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Abstract: Due to the phenomenon of “involution” in China, the current generation of college and
university students are experiencing escalating levels of stress, both academically and within their
families. Extensive research has shown a strong correlation between heightened stress levels and
overall well-being decline. Therefore, monitoring students’ stress levels is crucial for improving
their well-being in educational institutions and at home. Previous studies have primarily focused on
recognizing emotions and detecting stress using physiological signals like ECG and EEG. However,
these studies often relied on video clips to induce various emotional states, which may not be suitable
for university students who already face additional stress to excel academically. In this study, a
series of experiments were conducted to evaluate students’ stress levels by engaging them in playing
Sudoku games under different distracting conditions. The collected physiological signals, including
PPG, ECG, and EEG, were analyzed using enhanced models such as LRCN and self-supervised CNN
to assess stress levels. The outcomes were compared with participants’ self-reported stress levels
after the experiments. The findings demonstrate that the enhanced models presented in this study
exhibit a high level of proficiency in assessing stress levels. Notably, when subjects were presented
with Sudoku-solving tasks accompanied by noisy or discordant audio, the models achieved an
impressive accuracy rate of 95.13% and an F1-score of 93.72%. Additionally, when subjects engaged
in Sudoku-solving activities with another individual monitoring the process, the models achieved
a commendable accuracy rate of 97.76% and an F1-score of 96.67%. Finally, under comforting
conditions, the models achieved an exceptional accuracy rate of 98.78% with an F1-score of 95.39%.

Keywords: deep learning; signal processing; stress detection; wearable sensing

1. Introduction

In this current generation, college and university students encounter a multitude
of stressors, particularly in China, where the concept of “involution” gained prevalence
around 2020. Academic-related stress has emerged as a significant source of anxiety for
Chinese students, encompassing pressures to attain top grades, worries about receiving
lower scores, concerns regarding the availability of internship opportunities compared to
their peers, and anxieties about securing graduate study prospects.

Involution, also known as “Nei Juan” in Chinese pinyin, refers to situations in work
and study where individuals put in extra effort, but that effort does not yield a proportional
outcome [1]. For instance, the process of securing a graduate study opportunity in a
university has become more challenging. In the past, students with relatively high grade
point averages (GPAs) would be admitted based on limited quotas. However, admission
offices now consider additional factors such as extracurricular activities and published
academic papers. Consequently, students are compelled to invest extra effort in internships,
extracurricular activities, and academic research to enhance their chances of admission.

Sensors 2023, 23, 6099. https://doi.org/10.3390/s23136099 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23136099
https://doi.org/10.3390/s23136099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5743-1010
https://doi.org/10.3390/s23136099
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23136099?type=check_update&version=3


Sensors 2023, 23, 6099 2 of 22

This intensifies the competition among students and contributes to a growing sense of
stress. A survey conducted by [1] examined 1100 Chinese students and revealed that only
3% of middle school students get a full 8 h of sleep daily, while 19.5% sleep for less than
4 to 5 h. An influential article [2] written by a Chinese mother narrated her struggles to
provide her child with top educational opportunities. Despite earning a monthly salary
of RMB 30,000, which is considered relatively high in China, it proved insufficient due to
the pressure to enroll her daughter in numerous extracurricular classes in order to excel in
all exams, even if those classes covered material beyond the scope of the regular school
curriculum. The combined pressures from schools, society, and even families have given
rise to a highly stressed generation.

Research has indicated that high levels of stress are linked to lower levels of well-being
and reduced quality of life. Prolonged exposure to stress can result in severe mental health
issues such as anxiety and depression [3]. A survey involving 5551 students [4] found
that anxiety is negatively correlated with academic performance, meaning that students
with lower anxiety levels tend to have higher GPAs than those with moderate or high
levels of anxiety. Furthermore, depression and anxiety can lead to suicide, which is the
second most common cause of death among college and university students. According
to a report by [5], approximately 1100 students out of 100,000 commit suicide each year.
Thus, monitoring stress levels can be extremely beneficial for universities and families in
supporting students’ academic performance and enhancing their overall well-being.

