Development and Effectiveness Verification of Metaverse Cognitive Therapy Contents for MCI Patients
Abstract
:1. Introduction
2. Development of Metaverse Cognitive Therapy Contents for MCI Patients
2.1. Content Scenario Development
2.2. Development of Cognitive Therapy Contents
3. Experiment Process and Method
3.1. Research Procedure
3.2. Recruit Subjects
- (1)
- Appeal for memory loss by a patient or guardian;
- (2)
- Normal daily life;
- (3)
- In the cognitive intelligence test, considering the age and education level, memory damage below −1.5 standard deviation compared to the average is identified.
3.3. Compliance with Research Ethics
3.4. Clinical Trial Conducted
3.5. Measurement Tools and Data Analysis
4. Experimental Results
4.1. MMSE-KC Score Result Analysis
4.2. Data Statistics in Contents
- (1)
- Total performance time of contents;
- (2)
- Number of hints used;
- (3)
- The number of items picked up;
- (4)
- The number of correct answers (the number of times they put the right item in the cart);
- (5)
- The number of incorrect answers (the number of times they put the wrong item in the cart).
4.2.1. Change in Content Total Performance Time
4.2.2. Change in the Number of Hints Used
4.2.3. Change in the Number of Items Picked Up
4.2.4. The Number of Correct Answers (the Number of Times They Put the Right Item in the Cart)
4.2.5. The Number of Incorrect Answers (the Number of Incorrect Items Put in the Cart)
4.2.6. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Health, T.L.P. Reinvigorating the public health response to dementia. Lancet Public Health 2021, 6, e696. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, S.; Reisberg, B.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett, D.; Chertkow, H. Mild cognitive impairment. Lancet 2006, 367, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Ko, Z. Current state of senile dementia and improvement of the long term care insurance for elderly people. J. Korea Acad. Ind. Coop. Soc. 2012, 13, 5816–5825. [Google Scholar]
- Swaab, D.; Dubelaar, E.; Hofman, M.; Scherder, E.; Van Someren, E.; Verwer, R. Brain aging and Alzheimer’s disease; use it or lose it. Prog. Brain Res. 2002, 138, 343–373. [Google Scholar]
- Greicius, M.D.; Geschwind, M.D.; Miller, B.L. Presenile dementia syndromes: An update on taxonomy and diagnosis. J. Neurol. Neurosurg. Psychiatry 2002, 72, 691–700. [Google Scholar] [CrossRef]
- Rolinski, M.; Fox, C.; Maidment, I.; McShane, R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson’s disease dementia and cognitive impairment in Parkinson’s disease. Cochrane Database Syst. Rev. 2012, 2012, CD006504. [Google Scholar] [CrossRef] [Green Version]
- Middleton, L.E.; Yaffe, K. Promising strategies for the prevention of dementia. Arch. Neurol. 2009, 66, 1210–1215. [Google Scholar] [CrossRef] [Green Version]
- Kivipelto, M.; Mangialasche, F.; Ngandu, T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 653–666. [Google Scholar] [CrossRef]
- Mowszowski, L.; Batchelor, J.; Naismith, S.L. Early intervention for cognitive decline: Can cognitive training be used as a selective prevention technique? Int. Psychogeriatr. 2010, 22, 537–548. [Google Scholar] [CrossRef]
- Breton, A.; Casey, D.; Arnaoutoglou, N.A. Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: Meta-analysis of diagnostic accuracy studies. Int. J. Geriatr. Psychiatry 2019, 34, 233–242. [Google Scholar] [CrossRef]
