets the left side of the
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mean value. Therefore, the modified random physical variable considering joint contact
deformation can be expressed as the multiplication of initial physical parameters and
random numbers. It includes 16 random variables related to joint contact. The correction of
Equation (90) is as follows:
K = N @ Ky K" = oN o K2 o)
K = N @ K K" = oN o KE
5. Synthesis Example of Weakly Coupled Three-Translation PM
5.1. Global Stiffness Analysis of Ideal Joints

In order to reflect the end deformation of a 2UPR-RR-2RPU redundant PM when driv-
ing stiffness and branch deformation are considered, the square root of linear deformation
in three directions is taken as the stiffness evaluation index.

2 2 2

=\ X5+ (%) + (%3 o
2 2 2

= (X4 (0% + (%)

In the Equation, AX;X, Ang and AXgZ represent the linear deformation along the x

axis, y axis and z axis, respectively.Ang, Ang and AX%Z represent the angular deformation
along the x, y and z axes, respectively.

The structural parameters of the 2UPR-RR-2RPU redundant PM are as follows: the
external diameter of the swing rod is 40 mm; the internal diameter of the swing rod and
the external diameter of the push rod are 25 mm; the length of the swing rod is 205 mm;
the diameter of the intermediate restraining chain is 45 mm and its height is 320 mm; the
radius of the fixed platform is 260 mm; the radius of the moving platform is 210 mm; the
elastic modulus is 200 GPa; and the Poisson’s ratio is 0.3. In the analysis of joint clearance,
it is assumed that the axial clearance of the joint is 0.1 mm and the radial clearance is
0.05 mm. In the analysis of joint contact deformation, the length of the joint outer cylinder
is 105 mm, and the diameter of the joint outer cylinder inner wall is 25 mm given a
7500 N external load downward along the normal direction of the moving platform. This
parallel mechanism is applied in the field of wheel coupling fatigue durability testing. The
mechanism is connected in series with the z-direction actuator cylinder to simulate the force
acting on tires on rough, potholed and inclined roads. It compensates for the deficiency of
a four-channel road simulation platform that can only provide z-direction excitation. The
quarter vehicle load is 7500. Through the above stiffness performance evaluation indicators,
the global performance distribution of a 2UPR-RR-2RPU redundant PM under four factors
was studied, respectively, as shown in Figure 10.

Through the defined stiffness index in this paper, the following conclusions can
be drawn.

After the introduction of redundant branches, the stiffness characteristic distribution
of the PM is improved. The structural stiffness has good symmetry in the workspace. The
linear stiffness and angular stiffness are obvious. The stiffness of the mechanism is less
affected by the rotation angle § of the moving platform and the platform is more stable
when the attitude angle is output.
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0.46527
0.40711
0.34895
0.29079
0.23263
0.17447
0.11632
0.058158

0 Min

BC) 40 Ho
(b)
Figure 10. Stiffness distribution diagram of 2UPR-RR-2RPU redundant PM considering different
factors. (a) Global distribution of linear deformation when driving stiffness and branch deformation

are considered; (b) global distribution of angular deformation when driving stiffness and branch
deformation are considered.

5.2. Comparison between Theoretical Model and Finite Element Model of Static Stiffness for
Ideal Joint

In order to verify the correctness of the theoretical model under the ideal joint, the
Solidworks model was imported into the Ansys Workbench. The material performance
parameters were defined as follows: density p = 7850 kg/m3, Poisson’s ratio u = 0.3,
elastic modulus E = 2 x 10! Pa. The theoretical model and finite element model of the
mechanism under two positions and attitudes were established for comparison. The first
attitude: « = 0, B = 0; The second attitude: « = 15°, 8 = 15°. The joint was set as an
ideal kinematics pair, and fixed constraints were added to the fixed platform. The moving
platform was set as rigid, and the following six-dimensional load was applied at the center
point of the moving platform coordinate system:

w = [750N 750 N — 750 N 750 N-m 750 N-m 750 N~m]T (93)

The deformation cloud diagram obtained by finite element simulation is shown in
Figure 11, and the comparison between theoretical and simulation results is shown in
Table 1.

0.5134 Max
0.45635
0.39931
0.34226
0.28522
0.22818

0.17113

0.11409

0.057044

0 Min

z Z
»)\‘ \ »/I\‘
20000 40000 (mm) 0.00 20000 400.00 (mm) v
I ..
300.00 100.00 300.00

Figure 11. Deformation cloud diagram of 2UPR-RR-2RPU redundant PM with ideal joint.
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Table 1. Theoretical and simulation comparison of 2UPR-RR-2RPU redundant PM with ideal joint.

