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Abstract: This work proposes an efficient and easy-to-implement single-layer artificial neural network
(ANN)-based equalizer with improved compensation performance. The proposed equalizer is used
for effectively mitigating the distortions induced in the short-haul fiber-optic communication systems
based on intensity modulation and direct detection (IMDD). The compensation performance of the
ANN equalizer is significantly improved, exploiting an introduced advanced training scheme. The
efficiency and robustness of the proposed ANN equalizer are illustrated through 10- and 28-Gbaud
short-reach optical-fiber communication systems. Compared to the efficient but computationally
expensive maximum likelihood sequence estimator (MLSE), the proposed ANN equalizer not only
significantly reduces its computational equalization cost and storage memory requirements, but it
also outperforms its bit error rate performance.

Keywords: artificial neural network (ANN); digital signal processing (DSP); fiber-optic communications;
intensity modulation and direct detection (IMDD); short reach

1. Introduction

Optical fibers are widely deployed in modern telecommunication systems and net-
works [1,2]. They have been used in several short-reach applications [3]. Metro and media
access networks, data center networks (DCNs), cloud radio access networks (C-RANs), pas-
sive optical networks (PONs), and mobile front-haul networks (MFHNs) are a few examples
among many other potential applications of short-haul fiber-optic communications [4–6].

In short-reach applications, intensity modulation and direct detection (IMDD) is typi-
cally used because of its low cost, simple implementation, and robustness [7]. The nonlinear
Kerr effect is negligible in the short-haul fiber-optic transmission systems due to small
launch power and short transmission range. However, linear optical distortions caused
by the unavoidable chromatic dispersion phenomenon of the fiber turn into nonlinear
impairments in the electrical domain due to the square-law detection of the IMDD system.
Therefore, linear electrical equalizers, e.g., feed-forward equalizer (FFE) [8] and decision
feedback equalizer (DFE) [9], fail to mitigate such nonlinear signal distortions at the re-
ceiver. Rather, a nonlinear equalizer has to be employed at the receiver side to perfectly
compensate for the nonlinear distortions.

Various nonlinear electronic equalization techniques have been proposed in the liter-
ature for mitigating the fiber distortions of the IMDD fiber communication systems [10].
For instance, maximum likelihood sequence estimator (MLSE) is the classical technique
that provides the traditional benchmark compensation performance [11,12]. However, it
suffers from its high computational cost that prohibits its practical implementation. The
MLSE computational cost per symbol is exponentially proportional to the length of the
intersymbol interference (ISI) span, i.e., the required channel memory size. The high MLSE
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computational cost can though be reduced at the expense of lower equalization perfor-
mance using a Volterra-series-based equalizer (VSE) [13,14]. However, the computational
cost of VSEs is still unreasonably high because of the enormous amount of calculations
required, especially when a high transmission bit rate is needed.

A powerful nonlinear equalization technique that can potentially reduce the compu-
tational complexity required by the VSE is a neural-network-based equalizer (NNE) [15].
While the computational cost of the NNEs increases in proportion to the number of neurons
in each layer, the VSE cost increases exponentially as the number of tapped delays and
the order of the Volterra series increase [16–18]. Particularly, in order to compensate for
the nonlinear impairments of the short-reach fiber transmission system, a computational
cost per symbol of as low as O

(
N2) is required by the NNE, where N is the ISI span

length [16–18]. Contrarily, the minimum computational complexity of the VSE is of the
order O

(
N3) per symbol [16–18].

Several types of NNEs have therefore been exploited for the compensation of the
electrical nonlinear impairments in the IMDD short-haul fiber-optic communication sys-
tems. These include equalizers that are based on single-layer artificial neural networks
(ANNs) [19–21], two-layer ANNs [22–24], radial basis function neural networks [25], convo-
lutional neural networks [23,26,27], recurrent neural networks [28,29], and multi-layer deep
neural networks [6,30]. Although the single-layer-ANN-based equalizers are the most basic
option among all other types of NNEs, they are more popular to be practicably utilized in
the short-reach fiber-optic applications because of their superiority from the computational
cost point of view. In [21], we proposed an extensive training scheme that enhances the
compensation performance of the single-layer-ANN-based equalizer, achieving a slightly
lower compensation performance compared to that of the MLSE but with much lower
computational cost. Instead of utilizing typical random training data, the extensive training
scheme uses a set of data that is properly chosen according to the physical nature of the
fiber-induced signal distortions.

In this paper, we propose a more efficient ANN equalizer for mitigating the nonlinear
electrical impairments induced in the IMDD short-reach optical-fiber communication
system. The proposed equalizer consists of a basic single-hidden-layer ANN that minimizes
the overhead computational complexity required for the signal recovery at the receiver end.
An advanced training method is also introduced to significantly improve the bit error rate
(BER) performance of the equalizer, compared to the ANN equalizer introduced in [21], with
the same computational cost per symbol. The proposed training scheme considers multiple
noisy sets of all possible data combinations that could be transmitted through the optical
channel. This is contrasted with the extensive training scheme introduced in [21], which
utilizes only noise-free data during the training process. The robustness, performance, and
efficiency of the proposed ANN equalizer are demonstrated through applying it to mitigate
the distortions of 10- and 28-Gbaud short-reach optical-fiber communication scenarios with
the IMDD system. Thanks to the advanced training scheme, the compensation performance
of the proposed ANN equalizer outperforms the BER performance obtained using the
robust but computationally expensive MLSE equalizer.