- Reisberg, B.; Prichep, L.; Mosconi, L.; John, E.R.; Glodzik-Sobanska, L.; Boksay, I.; Monteiro, I.; Torossian, C.; Vedvyas, A.; Ashraf, N. The pre–mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease. Alzheimer’s Dement. 2008, 4, S98–S108. [Google Scholar] [CrossRef]
- Bae, H.-J. Treatment of Mild Cognitive Impairment. Dement. Neurocognitive Disord. 2003, 2, 108–114. [Google Scholar]
- Han, J.; Ko, S.; Kwon, J.; Jo, I.; Ahn, S.; Han, C.; Park, M. Efficacy of a multifactorial cognitive ability enhancement program in MCI (Mild Cognitive Impairment). Korean J. Clin. Psychol. 2008, 27, 805–821. [Google Scholar] [CrossRef]
- Lee, J.K. Cognitive rehabilitation of dementia. Brain Neurorehabilit. 2015, 8, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.O.; Bailenson, J.N.; Obradović, J.; Aguiar, N.R. Virtual reality’s effect on children’s inhibitory control, social compliance, and sharing. J. Appl. Dev. Psychol. 2019, 64, 101052. [Google Scholar] [CrossRef]
- Bashiri, A.; Ghazisaeedi, M.; Shahmoradi, L. The opportunities of virtual reality in the rehabilitation of children with attention deficit hyperactivity disorder: A literature review. Korean J. Pediatr. 2017, 60, 337. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Cerasa, A.; Ciancarelli, I.; Pignolo, L.; Tonin, P.; Iosa, M.; Morone, G. The Arrival of the Metaverse in Neurorehabilitation: Fact, Fake or Vision? Biomedicines 2022, 10, 2602. [Google Scholar] [CrossRef] [PubMed]
- Chengoden, R.; Victor, N.; Huynh-The, T.; Yenduri, G.; Jhaveri, R.H.; Alazab, M.; Bhattacharya, S.; Hegde, P.; Maddikunta, P.K.R.; Gadekallu, T.R. Metaverse for Healthcare: A Survey on Potential Applications, Challenges and Future Directions. arXiv 2022, arXiv:2209.04160 2022. [Google Scholar] [CrossRef]
- Usmani, S.S.; Sharath, M.; Mehendale, M. Future of mental health in the metaverse. Gen. Psychiatry 2022, 35, e100825. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Xie, L.; Liu, Y.; Li, K.; Jiang, B.; Lu, Y.; Yang, Y.; Yu, H.; Song, Y.; Bai, C. The metaverse in current digital medicine. Clin. Ehealth 2022, 5, 52–57. [Google Scholar] [CrossRef]
- Song, S.W.; Chung, D.-H. Explication and rational conceptualization of metaverse. Informatiz. Policy 2021, 28, 3–22. [Google Scholar]
- Mystakidis, S. Metaverse. Encyclopedia 2022, 2, 486–497. [Google Scholar] [CrossRef]
- Ryu, C.H.; Kim, K.-W.; Lee, B.-C.; Yeon, S.-J.; Lee, J.; You, J.S.H. Effects of an anger management virtual reality cognitive behavioral therapy program on EEG patterns among destructive and impulse-control disorder patients. J. Med. Imaging Health Inform. 2016, 6, 1319–1323. [Google Scholar] [CrossRef]
- Rizzo, A.A.; Bowerly, T.; Buckwalter, J.G.; Klimchuk, D.; Mitura, R.; Parsons, T.D. A virtual reality scenario for all seasons: The virtual classroom. Cns Spectr. 2009, 11, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Cho, Myeon Gyun, A Study on Smart Aging System for the Elderly based on Metaverse. J. Digit. Converg. 2022, 20, 261–268. [CrossRef]
- Wen, D.; Lan, X.; Zhou, Y.; Li, G.; Hsu, S.-H.; Jung, T.-P. The study of evaluation and rehabilitation of patients with different cognitive impairment phases based on virtual reality and EEG. Front. Aging Neurosci. 2018, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Visser, P.J.; Verhey, F.R. Mild cognitive impairment as predictor for Alzheimer’s disease in clinical practice: Effect of age and diagnostic criteria. Psychol. Med. 2008, 38, 113–122. [Google Scholar] [CrossRef]
