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Abstract: While system identification methods have developed rapidly, modeling the process of
batch polymerization reactors still poses challenges. Therefore, designing an intelligent modeling
approach for these reactors is important. This paper focuses on identifying actual models for
batch polymerization reactors, proposing a novel recursive approach based on the expectation-
maximization algorithm. The proposed method pays special attention to unknown inputs (UIs),
which may represent modeling errors or process faults. To estimate the UIs of the model, the recursive
expectation-maximization (EM) technique is used. The proposed algorithm consists of two steps: the
E-step and the M-step. In the E-step, a Q-function is recursively computed based on the maximum
likelihood framework, using the UI estimates from the previous time step. The Kalman filter is
utilized to calculate the estimates of the states using the measurements from sensor data. In the M-
step, analytical solutions for the UIs are found through local optimization of the recursive Q-function.
To demonstrate the effectiveness of the proposed algorithm, a practical application of modeling batch
polymerization reactors is presented. The performance of the proposed recursive EM algorithm
is compared to that of the augmented state Kalman filter (ASKF) using root mean squared errors
(RMSEs). The RMSEs obtained from the proposed method are at least 6.52% lower than those from
the ASKF method, indicating superior performance.

Keywords: intelligent modeling; batch polymerization reactors; state estimation; recursive
expectation-maximization algorithm; process fault; sensor data

1. Introduction

Batch reactors are commonly utilized in industries that focus on the production of high-
value products with low volume, such as fine chemicals, pharmaceuticals, biochemicals,
and food products. The modern trend in today’s competitive economy is to enhance
batch operation performance while ensuring consistent and high-quality products. The
precision of temperature regulation during the reaction process plays a crucial role in
determining the quality and yield of the final products in batch processing [1]. In order to
improve the operation of the process and achieve optimal control performance, an accurate
model of the batch reactor temperature is required [2–4]. The polymerization reaction
is the most prevalent batch reaction, and the intermittent reactor, as a critical reactor for
polypropylene synthesis, becomes an important element of the control process. However,
owing to the peculiarity of chemical production, there are several process control issues
in the typical batch polymerization reactor, which manifest as time-delay, nonlinearity,
uncertainty, variable coupling, and other issues [5,6]. Compared to traditional model-based
control, advanced control has the potential to significantly enhance industrial production.
Thus, developing an accurate temperature model for batch reactors and implementing
strict temperature control are crucial not only for maintaining process temperature within
the desired range, but also for advancing control technology in theory and practice [7,8].
The polymerization process, which is the most critical step in polymer manufacturing,
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is carried out using a polymerization reactor. As a vital piece of equipment in chemical
manufacturing, the reactor has a significant impact on the quality and quantity of chemical
products produced. Batch reactors are typically used for the production of chemical
products in small batches, a range of types, and extended reaction periods [9–11]. An
accurate batch reactor model is of great significance to reduce carbon emissions and to
meet sustainable development goals (SDG) [12]. However, modeling batch reactors in
polymerization reaction engineering is a challenging task due to the complex chemical
reaction mechanism and the unpredictable, nonlinear, and time-varying nature of the
reaction process [13].