The remainder of the paper is organized as follows. Section 2 introduces the operation
principles of the proposed ANN-based equalization technique. A full description of the
introduced training scheme is also provided. In Section 3, we present system setups, results,
and discussions on the evaluation of system BER performance, computational complexity,
and efficiency. Finally, conclusions of the work are drawn in Section 4.

2. Principles of the Proposed ANN Equalizer

Linear optical distortions induced in the short-haul fiber-optic link are converted into
nonlinear impairments in the electrical domain. This is because of losing the phase infor-
mation due to the square-law detection of the direct detector (DD). A nonlinear electrical
equalizer is therefore needed at the digital signal processing (DSP) unit to compensate
for the nonlinear distortions, recovering the transmitted data. Neural networks have
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shown promising modeling performance in various biomedical and chemical engineering,
biological, and medical fields and applications [31,32]. Due to the superior linear and
nonlinear modeling ability of artificial neural networks (ANNs), they can be utilized, after
a proper training scheme, to compensate for these nonlinear system distortions, inverting
the response of both the fiber channel and direct photo-detection system.

The schematic of the proposed ANN nonlinear equalizer is shown in Figure 1. Since
our objective is to implement an effective but computationally inexpensive nonlinear
equalizer, we select the basic ANN structure consisting of an input layer, a single hidden
layer, and an output layer. The input layer comprises N nodes, each of which is triggered
by a sample of the received (distorted) signal y[n]. In other words, the input vector at
each time instant i represents the current input sample with its K/2 previous and K/2
subsequent samples, where N = 2K + 1 is the length of the intersymbol interference (ISI)
span. Each line connecting two nodes represents a multiplier that multiplies the output of
the previous layer by the corresponding weight. The hidden and output layers include m
and 1 nodes, respectively. Each node in the hidden and the output layer is a computing unit
that applies a nonlinear activation function to the summation of its weighted inputs. The
relationship between the input vector Y = [y−K y−K+1 y−K+3 · · · yK] and the ANN output
X̂ is thus expressed as follows:

X̂ = fo

(
∑m

j=1 wo
j fh

(
∑N

l=1 wh
jl yl

))
, (1)

where wh
jl is the weight assigned to the connection between the lth input yl and the jth node

of the hidden layer. The weight wo
j is assigned to the connection between the jth hidden-

layer node and the output-layer node. The scalar functions fh(·) and fo(·) are the nonlinear
activation functions of the hidden and output layers, respectively. It should be clear that the
ANN output X̂ represents the equalized sample at time instant i. Using a proper training
scheme, the neural network weights can be adjusted such that the output sequence X̂[n]
represents an approximate estimate of the undistorted transmitted sequence x[n].
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The training of the ANN equalizer is performed as follows. A stream of known data is
first transmitted through the fiber channel to the receiver, and a set of known input–output
training data pairs is formulated. The weights of the ANN equalizers are then adjusted by
recursively solving an optimization problem that minimizes the mean square error (MSE)
between the equalizer outputs (representing the equalized signal samples) and the desired
outputs (representing the transmitted signal samples). The training problem is thus given by
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min
W

E(W) =
1

Ntr
∑Ntr

k=1 ‖X̂k(W, Yk)− Xk‖2
2, (2)

where W =
[
WT

h WT
o
]T is a vector that contains the set of weights connecting the input

parameters to the hidden-layer nodes Wh and the set of weights connecting the hidden-
layer nodes to the output-layer node Wo. The operation ‖·‖2 denotes Euclidean norm,
Ntr is the number of training symbols, and Yk is the input equalizer vector corresponding
to the kth training symbol. The parameters X̂k and Xk are the equalizer output and the
corresponding desired output for the kth training symbol, respectively.

To achieve the most efficient ANN equalization performance, converging to the global
optimal weights of the equalizer, it is crucial to determine (i) the number of input-layer
nodes N, i.e., the number of equalizer taps, (ii) the number of hidden-layer nodes m, and
(iii) the number of training data Ntr and the way to select them. The number of equalizer
taps N is chosen according to the length of the ISI of the channel. In other words, depending
on modulation format, optical-fiber length L, and dispersion parameter β2 of the optical-
fiber channel, the number of neighboring symbols K that may interfere with the current
symbol (i.e., ISI span) is estimated. The number of taps required by the equalizer is then
determined as N = 2K + 1. The number of required hidden nodes m is obtained through a
convergence analysis. First, the hidden nodes number m is set to a certain small number,
e.g., 3, and the training problem (2) is solved, and the terminated MSE is calculated. Then,
we gradually increase the value of m and resolve problem (2) until the terminated MSE
value saturates up to a certain accuracy.

