Early Identification of Root Damages Caused by Western Corn Rootworms Using a Minimally Invasive Root Phenotyping Robot—MISIRoot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Shoot Data Analysis
2.3. Root Data Analysis
3. Results
3.1. Data Analysis
3.2. Data Analysis for High-Resolution Images Collected by MISIRoot
3.3. Data Analysis for Data Processed by Deep Learning Model
3.4. Results Comparison between Three Different Approaches
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corn and Soybean Production Down in 2022, USDA Reports Corn Stocks Down, Soybean Stocks Down from Year Earlier Winter Wheat Seedings Up for 2023. Available online: https://www.nass.usda.gov/Newsroom/2023/01-12-2023.php (accessed on 24 May 2023).
- Calles-Torrez, V.; Knodel, J.J.; Boetel, M.A. Integrated Pest Management of Corn Rootworms in North Dakota; NDSU Extension Service, North Dakota State University: Fargo, ND, USA, 2022. [Google Scholar]
- Hodgson, E.W. Western Corn Rootworm; Utah State University Extension and Utah Plant Pest Diagnostic Laboratory: Logan, UT, USA, 2008. [Google Scholar]
- Purdue University Field Crops IPM Corn Rootworms. Available online: https://extension.entm.purdue.edu/fieldcropsipm/insects/corn-rootworms.php (accessed on 24 May 2023).
- Oleson, J.D.; Park, Y.L.; Nowatzki, T.M.; Tollefson, J.J. Node-Injury Scale to Evaluate Root Injury by Corn Rootworms (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2005, 98, 1–8. [Google Scholar] [CrossRef]
- Amato, M.; Lupo, F.; Bitella, G.; Bochicchio, R.; Abdel Aziz, M.; Celano, G. A High Quality Low-Cost Digital Microscope Minirhizotron System. Comput. Electron. Agric. 2012, 80, 50–53. [Google Scholar] [CrossRef]
- Zeng, G.; Birchfield, S.T.; Wells, C.E. Automatic Discrimination of Fine Roots in Minirhizotron Images. New Phytol. 2008, 177, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, M.; Baird, A.J.; Morris, P.J.; Harris, A.; Huck, J.J. EnRoot: A Narrow-Diameter, Inexpensive and Partially 3D-Printable Minirhizotron for Imaging Fine Root Production. Plant Methods 2019, 15, 101. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.T.; MacCurdy, R.B.; Jung, J.K.; Shaff, J.E.; McCouch, S.R.; Aneshansley, D.J.; Kochian, L.V. Three-Dimensional Root Phenotyping with a Novel Imaging and Software Platform. Plant Physiol. 2011, 156, 455–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer-Pascuzzi, A.S.; Zurek, P.R.; Benfey, P.N. High-Throughput, Noninvasive Imaging of Root Systems. Methods Mol. Biol. 2013, 959, 177–187. [Google Scholar] [CrossRef]
- Mairhofer, S.; Zappala, S.; Tracy, S.; Sturrock, C.; Bennett, M.J.; Mooney, S.J.; Pridmore, T.P. Recovering Complete Plant Root System Architectures from Soil via X-Ray μ-Computed Tomography. Plant Methods 2013, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Schulz, H.; Postma, J.A.; van Dusschoten, D.; Scharr, H.; Behnke, S. Plant Root System Analysis from MRI Images. In Computer Vision, Imaging and Computer Graphics. Theory and Application; Communications in Computer and Information Science; Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 359, pp. 411–425. [Google Scholar] [CrossRef]
- Pflugfelder, D.; Metzner, R.; Dusschoten, D.; Reichel, R.; Jahnke, S.; Koller, R. Non-Invasive Imaging of Plant Roots in Different Soils Using Magnetic Resonance Imaging (MRI). Plant Methods 2017, 13, 102. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, L.; Cui, X.; Chen, J.; Cao, X.; Lin, H. Ground-Penetrating Radar-Based Automatic Reconstruction of Three-Dimensional Coarse Root System Architecture. Plant Soil 2014, 383, 155–172. [Google Scholar] [CrossRef]
- Zappala, S.; Mairhofer, S.; Tracy, S.; Sturrock, C.J.; Bennett, M.; Pridmore, T.; Mooney, S.J. Quantifying the Effect of Soil Moisture Content on Segmenting Root System Architecture in X-Ray Computed Tomography Images. Plant Soil 2013, 370, 35–45. [Google Scholar] [CrossRef]
- Zhang, X.; Derival, M.; Albrecht, U.; Ampatzidis, Y. Evaluation of a Ground Penetrating Radar to Map the Root Architecture of HLB-Infected Citrus Trees. Agronomy 2019, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Qiu, W.; Jin, J. MISIRoot: A Robotic, Minimally Invasive, in Situ Imaging System for Plant Root Phenotyping. Trans. ASABE 2021, 64, 1647–1658. [Google Scholar] [CrossRef]
- Jin, J.; Qiu, W.; Song, Z.; Wang, L. Root Imaging Device. U.S. Patent 11,481,958, 25 October 2022. [Google Scholar]
- Wang, Z.; Chen, J.; Raza, M.A.; Zhang, J.; Tan, X.; Saeed, A.; Ma, J.; Yang, F.; Yang, W. Predicting Maize Leaf Area Index by Partial Least Square Combined with Wavelet Transform. Agron. J. 2022, 114, 2860–2873. [Google Scholar] [CrossRef]