Given these limitations, it is not surprising that significant attention has been given
to the development of modeling for batch reactor processes. Mathematical models for
chemical processes can be classified into three categories based on the methodologies and
ideas used. The first category comprises mathematical models with a strong theoretical
foundation, primarily built on relevant physics and chemical principles. In [14], to in-
vestigate the thermal behavior of polymerizing particles in various reactor environments,
particle stability analysis with population balance modeling is integrated to simulate the
dynamics of the entire particle population as they flow. An industrial perspective for the
development of polymer reaction engineering models and their application to create new
materials, products, and improved or novel processes is proposed in [15]. Membrane
reactor modeling, simulation, and operability analysis approaches are introduced in [16];
these approaches are then employed for simulating the polymer membrane reactor unit
and performing the operability mapping for identifying the Pareto frontier and redesign-
ing the membrane reactor. The population balance approach is extended to account for
heat transfer limitations at the individual particle level. Ref. [17] proposed a steady-state
mathematical model for propylene polymerization in slurry and bulk phases. The model
incorporates detailed mass, energy, and momentum balances to account for all chemical
species and heat transfer mechanisms in the reaction environment. The second type of
mathematical model is primarily constructed from data obtained during normal system
operation, such as input and output data or experimental outcomes’ data. Then, the data-
driven identification methods are employed in batch reactor modeling. For the field of
heat transfer in renewable energy systems and prediction of the remaining useful life of
lithium-ion batteries, alongside the familiar neural network and fuzzy- and gene-based
techniques, emerging ensemble machine learning methods, like Boosted regression tech-
niques, K-means, K-nearest neighbor (KNN), CatBoost, and XGBoost are gaining traction
due to their enhanced architectures and ability to handle diverse data types [12,18]. A
supervisor design for a pressurized reactor unit in the presence of sensor and actuator
faults has been proposed by [19]. A novel approach to modeling using artificial neural
networks has been suggested, which enables the quick development of a model from data
collected during various batch experiments [20]. Both the aforementioned categories have
limitations. Specifically, determining the parameters in mechanism models can be difficult,
while data-driven approaches may lack interpretability. The third category of mathematical
models combines the benefits of the previous two types of models, creating a hybrid system
model based on the combined use of mechanistic and experimental modeling. A key com-
ponent of this modeling methodology is the utilization of sensor data. After constructing
the first principle model, we rely on the information provided by the sensors to accurately
estimate the states and identify process faults. A common approach is to treat the process
fault as an unknown input (UI). The presence of internal and external factors in complex
chemical environments and process industries is inevitable. The model can be adjusted to
account for various factors that contribute to its process fault, including system modeling
errors and incorrect parameters, by defining them as UIs.

In recent decades, the issue of how to solve UIs has received considerable attention. A
common approach to address this issue is to treat UIs either as a persistent bias or a random
process with known statistical properties and incorporate them into the system state. This
led to the development of the augmented state Kalman filter (ASKF) [21]. An observer
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was developed to estimate the UIs, and the necessary and sufficient conditions for its
existence were presented in [22]. A switched reduced-order state observer design problem
with unknown or partially known inputs was formulated to develop a macroscopic traffic
stream model [23]. An alternative approach is to model UIs as a parameter conforming
to a Markov transition probability, which can be accomplished using a multiple model
approach [24]. The machine learning technique has facilitated the identification of UIs
and state estimation, and various methods, such as expectation-maximization (EM) and
variational Bayesian (VB) techniques, have been utilized for this purpose [25,26]. While the
VB approximation is a distribution-estimation method [27], the EM algorithm is focused
on point-estimation. Both techniques use iterative optimization to obtain the solutions.
The previous category discussed the EM algorithm, which is commonly referred to as
batch EM (BEM) and was first introduced by [28]. The fundamental disadvantage of the
BEM method is that it is computationally demanding. The recursive implementation of
the EM algorithm has lately attracted scholarly interest due to its capacity to minimize
computing overhead [29]. The first proposal for a recursive EM (REM) algorithm was
made by Titterington [30]. The technique is based on the stochastic gradient approach. To
update parameters online, the Fisher information matrix (FIM) of complete data is involved.
Cappé derived a stochastic approximation step instead of inverting the FIM to calculate the
conditional expectation of likelihood [31,32]. Initially, the REM algorithm was developed to
address the parameters of hidden Markov models. Recently, the use of this technique has
expanded beyond its original application and it has been employed to address parameter
estimation difficulties in the field of system modeling [33].