Typically, choosing the training data and their number Ntr is done randomly. However,
it has been shown in [21] that the equalization performance of neural networks-based equal-
izers could be significantly enhanced utilizing an extensive training scheme that considers
all possible patterns to be received by the equalizer later on. Instead of transmitting a
random dataset during the training phase, the extensive training scheme uses a complete
set of training data formulated as in [21]. For an M-ary modulated data and ISI span length
of N (i.e., K interfering symbols), there is a total combination of MN distinct patterns of the
training data samples. In other words, we have

(
N ×MN)

different input training vectors
and

(
1×MN)

corresponding desired outputs. However, while propagating inside the fiber,
the outer symbols in each pattern can be affected by the tail of its successive neighboring
patterns. Hence, the equalizer may receive patterns that are not included in those basic
MN patterns. To take into account all possible combination patterns that could be received,
K redundant guard symbols are added around the sides of each basic pattern, as shown
in Figure 2a. First, MN+2K different symbols are generated and transmitted through the
fiber. At the DSP unit, the samples corresponding to those redundant guard symbols are
discarded, as illustrated in Figure 2a, and only samples with regard to original data are used
to train the equalizer. The number of training data used by the extensive training scheme
is therefore Ntr = MN+2K. In other words, a total of

(
N ×MN+2K) input training vectors

and
(
1×MN+2K) corresponding desired outputs are utilized. It should be clear that this

extensive training scheme considers all possible received patterns but in a noise-free chan-
nel. In other words, it does not account for the noise induced in the system. Therefore, the
equalization performance of an NN-based equalizer trained using the extensive training
scheme is severely limited by the system noise. The equalization performance though may
be potentially enhanced if noisy data are used to train the equalizer’s neural network.

To enhance the efficiency and robustness of the ANN equalizer, we propose an ad-
vanced training scheme that utilizes multiple noisy sets of the complete patterns used in
the extensive training scheme. In particular, the training data of the advanced training
scheme are obtained as follows. We first generate

(
MN+2K) different symbols, including

M2K redundant guard symbols, similar to the case explained in the extensive training
scheme. This symbol data stream is then transmitted through the optical-fiber system that
adds noise, as well as distortions due to chromatic dispersion. The discretized received
signal samples pass through the DSP unit. The samples corresponding to the redundant
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guard data are discarded (see Figure 2a) and the signal samples corresponding to the
original training symbols and their transmitted peers are used to formulate the first group
of input–output training pairs, as shown in Figure 2a. To take into account the channel
noise, the same stream of data, consisting of

(
MN+2K) distinct symbol patterns, is resent

through the fiber system n times. The same procedures are then repeated at the DSP unit
to formulate a total of n different groups of input–output training pairs, each of which
consists of

(
N ×MN+2K) input training vectors and

(
1×MN+2K) corresponding desired

outputs, as shown in Figure 2b. Note that the desired output vectors in all groups are
identical; however, the input training vectors in each group have different values due to
randomness of the system noise. The total number of training data needed by the advanced
training scheme is Ntr = n×MN+2K. In the form of neural network training data, a total
of n×

(
N ×MN+2K) input training vectors and n×

(
1×MN+2K) corresponding desired

output vectors are used.
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Once the input–output training data pairs are determined, the optimization training
problem (2) is solved using any well-defined optimization algorithm to obtain the optimal
ANN weights W∗. In this work, we specifically use the adaptive moment estimation (Adam)
algorithm [33,34]. The Adam algorithm is one of the most effective stochastic-gradient-
based optimization algorithms that is widely used to solve training problems of ANNs and
deep neural networks. It shows efficient ability to solve optimization problems with a large
number of data and parameters, with little memory requirement. It also offers superior
effectiveness to solve problems that include very noisy and sparse gradients, which is the
common case in neural network training problems. The Adam algorithm is derived from
the calculation of the evolutionary moment. It uses estimations of the first and second
moments of the gradient to iteratively update weights of the neural network.

Advanced Training Scheme Algorithm

The flow diagram summarizing the training algorithm of the proposed ANN-based
equalizer, utilizing the introduced advanced training scheme, is shown in Figure 3. First,
the ANN weights are assigned to random initial values, and the stopping criteria of
the training algorithm are defined (e.g., minimum required mean square error (MSE)).
The maximum allowed number of training epochs and/or improvement of validation
accuracy is determined. The advanced training scheme is then utilized to generate the
ANN training input–output dataset, as illustrated in Figure 2b. Using the current weight
values, the corresponding ANN equalizer outputs are evaluated, and the corresponding
MSE between current equalizer outputs and desired outputs is calculated (see Equation (2)).
The algorithm then checks whether the predefined stopping criteria are satisfied or not.
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In other words, it determines whether the current ANN model is well trained or not. If
all stopping criteria are satisfied, the algorithm terminates, and the best-achieved ANN
model is saved for testing. Otherwise, the Adam optimization algorithm is employed to
update the current ANN weights such that the current MSE is reduced. The new ANN
model (i.e., ANN with new weight parameters) is considered as the current model. The
current equalizer outputs and MSE are re-calculated, and the cycle is repeated till the
algorithm terminates.
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Once the training of the ANN equalizer is completed, actual unknown data can then
be transmitted through the channel, and the trained ANN equalizer is utilized at the DSP
unit of the receiver to compensate for the system distortions, recovering the transmitted
data. In this case, the input vector of the ANN equalizer at time instant i is given as

Yi = [y−K+i, y−K+i+1 . . . yi . . . yK+i−1, yK+i]
T , i = K, K + 1, K + 2, . . . , (3)

where yi is the received sampled symbol at time instant i, and K is the number of interfering
symbols. For each input vector Yi, the ANN equalizer produces an equalized signal sample
X̂i, which is assumed to be a reliable estimate of the actual transmitted signal sample Xi.