Posture Method Ang/mm Ang/mm szz/mm AX"_(‘,,CIO AX'fpy/O AX"_(pz/O
Theory value 0.0232 0.1460 —0.00036 0.00 72 0.0011 0.0652
1 Simulation value 0.0213 0.1387 —0.00039 0.0075 0.0012 0.0932
error/% 8.92 5.26 7.69 4.00 8.33 8.58
Theory value —0.0920 0.1176 0.0184 0.0058 —0.0058 0.0729
2 Simulation value —0.0968 0.1126 0.0170 0.0055 —0.0061 0.0790
error/% 4.96 4.44 8.23 545 4.92 7.72
5.3. Model Correction Considering Hinge Clearance and Hinge Contact Deformation Stiffness
The given load of the moving platform is as follows:
w =[750 N 750 N — 7500 N 0 N-m 0 N-m 0 N-m]" (94)
The revised stiffness model considering the clearance and joint contact deformation
was calculated 5000 times. The 32 random variables involved in the calculation each time
meet the normal distribution. A histogram was drawn and the distribution was fitted
for the 5000 groups of final end deformations—that is, the distribution shape of the end
stiffness—taking 50 sample spaces within the maximum and minimum range of linear
deformation/angular deformation at the end of the 2UPR-RR-2RPU redundant PM. The
stiffness distribution of the initial position and attitude considering joint clearance and joint
contact deformation is shown in Figures 12 and 13.
400 30
25
300
20
200] 154
10
100y
50p
0 0 0
-05 0 0.5 1 1.5 2 25 3 1.25 1.3 135 14 -122 -12 -1.18 -1.16 —=1.14 —-1.12 -1.1 —1.08
(a) The line deformation of x direction (m)x 10~ (b) The line deformation of y direction (m)x 10~ (c) The line deformation of z direction (m)x 10
400 40 400
3007 30 300¢
200y 20 200r
100y 100 100y
0 0 0
-4 -2 0 2 6 -6 -4 -2 0 2 4 6 =5 -4 -3 -2 -l 0 1 2
(d) The angular deformation of x direction  (rad)x 107" (e) The angular deformation of y direction (rad)x 10~ (f) The angular deformation of z direction (rad)x 10°°

Figure 12. Probability distribution diagram of linear deformation and angular deformation in each
direction of the end considering joint clearance.

According to the stiffness distribution diagram, the following conclusions are drawn.

The fluctuation range and probability distribution of the output end stiffness caused
by the random parameters related to 16 joint gaps and 16 joint contacts are clearly shown.
According to the law of large numbers, although the linear stiffness/angular stiffness
distribution in each direction is slightly different, it basically conforms to the normal
distribution.

The shape of the stiffness distribution is determined by the predetermined pose and
given parameters (structure size, clearance value, contact parameters, load and variance).
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Figure 13. Probability distribution diagram of linear deformation and angular deformation in each
direction of the end considering joint contact deformation.

5.4. Comparison between Theoretical Model and Finite Element Model Considering Joint Clearance
and Joint Contact Deformation

In order to facilitate the convergence of the model, the calculation time was saved.
In the simplified model, the connecting rod was set as a rigid body, and the clearance
joint was set as frictionless contact. The mesh of the contact area was refined, the contact
parameters and iteration steps were set reasonably and the fixed constraints were added to
the fixed platform. The deformation of the moving platform with clearance joints under
two different loads in the attitude &« = 0, f = 0 is discussed.

Load 1:

w =[750 N 750 N — 7500 N 0 N-m 0 N-m 0 N-m]" (95)

Load 2:
w=[750N750N —750NON-mON-mO0 N-m]T (96)

The above load on the moving platform was applied and the contact parameters of
the clearance joint (U pair, R pair) were set. The angular deformation around the x, y, z axis
tends to zero under the given boundary conditions. Therefore, only the line deformation
along the x, y, z direction was analyzed. When the standard deviation is 1/16, the finite
element simulation of the stiffness prediction interval at the output end of the attitude and
the center of the moving platform is obtained. The simulation results are shown in Table 2,
and the total deformation cloud diagram is shown in Figure 14. The deformation in each
direction under two different loads is shown in Figures 15 and 16.

0.12416 Max 0.36888 Max
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Figure 14. Deformation cloud diagram of 2UPR-RR-2RPU redundant PM considering joint clearance
and contact deformation.
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Figure 15. Linear deformation of 2UPR-RR-2RPU redundant PM in x, y and z directions under load 1.
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Figure 16. Linear deformation of 2UPR-RR-2RPU redundant PM in x, y and z directions under load 2.

Table 2. Comparison of stiffness modeling theory and simulation of 2UPR-RR-2RPU redundant PM.