- Ma, D.; Maki, H.; Neeno, S.; Zhang, L.; Wang, L.; Jin, J. Application of Non-Linear Partial Least Squares Analysis on Prediction of Biomass of Maize Plants Using Hyperspectral Images. Biosyst. Eng. 2020, 200, 40–54. [Google Scholar] [CrossRef]
- Das Choudhury, S.; Bashyam, S.; Qiu, Y.; Samal, A.; Awada, T. Holistic and Component Plant Phenotyping Using Temporal Image Sequence. Plant Methods 2018, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, X.; Shi, M.; Wang, P. Performance Comparison of RGB and Multispectral Vegetation Indices Based on Machine Learning for Estimating Hopea Hainanensis SPAD Values under Different Shade Conditions. Front. Plant Sci. 2022, 13, 2615. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of Color Vegetation Indices for Automated Crop Imaging Applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Woebbecke, D.; Meyer, G.; Von Bargen, K.; Woebbecke, D.M.; Meyer, G.E.; Mortensen, D.A. Plant Species Identification, Size, and Enumeration Using Machine Vision Techniques on near-Binary Images. Opt. Agric. For. 1993, 1836, 208–219. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J.S. Assessing Leaf Pigment Content and Activity with a Reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Sellaro, R.; Crepy, M.; Trupkin, S.A.; Karayekov, E.; Buchovsky, A.S.; Rossi, C.; Casal, J.J. Cryptochrome as a Sensor of the Blue/Green Ratio of Natural Radiation in Arabidopsis. Plant Physiol. 2010, 154, 401–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kataoka, T.; Kaneko, T.; Okamoto, H.; Hata, S. Crop Growth Estimation System Using Machine Vision. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 20–24 July 2003; pp. 1079–1083. [Google Scholar] [CrossRef]
- Hague, T.; Tillett, N.D.; Wheeler, H. Automated Crop and Weed Monitoring in Widely Spaced Cereals. Precis. Agric. 2006, 7, 21–32. [Google Scholar] [CrossRef]
- Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G. Multi-Temporal Crop Surface Models Combined with the RGB Vegetation Index from UAV-Based Images for Forage Monitoring in Grassland. In Proceedings of the XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FASTERRCNN_RESNET50_FPN. Available online: https://pytorch.org/vision/main/models/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html (accessed on 24 May 2023).
Index | Formula | References |
---|---|---|
Excess Green | [23] | |
Excess Green minus Excess Red | [24] | |
Normalized Green-red Difference Index | [25] | |
Normalized Blue-red Difference Index | [25] | |
Red Green Ratio Index | [26] | |
Green Blue Ratio Index | [27] | |
Color Index of Vegetation Extraction | [28] | |
Vegetative Index | [29] | |
Red Green Blue Vegetation Indices | [30] | |
Modified Green Red Vegetation Indices | [31] |
Index | p-Values |
---|---|
Excess Green | 0.5998 |
Excess Green minus Excess Red | 0.3050 |
Normalized Green-red Difference Index | 0.0652 |
Normalized Blue-red Difference Index | 0.4194 |
Red Green Ratio Index | 0.0633 |
Green Blue Ratio Index | 0.4460 |
Color Index of Vegetation Extraction | 0.5593 |
Vegetative Index | 0.2143 |
Red Green Blue Vegetation Indices | 0.1399 |
Modified Green Red Vegetation Indices | 0.0652 |
R | G | B | H | S | V | |
---|---|---|---|---|---|---|
p-values for thin roots | 0.0289 | 0.0176 | 0.0196 | 0.4149 | 0.5186 | 0.0268 |
p-values for thick roots | 0.4108 | 0.6796 | 0.9694 | 0.1699 | 0.3332 | 0.4517 |
Number of Roots Detected | Average Depth of Roots | Average Radius of Roots | |
---|---|---|---|
Thin | 1.5791 × 10−6 | 6.0481 × 10−5 | 0.4545 |
Thick | 0.5094 | 0.1178 | 0.6605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Zhao, T.; Jin, J. Early Identification of Root Damages Caused by Western Corn Rootworms Using a Minimally Invasive Root Phenotyping Robot—MISIRoot. Sensors 2023, 23, 5995. https://doi.org/10.3390/s23135995
Song Z, Zhao T, Jin J. Early Identification of Root Damages Caused by Western Corn Rootworms Using a Minimally Invasive Root Phenotyping Robot—MISIRoot. Sensors. 2023; 23(13):5995. https://doi.org/10.3390/s23135995
Chicago/Turabian StyleSong, Zhihang, Tianzhang Zhao, and Jian Jin. 2023. "Early Identification of Root Damages Caused by Western Corn Rootworms Using a Minimally Invasive Root Phenotyping Robot—MISIRoot" Sensors 23, no. 13: 5995. https://doi.org/10.3390/s23135995
APA StyleSong, Z., Zhao, T., & Jin, J. (2023). Early Identification of Root Damages Caused by Western Corn Rootworms Using a Minimally Invasive Root Phenotyping Robot—MISIRoot. Sensors, 23(13), 5995. https://doi.org/10.3390/s23135995