Notice that during the transmission of actual data, the nominal parameters of the
fiber channel (e.g., dispersion coefficient β2) might be subjected to fluctuations due to
variations in environmental conditions. Although these fluctuations occur at a much
slower rate than the transmission data rate, it can slightly deteriorate the performance
achieved by the trained ANN equalizer. However, the proposed ANN equalizer can be
simply modified to adaptively re-adjust its weights and trace these channel fluctuations
using a small variation in the weights’ values. In practice, only one optimization step is
needed [2]. Since we have no information about the transmitted signal, in this case, the
single optimization step is performed to minimize the MSE between the final decided
symbol value âi and the equalizer output X̂i, i.e., the objective function of Equation (2)
becomes E(W) =

[
X̂i(W, Yi)− âi

]2.

3. Results and Discussion

Figure 4 shows the system setup used for evaluating the performance of the proposed
ANN equalization method. At the transmitter side, independent and identically distributed
input symbols ai are randomly generated. The data are mapped into an on–off keying
(OOK) modulation format with a non-return-to-zero (NRZ)-raised cosine pulse shaping
whose roll-off factor is 0.6. An electrically modulated laser (EML) is used to convert
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electrical signal into optical domain, obtaining the output transmitted optical signal x(t).
Two data rates are considered during the simulations, namely, a 10-Gbaud- and 28-Gbaud-
rate system. The optical transmission channel is a standard linear single-mode fiber (SMF)
whose nominal parameters are given as dispersion coefficient β2 = −21 ps2/km, loss
coefficient α = 0.2 dB/km, and length L in km. The SMF is followed by an inline erbium
doped-fiber amplifier (EDFA) that fully compensates for the fiber loss. Unless otherwise
stated, the noise of the EDFA is neglected. The output of the EDFA passes through an
optical Gaussian band-pass filter (BPF) of bandwidth 50 GHz or 100 GHz at the 10-Gbaud-
or 28-Gbaud-system, respectively.
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Figure 4. Block diagram of the intensity modulation and direct detection short-reach optical-fiber
communication system setup considered in the simulation. Tx: transmitter; EML: electrically mod-
ulated laser; SMF: single-mode fiber; EDFA: erbium-doped fiber amplifier; BPF: band-pass filter;
Rx: receiver; DD: direct detector; AWGN: additive white Gaussian noise; LPF: low-pass filter; ADC:
analog-to-digital converter; ANN: artificial neural network.

At the receiver, a direct-detection (DD) receiver is first employed for optical-to-
electrical conversion whose output is proportional to the square of the magnitude of
the distorted optical received signal r(t). The linear distortions of the chromatic dispersion
in the optical domain are converted into nonlinear distortions in the electrical domain
because of the square-law detection of the DD. In other words, the phase information
of the received optical signal is lost in the electrical domain. A Gaussian low-pass filter
is placed after the DD to reduce the noise. Its 3 dB bandwidth is 7 GHz or 21 GHz for
the 10-Gbaud- or 28-Gbaud-system, respectively. Note that the additive white Gaussian
noise n(t) added by the DD consists of shot and thermal noise [1,2]. At the DSP unit, an
analog-to-digital converter (ADC) is used to reduce the sampling rate from 16 samples
per symbol to 2 samples per symbol, which is sufficient for accurate reconstruction of
time-continuous signals according to the Nyquist condition. The proposed ANN equalizer
is then employed to compensate for the nonlinear electrical signal distortions. Finally, a
decision circuit is placed at the end of the DSP unit to classify the equalized data X̂i to its
nearest symbol âi = {0, 1}.

For all results presented in this section, the performance, efficiency, and effectiveness
of the proposed ANN equalizer are investigated using three figures of merit, namely, the
bit error rate (BER) performance of the overall communication system in the presence of
noise, the computational cost per symbol required by the equalizer, and the memory usage
requirements of the equalizer.

Firstly, the BER performance is calculated through Monte-Carlo simulations of the
communication system described in Figure 4. Using a pseudo-random binary sequence
(PRBS) 218 − 1, a stream of 217 unknown random data are generated and transmitted
through the communication system. Then, to achieve better BER accuracy with a smaller
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number of required symbols, we estimate the BER from its corresponding quality factor Q.
Under the Gaussian noise assumption, the BER is related to the quality factor by [1,2]:

BER =
1
2

er f c
(

Q√
2

)
, (4)

where er f c(·) denotes the complementary error function. The quality factor is obtained
using the following formula [1,2]:

Q =
I1 − I0

σ1 + σ0
, (5)

where Ir and σr, r ∈ {0, 1}, are the mean and the standard deviation of the received signal,
respectively, and r stands for the type of the transmitted symbol (‘0′ or ‘1′). It is worth
emphasizing that single-polarized signals are typically used in short-reach optical-fiber
communication systems where polarization mode dispersion (PMD) effect is negligible. The
metric of BER performance is therefore enough to analyze the overall system performance
since the optical-fiber channel is deterministic. Note also that the impact of fiber dispersion
can be characterized by the dimensionless parameter: B2β2L, where B is the baud rate, L
is the fiber transmission distance, and β2 is the fiber dispersion coefficient. For the given
baud rate, if the fiber dispersion β2 and/or the distance L increases, the ISI effect increases,
which degrades the transmission performance. On the other hand, if the dispersion is fixed,
the feasible transmission distance for the given BER scales inversely with B2. Throughout
this section, we show the BER performance versus the received optical power. However,
the received power and signal-to-noise ratio (SNR) can be related from the following
considerations. The receiver adds shot noise and thermal noise whose variances are given
by [2]:

σ2
shot = 2qRPrBe, (6)

σ2
thermal = 4KBTBe/RL, (7)

where q is the electron charge, R is the responsivity, Pr is the received power, Be is the
3 dB bandwidth of the receiver electrical LPF, KB is the Boltzmann constant, T is absolute
temperature in Kelvin, and RL is the load resistance. The SNR (without including optical
noise) is given then by

SNR =
R2P2

r

σ2
shot + σ2

thermal
. (8)

Thus, SNR is directly related to the received optical power.
Secondly, using the input–output relationship of the proposed ANN equalizer

(i.e., Equation (1)), it can be shown that the computational complexity of the ANN equalizer
scales as ∼m× N per symbol, where m and N are the numbers of hidden layer’s nodes
and equalizer’s taps, respectively. Thirdly, once the ANN equalizer is trained, its memory
storage requirements are essentially limited to the number of its neural network weight pa-
rameters W. For an ANN equalizer comprising N input taps and a single hidden layer with
m nodes, the total number of weights is (mN + m), with (mN) parameters corresponding
to the weights connecting between the input and hidden layer, and m weight parameters
assigned to the connection between the hidden and output layer, as illustrated in Figure 1.
Note that each real number is stored in the memory as a floating-point number [35]. Since
the ANN equalizer weights are generally real numbers, the memory storage requirement
of the proposed ANN equalizer is ∼m(N + 1) floating-point numbers.

Unless otherwise specified, the proposed ANN equalizer is trained using the advanced
training scheme, described in Section 2. The number of noisy dataset groups is n = 10. In
other words, the total number of training data used is Ntr = 10×MN+2K symbols, where
M = 2 for the OOK modulation format. A total of 87.5% of the training dataset is used for
training, while 12.5% of the data is utilized as the validation set during each epoch. The
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maximum allowed number of training epochs is 1000, and the batch size is 256. The hidden
and output activation functions of the ANN are rectified linear unit (ReLU) function and
unity function, respectively. The training is performed at a received optical power of 0 dBm.
The training process is set to terminate when the validation set accuracy stops improving
for a certain number of epochs, or the maximum allowed training epochs is exceeded.

3.1. A 10-Gbaud Optical-Fiber Communication System

In this subsection, we study the performance of the proposed ANN equalizer to com-
pensate for the distortions of an IMDD short-haul fiber communication system operating
at baud rate of 10 GBaud with optical-fiber transmission distance L ranging from tens of
kilometers up to a few hundred kilometers. Such a communication system emulates typical
communication scenarios in the area of metro and media access networks.

Consider a communication scenario with optical-fiber transmission distance, i.e., optical-
fiber length, L = 140 km. Due to pulse broadening caused by the chromatic dispersion
and the square-law effect of the DD, the BER at the receiver without equalization and in
the absence of noise is obtained as 4× 10−2. Using convergence analyses, the numbers of
equalizer taps (i.e., the ISI span) and hidden-layer nodes required for this case are estimated
as N = 7 and m = 6, respecitevly. For better readability, we refer to the artificial neural
network equalizer (ANNE) consisting of N input nodes and m hidden layer’s nodes, and
trained using the advanced training (AT) scheme as ANNE-AT{N,m}.

Figure 5a shows the BER performance obtained with the ANNE-AT{7,6} compared
to the case with no equalization and the back-to-back (B2B) transmission case, versus a
sweep of the received optical power at the transmission distance of 140 km. The ANNE-
AT{7,6} effectively compensates for the nonlinear distortions of the system, extending
transmission distance feasibility. It achieves the BER = 10−3 at a received optical power of
−0.7 dBm with∼0.9 dB power penalty relative to the B2B transmission case. To achieve the
BER = 10−9, the required received optical power is 3.3 dBm, with a minor power penalty
of ∼0.3 dB, compared to the B2B transmission case.
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Figure 5. BER performance of the 10 Gbaud optical-fiber communication system versus received
optical power with a noise-free EDFA. The optical-fiber transmission distance is (a) 140 km and
(b) 200 km. The performance without equalizer, with ANNE-ET{7, 6}, and with ANNE-AT{7, 6} are
compared to the B2B transmission case.

To evaluate the efficiency of the proposed advanced training scheme, we compare the
performance of the ANNE-AT to another identical ANN-based equalizer but trained using
the extensive training scheme introduced in [21]. For a fair comparison, all optimization
parameters as well as the ANN configuration are kept the same during the training process.
Such an ANN equalizer configuration that is trained using the extensive training (ET)
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scheme and comprises N input nodes and m hidden-layer nodes is denoted as ANNE-
ET{N,m}. As can be seen from Figure 5a, using ANNE-ET{7,6}, the BER = 10−3 is achieved
at the received optical power of 1.3 dBm with a power penalty as high as ∼2.9 dB relative
to the B2B transmission case. At BER = 10−9, the ANNE-ET{7,6} requires a received optical
power of 4.4 dBm, with a ∼1.4 dB power penalty compared to the B2B transmission case.
Thanks to the proposed advanced training scheme, the ANNE-AT provides 2 dB and 1.1 dB
power benefits over the ANNE-ET for achieving a BER of 10−3 and 10−9, respectively.