This article introduces the KF-based REM algorithm, an approach for the real-time
state estimation and identification of UIs in batch polymerization reactors. In contrast to
conventional methods, the KF-based REM algorithm considers unknown inputs (UIs) as
unknown parameters that need to be estimated. At the same time, it treats system states as
hidden variables. The algorithm uses sufficient statistics from sensor data to formulate a
recursive Q-function for the state-space model in the E-step, enabling simultaneous and
recursive estimation of UIs and state variables.Due to its real-time capabilities and potential
to reduce computational resources, the KF-based REM algorithm is highly suitable for
practical applications, such as state and parameter estimation for large-scale systems. The
main contributions of this work can be summarized as follows:

• Model mismatch is inevitable for batch polymerization reactors because of their
complex characteristics and high nonlinearity. The problem of accurate modeling for
batch polymerization reactors is addressed in this work.

• A recursive EM algorithm is derived from the conventional EM algorithm to im-
plement estimation for states and unknown inputs. The recursive EM method has
the benefits of real-time and computational efficiency. For the batch polymerization
system and some other high-dimensional systems, the recursive EM algorithm is
more practical.

2. First Principle Modeling of Batch Polymerization Reactor

A small batch process in which several operational stages are executed in a specified
process or required sequence is known as an intermittent production process. in general,
various reaction phases demand different process performance indexes. The structural
features of the intermittent reactor, as the heart of the intermittent manufacturing pro-
cess, influence the reaction process’ characteristics. The heat transmission time from the
heat-conducting oil to the reactor materials is affected by the material and thickness of the
reactor wall. The cooling water takes a long time to remove the heat from the materials
in the reactor due to the length of the serpentine tube and the thickness of the tube wall,
so the intermittent process temperature model will have a long lag time. The intermittent
polymerization reaction process, which incorporates energy transfer, material conversion,
heat balancing, reaction rate, concentration fluctuations, and other factors, is a compli-
cated manufacturing process. The reactant conversion rate, reactant concentration, reactor



Sensors 2023, 23, 6021 4 of 17

temperature, pressure, and other variables, fluctuate during the polymerization reaction,
resulting in an intermittent polymerization reaction that is a nonlinear process. Directly
deriving an exact mathematical model from the mechanism of intermittent polymerization
is nearly impossible. Motivated by the above analysis, an intelligent modeling method is
proposed in this paper. To begin, the dynamic process of polymerization reaction and its
mechanistic properties are analyzed, then a mathematical model based on reaction kinetics,
heat balance, and material balance principles is developed. Then, the modeling errors
are handled as UIs. The KF-based REM method is derived to solve the model mismatch
problem online.

2.1. Process Analysis

Three phases are involved in the polymerization process: a preheating stage, a constant
temperature reaction stage, and a cooling stage. Among these, the second step is the most
critical and difficult phase to control. The status of the reaction at this stage has a huge effect
on the ultimate product quality. Excessive pressure might occur if the reaction temperature
is too high. Contrarily, the heat required for the polymerization process may be insufficient
at low temperature. If the aforesaid scenario occurs, it will have an impact on not just the
product’s quality, but also on the manufacturing process’s safety. Therefore, an accurate
model for this stage is very important. This paper mainly focuses on the modeling of the
constant temperature reaction stage. A schematic of a 50-L batch polymerization reactor
is exhibited in Figure 1; the temperature sensors are also shown in this figure. Consider
the dynamic modeling process for polypropylene. The inlet temperature Ti and flow Fc
of cooling water are available as manipulated inputs. The process state variables in the
reactor include the material temperature Tr and the cooling water temperature Tc. The
equations governing thermodynamic equilibrium in a batch polymerization reactor are
presented below

ρVCp
dTr

dt
= Vk0CA(−∆H) exp

(
− E

RTr

)
−US(Tr − Tc), (1)

ρcVcCpc
dTc

dt
= US(Tr − Tc)− FcρcCpc(Tc − Ti). (2)

Monomer Feed

Steam Inlet

Cold Water Inlet

Dump Valve

T

T

Figure 1. Schematic diagram of the batch reactor.

Table 1 provides a comprehensive overview of the parameters used in Equations (1)
and (2), along with their respective explanations and nominal values. A flowchart of the
proposed methodology is illustrated in Figure 2.
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Figure 2. Flowchart of the proposed hybrid modeling method.

Table 1. Nominal values of parameters of the batch polymerization reactor.