Load 1 Load 2
x y z x y z
Maximum stiffness considering joint 0.0226 0.0139 ~0.1120 0.1816 0.1819 ~0.0990
clearance/mm
Minimum stiffness considering joint 0.0012 0.0128 —0.1208 0.1237 0.1524 —0.0844
clearance/mm
Range of interval/mm 0.0214 0.0011 0.0088 0.0579 0.0295 0.0146
Sample mean value/mm 0.0130 0.0134 —0.1170 0.1543 0.1689 —0.0920
Maximum stiffness considering joint 0.0493 0.0200 —0.4207 0.0964 0.1442 —0.0483
contact/pum
Minimum stiffness consideringjoint ) 1,9 0.0181 —0.4636 0.0847 0.1337 —0.0417
contact/pum
Range of interval/pm 0.0150 0.0194 —0.4462 0.0117 0.0105 0.0066
Sample mean value/um 0.0150 0.0194 —0.4462 0.0908 0.1391 —0.0447
Finite element simulation/mm 0.0129 0.0128 —0.1106 0.1616 0.1706 —0.0927
Error/% 0.78 4.69 5.79 451 0.99 0.75
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As shown in Table 2, when considering the joint clearance and joint contact deforma-
tion, the finite element simulation results under the given standard deviation are within
the stiffness variation range of the theoretical model. The maximum error of theory and
simulation is 5.79% when measuring the error by sample mean. The correctness of the
theoretical model was verified through a comparative analysis. The model can be applied
to the static stiffness performance evaluation of a 2UPR-RR-2RPU redundant PM at the
design stage, laying the foundation for stiffness optimization.

5.5. Stiffness Model Analysis of 2UPR-RR-2RPU Redundant PM Considering Multiple Factors

In order to evaluate the accuracy of the joint clearance model and joint contact
deformation model under different external loads, the deformation of the end under
two different external loads is discussed. The force amplitude of load 1 along the z direction
is far greater than that along the x, y directions, whereas the force amplitude of load 2 along
the x, y, z directions is equal. Taking t as the step size, the simulation time is given as 2 s,
and the output motion law and applied dynamic load of the PM are as follows:

Plan attitude and load 1:

91F y = 750co0s(27tt)
%1 F, = 750cos(27tt) (97)

{a = 10cos(27tt) - 71/180
oF, = 75 %103

B = 10sin(27t) - 7r/1807

Plan attitude and load 2:

91F y = 750co0s(27tt)
%1 F, = 750cos(27tt) (98)

{ac = 10cos(27tt) - 71/180
OF, = —750

B = 10sin(27tt) - 71/180

Based on the analysis method proposed in this paper, the driving stiffness, bar de-
formation, joint clearance and joint contact deformation were considered. Using Matlab
software to calculate the 2UPR-RR-2RPU redundant PM, the deformation of the PM output
end in the six-DOF direction is caused by various factors under the above load conditions
and given motion laws. Statistical analysis was carried out on the modified clearance model
and joint contact deformation model. The stiffness performance considering clearance
and joint contact deformation was evaluated by means of sample mean and the quality
of the statistical simulation results was evaluated. The maximum/minimum values of
the samples were used to judge the stiffness fluctuation range considering the clearance
and joint contact deformation. The approximate linear/angular stiffness interval of the
mechanism in each direction can be determined. The maximum, minimum and average
values of line deformation/angular deformation in each direction considering different
factors under two different planning attitudes and loads are shown in Figures 17 and 18.
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Figure 17. Linear deformation prediction interval of each direction at the end of the test platform
under different factors when planning attitude and load.
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Figure 18. Linear deformation prediction interval of each direction at the end of the test platform
under different factors when planning attitude and load 2.

6. Conclusions

Firstly, a high-precision stiffness modeling method of an over-constrained redundant
PM was proposed. Taking a 2UPR-RR-2RPU over-constrained redundant PM as an example,
the ideal joint was derived by using strain energy and Castigliano’s second theorem. The
stiffness matrix of the mechanism with its driving stiffness and branch deformation and
the restraint force of each branch should be considered.

Based on the principle of virtual work, a stiffness modeling method considering
the joint clearance and joint contact deformation was proposed. The probabilistic model
was used to predict the position distribution of the clearance joints, and the problem of
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the modeling error caused by coupling constraints of over-constrained mechanisms was
solved. The stiffness variation interval considering the joint clearance and joint contact
deformation under different external loads was obtained, and the influence degree of each
factor (driving stiffness, bar deformation, joint clearance, joint contact deformation) on the
end deformation was analyzed.

Finally, the correctness of the proposed stiffness model was verified using the finite
element method. This method can help robot designers and manufacturing engineers to
fully consider the influence of multiple factors (driving stiffness, bar deformation, joint
clearance, joint contact deformation) on the static stiffness of the mechanism. Through
this method, a high-precision static stiffness model can be established to achieve the best
performance of the mechanism.
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