In Figure 5b, we explore the performance of the proposed ANNE at a longer fiber
transmission distance of L = 200 km. The same equalizer parameters N = 7 and m = 6 are
utilized. The BER performance achieved using the ANNE-AT{7,6} versus received optical
power are compared to that obtained with the no-equalization case, B2B transmission
case, and the equalization using the ANNE-ET{7,6}. It is obvious that both ANNE-AT
and ANNE-ET can extend the transmission distance up to 200 km. However, to obtain
a BER = 10−3, the ANNE-ET has a power penalty of 3.9 dB compared to the B2B case,
while the ANNE-AT has only a 1.5 dB penalty. On the other hand, compared to the B2B
case, to achieve a BER = 10−9, power penalties using the ANNE-ET and ANNE-AT are
2.2 dB and 1.2 dB, respectively. In other words, a 2.4 dB and 1 dB power benefit is achieved
by ANNE-AT, as opposed to ANNE-ET, to obtain a BER of 10−3 and 10−9, respectively.
Comparing Figure 5a,b, we find that at a BER of 10−3, the performance benefit provided by
the ANNE-AT over ANNE-ET increases at longer distances. That is because at a higher BER
and/or longer distances, the impact of noise is more severe, and the advanced training of
ANNE-AT under the noisy environment helps to achieve the better performance. Note that
for a specific transmission distance, the BER is determined from the following factors: (i) ISI
effect due to dispersion, which can be mitigated using the ANNE-AT equalizer provided
that the number of taps is larger than the ISI span of the channel, (ii) channel noise that
includes shot noise and thermal noise, and (iii) received optical power which depends on
the transmitted power and fiber loss. The main purpose of the ANNE-AT equalizer is to
mitigate the nonlinear distortions caused by fiber dispersion. The B2B results shown in
Figure 5a,b are the minimum BER obtainable for the given received signal power and noise
power levels. From these figures, it can be seen that ANNE-AT performance is quite close
to the B2B case.

To further demonstrate the efficiency of the proposed ANNE-AT, three types of com-
mon equalization schemes including feed-forward equalizer (FFE), decision feedback
equalizer (DFE), and maximum likelihood sequence estimator (MLSE) are considered for
comparative analysis. The received optical power required to achieve BER = 10−3 versus a
sweep of the fiber transmission distance is shown in Figure 6. Particularly, we compare
the BER performance of the ANNE-AT to FFE{7}, DFE{4, 3}, ANNE-ET, MLSE{7}, and
MLSE{9}, where {·} refers to the number of FFE taps or the memory size of the MLSE. In
the case of DFE, {·, ·} denotes the numbers of its feed-forward and feed-backward taps,
respectively. Note that the parameters of the ANNE-AT and ANNE-ET are fixed to N = 7
and m = 6 for all distance cases shown in Figure 6. For a fair comparison, we use the
advanced training scheme to train both the FFE and DFE equalizers. However, the MLSE is
trained using the extensive training scheme. Note that the MLSE training process aims to
construct a look-up table that considers all the distorted noise-free sequences that may be
received after the channel transmission. Once trained, the MLSE estimates the transmitted
sequence by comparing the received distorted sequence with all look-up table entries and
selects the sequence with highest probability. Therefore, it is impractical to train the MLSE
using the advanced training scheme as this will significantly enlarge the size of its look-up
table, leading to an infeasible equalization time.
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distance for the 10 Gbaud optical-fiber communication system. The equalization at the receiver is
performed using the FFE{7}, DFE{4,3}, ANNE-ET{7,6}, MLSE{7}, MLSE{9}, and ANNE-AT{7,6}.

As can be seen from Figure 6, the feasible transmission distance is limited to less
than 100 km if no equalization is used. The linear equalizers including the FFE and
DFE can barely extend the feasible transmission distance to around 100 km. They fail
to compensate for the nonlinear distortions at longer transmission distances. However,
nonlinear equalizers including the proposed ANNE-AT, the ANNE-ET, and the MLSE
can provide a BER performance benefit, significantly extending the transmission distance
feasibility. Clearly, the ANNE-AT shows superior BER performance over all other nonlinear
equalizers. The power benefit of the ANNE-AT over ANNE-ET ranges from 1.6 dB to 3.3 dB
with an average power benefit of 2.3 dB. Owing to the strength of the advanced training
scheme, the ANNE-AT also provides a 1.6 dB power benefit, on average, as opposed to the
MLSE{7}, and a slight power benefit over the MLSE{9}.