Parameter Value Unit

Heat transfer coefficient U 278.6 W/(m2·°C)
Heat transfer area S 0.75 m2

Material volume V 35 L
Cooling water volume Vc 24 L

Material density ρ 9× 105 g/m3

Heat transfer area S 0.75 m2

Specific heat capacity of material Cp 2.343 J/(g·°C)
Specific heat capacity of material Cpc 4.2 J/(g·°C)

Cooling water density ρc 1× 106 g/m3

Material concentration CA 11.9 mol/L
Exothermic of reaction (−∆H) 63.6 KJ/mol

Frequency factor k0 1.25× 104 1/s
Reaction activation energy E −2.67× 104 J/mol

Gas constant R 8.314 J/mol·K

2.2. Problem Formulation

The state space model of batch polymerization reactors is demonstrated by defining
the state vector as x , [Tr, Tc]T , which includes the reactor and coolant temperatures,
and the manipulated inputs as u , [Ti, Fc]T , which includes the coolant temperature and
cooling flow rate. The nonlinear models (1) and (2) are linearized around the operational
point using Taylor’s expansion to remove second- and higher-order terms. Given that
systems often have inherent process noise, it is common to incorporate an additive noise
term w(t) into the model formulation:

ẋ(t) = Ax(t) + Bu(t) + Da(t) + w(t), (3)

where

A =

 CA
ρCp

(−∆H)k0 exp
(
− E

RT̄r

)
E

RT̄2
r
− US

VρCp
US

VρCp

US
VcρcCpc

−
(

F̄c
Vc

+ US
VcρcCpc

,

B =

(
0 0
F̄c
Vc

T̄i−T̄c
Vc

)
,

D is the unknown inputs matrices with proper dimension, a(t) is the vector of UIs, which
represents the process fault, including linearization errors, modeling mistakes, or unex-
pected circumstances in industrial process, and w(t) denotes the process noise.
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And the measurement equation is formulated as

y(t) = Cx(t) + v(t), (4)

where

C =

(
1 0
0 1

)
,

With the sampling time Ks, the continuous-time state dynamic Equation (3) and the
measurement Equation (4) can be discretized{

xk = Φxk−1 + Ψuk−1 + Mak−1 + wk−1
yk = Hxk + vk

(5)

where Φ ≈ I + A · Ks, Ψ = B · Ks, M = D · Ks, k ∈ N+ is the sampling instant. The process
and measurement noises are represented as wk−1 and vk, which are both white Gaussian
noises with zero mean and known covariance Qk−1 > 0 and Rk > 0, respectively. ak−1 is
the vector of UIs, which is used to represent the modeling error.

Notations: The symbol ′T′ denotes the matrix transpose; ′Tr′ represents the matrix
trace, and E is the operator of expectation; N(µ, P) represents the multivariate Gaussian
distribution with mean µ and covariance P. In addition, x̂ represents the estimation of
the states x, x̌ denotes the predicted value of x, and x̃ = x− x̂ denotes the corresponding
estimation error. The notation C(x) = xxT and D(x, P) = xT P−1x are used to abbreviate
the matrix operations involving x.

3. Recursive Expectation-Maximization Algorithm

The batch expectation-maximization (EM) algorithm is proposed to estimate systems
with missing data based on the maximum likelihood principle. The primary objective of
the BEM method is to maximize the expected likelihood of complete data concerning latent
variables. During each iteration, the algorithm optimizes the likelihood by updating the
parameters. In the E-step, the Q-function is typically calculated, representing the expected
log-likelihood of complete data:

Q
(
Θ, Θ′

)
= Ezmis |(zobs ,Θ′){log P(zmis , zobs | Θ)} (6)

where zobs is the measured dataset, zmis is the incomplete dataset, and the aforementioned
sets are subsets of the complete dataset. Θ is the parameter set to be estimated in the
iterative step of the current time instant, Θ′ is the parameter set already solved in the
last time instant, and log P(zmis, zobs | Θ) is the combination of the measured data and the
incomplete data, which is the log-likelihood of the complete data mentioned above. In the
M-step, the optimal parameter set Θ is obtained by maximizing the Q-function, which is
expressed as:

Θ = arg max
Θ

Q
(
Θ, Θ′

)
(7)

By iteratively executing the preceding two procedures, the Q-function will be maxi-
mized locally. Previous studies have shown that the BEM method is convergent.