- Chang, E.; Kim, H.T.; Yoo, B. Virtual reality sickness: A review of causes and measurements. Int. J. Hum. Comput. Interact. 2020, 36, 1658–1682. [Google Scholar] [CrossRef]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef]
Scenario Name | Contents | Effect |
---|---|---|
Shopping | Product selection according to the purchase list, cart included | Memory, judgment |
Cooking | Choosing ingredients, cooking in order | Attention, execution ability |
Banking | Deposit, withdrawal, remittance | Memory, attention |
Visiting a hospital | Reception to the hospital, visiting the department wanted | Execution ability, attention |
Taking a walk | Communicating with people, sitting on a bench | Communication, judgment |
Exclusion Criteria |
---|
|
MCI Patients | Normal Group | |
---|---|---|
Age, mean (SD) | 74.23 (7.50) | 71.45 (3.95) |
Sex (man), n (%) | 8 (25.8) | 3 (12) |
Sex (women), n (%) | 23 (74.2) | 22 (88) |
MMSE-KC, mean (SD) | 21.68 (3.62) | 26.22 (2.57) |
School years completed, mean (SD) | 8.68 (4.61) | 8.91 (3.16) |
Group | Before Training (Session 1) | After Training (Session 8) | t (z) | p |
---|---|---|---|---|
Total | 24.38 ± 4.08 | 25.29 ± 3.57 | −2.59 | 0.00 * |
MCI patients | 21.68 ± 3.62 | 23.73 ± 3.72 | −4.06 | 0.00 * |
Normal group | 26.22 ± 2.57 | 27.78 ± 2.73 | 0.46 | 0.64 |
Group | Mean ± Std. Dev. | F | p-Value | F Crit | |
---|---|---|---|---|---|
Before Training (Session 1) | After Training (Session 8) | ||||
MCI patients | 230.78 ± 42.68 | 207.50 ± 20.02 | 23.16 | 0.00 ** | 4.75 |
Normal group | 151.45 ± 20.33 | 162.43 ± 6.08 | 0.23 | 0.64 | 4.75 |
Group | Mean ± Std. Dev. | F | p-Value | F Crit | |
---|---|---|---|---|---|
Before Training (Session 1) | After Training (Session 8) | ||||
MCI patients | 1.79 ± 0.59 | 1.11 ± 0.29 | 11.72 | 0.01 ** | 4.75 |
Normal group | 1 ± 0.34 | 0.6 ± 0.16 | 8.16 | 0.01 ** | 4.75 |
Group | Mean ± Std. Dev. | F | p-Value | F Crit | |
---|---|---|---|---|---|
Before Training (Session 1) | After Training (Session 8) | ||||
MCI patients | 6.5 ± 0.52 | 11.02 ± 1.97 | 0.24 | 0.63 | 4.75 |
Normal group | 5.18 ± 0.15 | 11.68 ± 1.82 | 64.84 | 0.00 ** | 4.75 |
Group | Mean ± Std. Dev. | F | p-Value | F Crit | |
---|---|---|---|---|---|
Before Training (Session 1) | After Training (Session 8) | ||||
MCI patients | 0.89 ± 0.29 | 3.07 ± 1.34 | 0.70 | 0.41 | 4.75 |
Normal group | 0.68 ± 0.38 | 4.03 ± 1.04 | 39.51 | 0.00 ** | 4.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, G.S.; Kim, J.; Jeong, W.; Oh, S.; Whangbo, T.K. Development and Effectiveness Verification of Metaverse Cognitive Therapy Contents for MCI Patients. Sensors 2023, 23, 6010. https://doi.org/10.3390/s23136010
Oh GS, Kim J, Jeong W, Oh S, Whangbo TK. Development and Effectiveness Verification of Metaverse Cognitive Therapy Contents for MCI Patients. Sensors. 2023; 23(13):6010. https://doi.org/10.3390/s23136010
Chicago/Turabian StyleOh, Gi Sung, Jehyun Kim, Wonjun Jeong, Seokhee Oh, and Taeg Keun Whangbo. 2023. "Development and Effectiveness Verification of Metaverse Cognitive Therapy Contents for MCI Patients" Sensors 23, no. 13: 6010. https://doi.org/10.3390/s23136010
APA StyleOh, G. S., Kim, J., Jeong, W., Oh, S., & Whangbo, T. K. (2023). Development and Effectiveness Verification of Metaverse Cognitive Therapy Contents for MCI Patients. Sensors, 23(13), 6010. https://doi.org/10.3390/s23136010