In terms of the overhead cost and memory usage required for equalization, Table 1
tabulates the computational complexity per symbol and the memory storage requirements
of the FFE, DFE, ANNE-ET, and MLSE compared to the proposed ANNE-AT. The minimum
overhead equalization cost and memory requirements are achieved by the FFE and DFE.
However, as can be seen from Figure 6, both the FFE and DFE provide poor compensation
performance benefit because of their limited ability against nonlinear system distortions.
Particularly, the computation cost per symbol of the FFE{N} and DFE{N1,N2} scales linearly
as ∼N and ∼(N1 + N2), where N is the number of FFE taps, and N1 and N2 are the
numbers of feed-forward and feed-backward taps of the DFE, respectively [36]. During
equalization, both the FFE and DFE also need to store the values of their tap weights,
where the number of FFE and DFE weight parameters is equal to their total number of
taps [36]. The memory requirements of the FFE{N} and DFE{N1,N2} therefore scale as ∼N
and ∼(N1 + N2) floating-point numbers, respectively. The computational complexity per
symbol and memory storage requirements of the ANNE-AT (as well as the ANNE-ET)
scale as ∼mN and ∼m(N + 1), respectively. However, the computational cost of the MLSE
scales exponentially as ∼2N per symbol, where N is the memory size of the MLSE [36].
In addition, the MLSE requires huge memory storage during the equalization process,
because it needs to store all entries of its look-up table to compare them with the received
distorted sequence and determine the most probable transmitted sequence [36]. It thus
follows that the memory usage requirements of the MLSE scale as high as the size of its
look-up table, i.e., ∼2N floating-point numbers.
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Table 1. A comparison of the computational complexity and memory storage requirements
during equalization.

Equalizer Per Symbol Computational Cost Memory Storage 1

FFE{N} N N
DFE{N1,N2} N1 + N2 N1 + N2

ANNE-AT/ET{N,m} mN m(N + 1)
MLSE{N} 2N 2N

1 Memory storage is given in terms of the required floating-point numbers to be stored.

From Table 1, to obtain the results provided in Figure 6, the FFE{7}, DFE{3, 4}, MLSE{7},
and MLSE{9} particularly require 7, 7, 128, and 512 multiplication operations per bit,
respectively, whereas the ANNE-AT{7,6} and ANNE-ET{7,6} need only 42 multiplication
operations per bit. During the equalization process, the ANNE-AT{7,6} and ANNE-ET{7,6}
also require a memory storage of 48 floating-point numbers, as opposed to 7, 7, 128,
and 512 floating-point numbers needed to be stored by the FFE{7}, DFE{3, 4}, MLSE{7},
and MLSE{9}, respectively. Hence, among all tested nonlinear equalizers that provide
the required performance benefit, the ANNE-AT is the most efficient equalizer from the
performance, computation complexity, and memory requirement points of view.

So far, we have assumed a noise-free EDFA. However, in addition to amplifying the
optical signal, actual EDFAs add optical noise to the signal due to spontaneous emission
effect [1,2]. The interaction between this added optical noise with the fiber dispersion
and square-law detection of the DD results in further BER performance degradation. To
investigate this degradation, we consider the 140 km communication scenario with a noisy
EDFA having a noise figure N f = 4.77 dB. The ANNE-AT model used to obtain the results
of Figure 5a is re-trained to include the effect of the EDFA optical noise. Figure 7 plots the
BER performance of the overall system including the EDFA noise effect versus the received
optical power. We compare the BER performance achieved using the ANNE-AT{7,6} with
that obtained in the no-equalization case, equalization using the ANNE-ET{7,6}, and the
zero-dispersion transmission case. Notice that the minimum BER that can be achieved in
this case is not the BER performance of the B2B transmission case, which does not include
the effect of the EDFA optical noise. Rather, the reference BER that we seek to converge
to, in this case, is the BER performance of the 140 km transmission over a non-dispersive
(i.e., β2 = 0 ps2/km) optical-fiber link, i.e., the zero-dispersion transmission case (‘crosses’
in Figure 7).
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Figure 7. BER performance of the 10 Gbaud optical-fiber communication system versus received
optical power with a noisy EDFA whose noise figure is 4.77 dB. The optical-fiber transmission distance
is 140 km. The performance without equalizer, with ANNE-ET{7, 6}, and with ANNE-AT{7, 6} are
compared to the zero-dispersion transmission case.
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As can be seen from Figure 7, the overall system performance slightly deteriorates
compared to the case of noise-free EDFA (see Figure 5a). The ANNE-ET obtains BER = 10−3

and 10−9 at received optical powers of 1.7 dBm and 5.0 dBm, respectively, as opposed
to the 1.3 dBm and 4.4 dBm needed in the case of noise-free EDFA. In other words, the
EDFA noise affects the performance obtained using the ANNE-ET by a 0.4 dB and 0.6 dB
at BER of 10−3 and 10−9, respectively. As compared to the zero-dispersion performance,
the ANNE-ET requires ∼3.1 dB and ∼1.5 dB power penalties to obtain the BER = 10−3

and 10−9, respectively. On the other hand, the ANNE-AT shows superior performance
that is quite close to the zero-dispersion transmission case, owing to the inclusion of the
system noise effect during its training process. Particularly, the presence of the EDFA
optical noise reduces the BER performance achieved utilizing the ANNE-AT by 0.4 dB
at both the BER = 10−3 and 10−9 levels (see Figures 5a and 7). Compared to the zero-
dispersion transmission case, the ANNE-AT requires power penalties of as low as ∼1.1 dB
and∼0.2 dB to achieve BER = 10−3 and 10−9, respectively. Moreover, the proposed ANNE-
AT outperforms the ANNE-ET by power benefits of∼2 dB and∼1.3 dB for achieving a BER
of 10−3 and 10−9, respectively. Comparing this with the case of no optical noise (Figure 5a),
we find that the inclusion of the EDFA noise effect does not change the average power
benefit of the proposed ANNE-AT over the ANNE-ET.