In addition to the techniques described in Equations (6) and (7), a stochastic approxi-
mation technique involving recursive computation provides an alternative approach for
computing the Q-function of the BEM algorithm. This method replaces the expectation step
while maintaining the maximizing step unchanged. To pursue this approach, we present a
KF-based REM technique for online state estimation and the identification of UIs in this
paper, demonstrating its application in the subsequent derivation.
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3.1. Recursive Q-Function in the E-Step

By applying the given transformation, the Q-function of the batch EM approach can
be expressed as follows:

Q
(
Θ, Θ′

)
=E

{
log p(x0 | Θ0) +

N−1

∑
k=1

log p(xk | xk−1, Θk)

+
N−1

∑
k=1

log p(yk | xk, Θk) + log p(xN | xN−1, ΘN) + log p(yN | xN , ΘN)

} (8)

When new data is obtained, Equation (8) in the REM algorithm should be modified.
If the sensor data is collected sequentially over time, the E-step can be performed by
incorporating the current sample into the previously estimated parameters at the prior time
index. The following derivation is based on this characteristic. Convert Equation (8) to a
quasi-recursive form:

QN

(
Θ, Θold

N

)
=E

{
log p(x0 | Θ0) +

N−1

∑
k=1

log p(xk | xk−1, Θk)

+
N−1

∑
k=1

log p(yk | xk, Θk) + log p(xN | xN−1, ΘN) + log p(yN | xN , ΘN)

} (9)

the Equation (9) of QN(Θ, Θold
N ) is not a conventional recursive Q-function. The subscript

N here represents the current time instant, and Θ denotes the parameter set to be esti-
mated in the current moment. The variable Θold

N refers to the outcome solved at time
index N − 1, which is adopted in computing the posterior expectation at the N time in-
stant. The superscript ’old’ denotes that the parameter was estimated at the previous
time index N. The hidden states are estimated using the parameters obtained recursively
through the quasi-recursive Q-function. Accordingly, the quasi-recursive Q-function can be
expressed as:

QN

(
Θ, Θold

N

)
= QN−1

(
Θ, Θold

N−1

)
+ E(log p(xN | xN−1, ΘN) + log p(yN | xN , ΘN)) (10)

To be more precise, Equation (10) can be classified as a quasi-recursion because the
E-step is updated independently of the time index. However, a true recursive Q-function
can be defined at time index N as follows:

Q̃N

(
Θ, Θold

N

)
=

1
N

QN

(
Θ, Θold

N

)
(11)

By substituting (11) into the aforementioned Equation (10), a recursive formula for the
likelihood of complete data is derived as follows:

Q̃N

(
Θ, Θold

N

)
=

1
N

QN−1

(
Θ, Θold

N−1

)
+

1
N

E(log p(xN | xN−1, ΘN)

+ log p(yN | xN , ΘN))

=

(
1− 1

N

)
Q̃N−1

(
Θ, Θold

N−1

)
+

1
N

E(log p(xN | xN−1, ΘN)

+ log p(yN | xN , ΘN))

(12)
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To meet the stochastic approximation requirements of ∑N→∞ γN = ∞ and ∑N→∞ γ2
N <

∞, an artificial step size γN is used in place of the natural step size 1/N in (12). Conse-
quently, the recursive Q-function of time N can be expressed as follows:

Q̃N

(
Θ, Θold

N

)
= (1− γN)Q̃N−1

(
Θ, Θold

N−1

)
+γNE(log p(xN | xN−1, ΘN) + log p(yN | xN , ΘN)) (13)

To compute the recursion of Q̃N
(
Θ, Θold

N
)

from the initial time index, Equation (13)
can be calculated as follows:

Q̃N

(
Θ, Θold

N

)
=

N

∏
t=2

(1− γt)E(G1) +
N−1

∑
k=2

[
N

∏
t=k+1

(1− γt)

]
γkE(Gk) + γNE(GN) (14)

with

E(G1) =−
n + (m + n)

2
log(2π)− 1

2
(log|Q0|+ log|R0|)−

1
2

log
∣∣P̂0
∣∣− n

2

− 1
2

Tr
{

Q−1
1
{

C(x̂1 −Φx̂0 −Ψu0 −Ma0) +
(

P̂1 −ΦP̌1
)

−
(

P̌1ΦT −ΦP̂0ΦT
)}}

− 1
2

Tr
{

R−1
1

{(
HP̂1HT

)
+ C(y1 − Hx̂1)

}} (15)

E(Gk) =−
m + n

2
log(2π)− 1

2
(log|Qk|+ log|Rk|)−

1
2

log
∣∣P̂k
∣∣

− 1
2

Tr
{

Q−1
k
{

C(x̂k −Φx̂k−1 −Ψuk−1 −Mak−1) +
(

P̂k −ΦP̌k
)

−
(

P̌kΦT −ΦP̂k−1ΦT
)}}

− 1
2

Tr
{

R−1
k

{(
HP̂k HT

)
+ C(yk − Hx̂k)

}} (16)

E(GN) =−
m + n

2
log(2π)− 1

2
(log|QN |+ log|RN |)−

1
2

log
∣∣P̂N

∣∣
− 1

2
Tr
{{

Q−1
N C(x̂N −Φx̂N−1 −ΨuN−1 −MaN−1) +

(
P̂N −ΦP̌N

)
−
(

P̂NΦT −ΦP̌N−1ΦT
)}}

− 1
2

Tr
{

R−1
N

{(
HP̂N HT

)
+ C(yN − Hx̄N)

}} (17)

where ∏N
t=k+1(1− γt) is the product of the step sizes from k + 1 to N, and t is the corre-

sponding time index. The derivation is detailed in Appendix A.

3.2. Kalman Filter

To obtain the posterior values of the states and the covariance in (14), filter methods
are often adopted. The current literature suggests utilizing a fixed-interval smoother for
state estimation when applying the EM method. Although the smoother is an effective
batch-processing technique, it is not well-suited for online calculations. To overcome this
limitation, we utilize a standard KF to estimate the state variables, which can be recursively
computed. The KF is specifically designed for linear stochastic systems and offers optimal
state estimation, making it a perfect fit for integration with the REM algorithm. The Kalman
filter is expressed as follows:

Prediction:

x̂N = Φx̌N−1 + MaN−1 + ΨuN−1 (18)

P̌N = ΦP̂N−1ΦT + QN−1 (19)
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Update:

KN = P̌N HT
(

HP̌N HT + RN

)−1
(20)

x̂N = x̌N + KN(yN − Hx̌N) (21)

P̂N = (I − KN H)P̌N (22)

3.3. Maximization of the Recursive Q-Function

In order to optimize the recursive Q-function within the KF-based REM algorithm, the
algorithm computes the partial derivative with respect to the UIs. The value of the UIs
vector Θk that maximizes the function is found by setting the partial derivative to zero:

∂Q̃N
(
Θ, Θold

N
)

∂aN
= 0 (23)

From (23), we can get

aN = (1− γN)aN−1 + γN

(
M−1(x̂N −Φx̂N−1)

)
(24)

Proof.

∂Q̃N

(
Θ, Θold

N

)
∂aN

=
∂

∂aN

{
N

∏
t=2

(1− γt)E(G1) +
N−1

∑
k=2

[
N

∏
t=k+1

(1− γt)

]
γkE(Gk) + γNE(GN)

}
(25)

= 0

Thus, with the derivation of Equation (24), we conclude the M-step derivation in the
KF-based REM algorithm. To outline the proposed approach, the pseudocode is presented
in Algorithm 1.

Algorithm 1 Recursive Expectation-Maxization Algorithm

Data: x̂0, P̂0, a0, yN , uN , QN , RN , γN
Result: x̂N , aN

1: for N = 1, 2, · · · do
2: x̌N = Ax̂N−1 + MaN−1 + BuN−1
3: P̌N = AP̂N−1AT + QN−1

4: KN = P̌NHT[HP̌NHT + RN
]−1

5: x̂N = x̌N + KN(yN −Hx̌N)
6: P̂N = (I−KNH)P̌N
7: aN = (1− γN)aN−1 + γN(inv(M)(x̂N −Ax̂N−1 − BuN−1))
8: end for
9: † Remarks: If matrice M is not of full column-rank, it should be computed by using

any pseudo-inverse.

4. Verification

In this section, we will use Algorithm 1 for the batch polymerization reactors process
to illustrate the effectiveness of the suggested technique. To measure the modeling perfor-
mance, the average root mean square errors (RMSEs) are utilized as the major performance
metric. Our goal is to more precisely estimate the states and UIs. Two cases of simulation
are adopted to verify the effectiveness of the proposed method.

By inputting the values of the listed parameters in Table 1 into the Equation (3), the
corresponding system matrices can be derived:

A =

(
−0.0018 0.0028
0.0021 −0.0086

)
, B =

(
0 0

0.0065 −0.2083

)
, C =

(
1 0
0 1

)
, (26)
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In Equation (5), setting the sampling period Ks = 10s, we can derive

Φ =

(
0.9816 0.0283
0.0207 0.9141

)
, Ψ =

(
0 0

0.0651 −2.0833

)
, H =

(
1 0
0 1

)
. (27)

In Figures 3 and 4, the practical experimental data denoted as the true value and the
state responses of the mechanistic model are compared. The material temperature Tr and
the cooling water temperature Tc in the reactor are the process states, respectively. The
initial values of the states are x0 = [70, 30] and x0 = [80, 25], respectively. The processes
last for 3 hrs. As presented in Figures 3 and 4, the state responses of the mechanistic
model cannot correspond to the experimental statistics, which is called model-mismatch
in the field of system identification. The possible causes of this situation are parameter
fluctuations, linearization errors, and even misperception of mechanisms. In modeling,
model mismatch is a prevalent issue. The problem now is to estimate the states and the
modeling error UIs using the experimental measurements yn.

In the final stage of our research, we evaluate the effectiveness and accuracy of our
proposed KF-based REM algorithm by comparing it with the existing ASKF method.
Figures 5–8 show the state responses of the nominal model compensated with UIs, iden-
tified using both methods, which demonstrate that both the proposed KF-based REM
algorithm and the ASKF algorithm can identify the UIs and estimate states. However, the
ASKF method exhibits larger oscillations than the proposed algorithm. To obtain a more
comprehensive comparison, we use the average root mean square error (RMSE) as the
performance index to evaluate the accuracy of both algorithms. Figures 9 and 10 display
the RMSEs of the state estimation using both algorithms. As anticipated, the KF-based REM
algorithm provides more accurate results than the ASKF algorithm. Overall, our results sug-
gest that the proposed KF-based REM algorithm is a highly effective and accurate approach
for real-time state estimation and identification of UIs in batch polymerization reactors.

Figure 3. Case 1: Comparison of the experimental data and mechanistic model state responses in
polymerization batch reactors: the first state stands for the material temperature, and the second state
represents the cooling water temperature.
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Figure 4. Case 2: Comparison of the experimental data and mechanistic model state responses in
polymerization batch reactors: the first state stands for the material temperature, and the second state
represents the cooling water temperature.

Figure 5. Case 1: State responses of nominal model compensated with UIs identified by the proposed
KF-based REM algorithm.
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Figure 6. Case 2: State responses of nominal model compensated with UIs identified by the proposed
KF-based REM algorithm.

Figure 7. Case 1: State responses of nominal model compensated with UIs identified by the ASKF
algorithm.
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Figure 8. Case 2: State responses of nominal model compensated with UIs identified by the ASKF
algorithm.