3.2. A 28-Gbaud Optical-Fiber Communication System

This subsection investigates the performance of the proposed equalizer to mitigate
the impairments induced at a higher transmission data rate. Particularly, we discuss its
performance to mitigate the distortions of an IMDD short-reach fiber communication
system operating at a baud rate of 28 Gbaud with optical-fiber length L ranging from a few
meters up to a few tens of kilometers. Such communication systems are widely deployed in
typical communication scenarios of varied applications, e.g., data center networks (DCNs)
and cloud radio access networks (C-RANs). They can exist as 28 Gbaud serial links or
as 4× 28 Gbaud parallel links, implementing a data rate of 100 Gbaud. Note that optical
amplifiers are not typically used in these systems due to short transmission distances.
Therefore, for all results shown in this subsection, we consider the exact system setup given
in Figure 4 excluding the EDFA block, which is not required here.

In Figure 8, we show the BER performance obtained at a fiber transmission distance
L = 20 km versus received optical power. The BER achieved using the ANNE-AT{7,6} is
compared to the system performance at no equalization, the B2B transmission case, and
equalization utilizing the ANNE-ET{7,6}. It is clear that increasing the data rate significantly
deteriorates the system performance, resulting in an infeasible transmission in the case of
no equalization. However, the ANNE-AT can be utilized to improve dispersion tolerance,
extending the feasible transmission distance. Compared to the B2B transmission case, the
ANNE-AT is shown to achieve the BER = 10−3 with a 2.1 dB power penalty, whereas the
ANNE-ET has a power penalty of 5.9 dB. In other words, the ANNE-AT outperforms the
ANNE-ET with a ∼3.8 dB power benefit to achieve BER = 10−3 in this case.

To demonstrate efficiency of the ANNE-AT compared to other equalizers, Figure 9
plots the received optical power required to achieve BER = 10−3 versus the fiber transmis-
sion distance. The compensation performance of the ANNE-AT{7,6} is compared to the
performance of the FFE{7}, DFE{4,3}, MLSE{7}, and MLSE{9}, as well as the ANNE-ET{7,6}.
As can be seen, the proposed ANNE-AT provides an average power benefit of 1.7 dB and
1.2 dB compared to the ANNE-ET and MLSE{7}, respectively, while slightly outperforming
the MLSE{9}. Moreover, the ANNE-AT significantly reduces the overhead cost and memory
storage required by the MLSE during equalization (see Table 1). A total of 42 multiplication
operations per bit are required by the ANNE-AT as opposed to 128 and 512 in cases of
the MLSE{7} and MLSE{9}, respectively. In addition, the MLSE{7} and MLSE{9} require
a memory storage of as high as 128 and 512 floating-point numbers as opposed to only
48 floating-point numbers needed to be stored by the ANNE-AT.
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Although we considered only the case of on–off keying (OOK) modulation format
throughout this paper, the proposed ANN equalizer can be easily applied to higher modu-
lation formats, e.g., pulse amplitude modulation (PAM) 4 or PAM 8. For instance, if PAM 4
were considered, the output of the ANN equalizer would apply on symbols, rather than
bits, and vary between four states instead of the current two states of the OOK. However,
we defer this study to future work.

4. Conclusions

We propose an improved artificial neural network (ANN)-based equalization method.
It effectively compensates for the nonlinear impairments associated to the received electrical
signal in the short-haul fiber-optic communication systems based on intensity modulation
and direct photo-detection. The proposed equalizer consists of a single hidden neural
network layer which significantly reduces the overhead computational cost and mem-
ory storage requirements of the equalization step. The performance and efficiency of the
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proposed equalizer are demonstrated through 10- and 28-Gbaud short-haul fiber communi-
cation systems. Although the minimum overhead equalization cost and memory usage
are achieved by the linear feed-forward equalizer (FFE) and decision feedback equalizer
(DFE), they both provide poor compensation performance benefit due to their inability to
mitigate nonlinear system distortions. The proposed ANN equalizer, on the other hand,
provides the required nonlinear compensation performance benefit with slightly higher
computational cost and memory usage. The proposed ANN equalizer with the integrated
advanced training scheme also outperforms the maximum likelihood sequence estimator
(MLSE), achieving an average power benefit of more than 1 dB, when the same number of
taps and memory size is considered. Furthermore, the proposed ANN equalizer requires
much less computational cost and memory storage. Its cost and memory usage scale
linearly with the number of input nodes N and with the number of hidden-layer nodes
m, whereas the computational cost and memory usage of the MLSE scale exponentially
with the channel memory size N. Note that the power consumption of the proposed
equalizer is not discussed in this paper. The power consumption scales directly with the
computational cost and memory usage of the equalizer. In other words, the ANN equalizer
should significantly reduce the high power consumption required by the MLSE as well. It
is also worth emphasizing that the proposed ANN equalizer can easily be implemented in
a field-programmable gate array (FPGA) integrated circuit/kit and attached to any avail-
able/commercial digital signal processing (DSP) unit without any hardware constraints
or limitations.
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