Figure 9. Case 1: The RMSEs of state estimation with ASKF and the proposed algorithm.
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Figure 10. Case 2: The RMSEs of state estimation with ASKF and the proposed algorithm.

5. Conclusions

This paper focuses on intelligent modeling for the batch polymerization process. In
contrast to traditional modeling methods that are either single-mechanism-based or data-
driven, we combine the strengths of both approaches to achieve a more precise solution for
batch reactor process modeling. We begin by establishing a first-principle model and then
utilize sensor data for process fault detection. In our approach, we model the process faults
as unknown inputs (UIs) and employ a modified EM algorithm for online identification of
these UIs. The REM algorithm, which we propose, strikes a balance between computational
efficiency and identification accuracy. The verification results demonstrate that the REM-KF
algorithm accurately compensates for UIs and provides reliable state estimations for batch
polymerization processes. This algorithm is proven to be a competitive alternative when
the mechanism model falls short of meeting requirements. However, the challenge of
selecting the optimal step size γN remains unresolved. Future work may focus on how to
obtain the optimal step size γ.
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Appendix A

The log-likelihood function of complete data is given by

L0:N = log p(x0 | Θ0) +
N

∑
k=1

log p(xk | xk−1, Θk) +
N

∑
k=1

log p(yk | xk, Θk) (A1)
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the conditional probability density functions of initial guess, state update, and measure-
ments are required. Under the assumption that the system noise and measurement noise
are both Gaussian, the abovementioned equations are represented as below

p(x0 | Θ0) = N(x̂0, P0) (A2)

p(xk | xk−1, Θk) = N(Φxk−1 + Mak−1 + Ψuk−1, Qk) (A3)

p(yk | xk, Θk) = N(Hxk, Rk) (A4)

By taking (A2)–(A4) into (A1), we obtain:

log p(x0 | Θ0) = −
n
2

log(2π)− 1
2

log|P0| −
1
2

D(x0 − x̂0, P0) (A5)

log p(xk | xk−1, Θk) =−
n
2

log(2π)− 1
2

log|Qk|

− 1
2

D(xk −Φxk−1 −Mak−1 −Ψuk−1, Qk)

(A6)

log p(yk | xk, Θk) = −
m
2

log(2π)− 1
2

log|Rk| −
1
2

D(yk − Hxk, Rk) (A7)

The subsequent expression represents the expectation of the likelihood function:

E(log p(x0 | Θ0)) = −
n
2

log(2π)− 1
2

log|P0| −
n
2

(A8)

E(log p(xk | xk−1, Θk)) =−
n
2

log(2π)− 1
2

log|Qk|

− 1
2

Tr
{

Q−1
k E[C(xk −Φxk−1 −Mak−1 −Ψuk−1)]

}
=− n

2
log(2π)− 1

2
log|Qk| −

1
2

Tr
{

Q−1
k {C(x̂k −Φx̂k−1

−Mak−1 −Ψuk−1)}+
(

P̂k −ΦP̌k
)
−
(

P̌kΦT −ΦP̂k−1ΦT
)}

(A9)

E(log p(yk | xk, Θk)) =−
m
2

log(2π)− 1
2

log|Rk| −
1
2

Tr
{

R−1
k E[C(yk − Hxk)]

}
=− m

2
log(2π)− 1

2
log|Rk|

− 1
2

Tr
{

R−1
k

[
C(yk − Hx̂k) +

(
HP̂k HT

)]} (A10)

In Equations (15)–(17),

E(G1) = E(log p(x0 | Θ0) + log p(x1 | x0, Θ1) + log p(y1 | x1, Θ1)) (A11)

E(Gk) = E(log p(xk | xk−1, Θk) + log p(yk | xk, Θk)) (A12)

E(GN) = E(log p(xN | xN−1, ΘN) + log p(yN | xN , ΘN)) (A13)

By taking (A8)–(A10) into (A11)–(A13), we obtain (15)–(17). Thus, the derivation
is completed.
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