2. Related Work

Wagh et al. [6] employed Support Vector Machine (SVM), k-Nearest Neighbor (kNN),
and Decision Tree (DT) algorithms to classify positive, neutral, and negative emotions
using time and time-frequency domain features extracted from various channels of elec-
troencephalogram (EEG) data. The classifiers were trained on the SJTU emotion EEG
dataset (SEED), resulting in an accuracy of 72.46% for DT and 60.19% for kNN. Vijayaku-
mar et al. [7] developed a 1D convolutional neural network (CNN) to classify arousal,
valence, and liking based on peripheral physiological signals, including blood volume
pressure (BVP), horizontal electrooculogram (hEOG), vertical electrooculogram (vEOG),
trapezius electromyogram (tEMG), zygomaticus electromyogram (zEMG), respiration rate
(RSP), and skin temperature (SKT) data. The CNN model achieved accuracies of 77.03%
for arousal, 68.75% for valence, and 74.68% for liking using time and frequency domain
features. Miao et al. [8] proposed a parallel spatial-temporal 3D deep residual learning
framework called MFBPST-3D-DRLF for emotion recognition using EEG signals. This
framework utilized multiple frequency bands (delta, theta, alpha, beta, gamma) of EEG
signals to generate a 3D representation of features, which were then trained using a 3D deep
residual CNN model. It achieved a classification accuracy of 96.67% on the SEED dataset
(positive, neutral, and negative emotions) and 88.21% on the SEED-IV dataset (happy, fear,
sad, and neutral).

Montero Quispe et al. [9] employed a novel self-supervised learning approach for
emotion recognition, consisting of two stages: self-supervised pre-training and emotion
recognition model training. In the pre-training stage, the model learned to recognize six sig-
nal variants generated by applying noise, scaling, negation, flipping, permuting, and time
warping to the original data. This approach aimed to capture the main characteristics of the
data. Results showed that self-supervised learning outperformed fully supervised learning
methods in classifying arousal and valence using EEG and electrocardiogram (ECG) data.
Tang et al. [10] conducted experiments on emotion recognition using EEG data with a
proposed model called Spatial-Temporal Information Learning Network (STILN), which
achieved an accuracy of 68.31% for arousal and 67.52% for valence. Choi et al. [11] proposed
an attention-LRCN model that reduced motion artifacts in collected photoplethysmogra-
phy (PPG) data. By combining the attention module with a baseline model and utilizing
frequency domain features of PPG as inputs, the proposed model achieved an accuracy of
97.11%. Li et al. [12] developed a 1D convolutional neural network and a multi-layer percep-
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tron to enhance the accuracy of stress detection using the WESAD dataset. They achieved
exceptional results, with an accuracy rate of 99.80% for binary classification and an accuracy
rate of 99.55% for 3-class classification. Arsalan et al. [13] focused on detecting stress during
public speaking activities by collecting EEG, Galvanic Skin Response (GSR), and PPG data.
They extracted frequency domain and time domain features and employed support vector
machines (SVMs) with radial basis function. Their approach achieved a stress classification
accuracy of 96.25% and an impressive F1-score of 95.99%. Han et al. [14] gathered and
extracted features from ECG, PPG, and GSR, achieving an accuracy of 94.55% using 10-fold
cross-validation and 81.82% in a real-world setting with kNN. Rastgoo et al. [15] developed
a stress detection system that dynamically monitors driver stress during driving. They
incorporated multiple data sources such as ECG, steering wheel, and weather conditions
to predict the driver’s stress level. Their approach, combining CNN and long short-term
memory (LSTM) networks, achieved an accuracy of 92.80% and an F1-score of 94.56%.

In general, biosignals such as PPG, ECG, and EEG signals have demonstrated their
utility in analyzing both physical health status and mental states, including emotions,
concentration, and stress. Several public datasets, such as AMIGOS [12], DREAMER [13],
SWELL (Smart Reasoning for Well-being at Home and at Work) [14], SEED [15], DEAP [16],
and WESAD [17], have been curated specifically for research purposes and contain carefully
designed experiments to induce stress in participants while collecting these biosignals.
EEG, ECG, and GSR signals were obtained from sets of videos in the AMIGOS dataset.
Similarly, the DREAMER dataset and SEED dataset also employed film clips to evoke
positive, neutral, and negative emotions, gathering participants’ ECG and EEG signals.
The DEAP dataset utilized music videos to elicit emotions across different arousal–valence
quadrants, capturing EEG and peripheral signals. The WESAD dataset utilized video clips
and the Trier Social Stress Test as stimuli, collecting peripheral signals from participants.
In the SWELL dataset, participants were exposed to a range of stressors, including time
pressure, within a genuine office environment. They were requested to engage in activities
such as report writing and giving presentations while their ECG data were systematically
gathered. These publicly available datasets have been adapted for a wide range of research
focusing on emotion recognition and stress detection. Meanwhile, deep learning methods,
including CNN and LSTM, yielded higher accuracies compared to traditional machine
learning methods such as SVM and DT.

The majority of public datasets currently available for developing stress detection
algorithms utilize video and audio stimuli. The SWELL dataset has published a stress
dataset whose data are collected under real-life office scenarios. However, there is no
existing stress dataset found that collects data in a school context. Students are often study-
ing and engaging in challenging problem-solving tasks, resulting in physiological signal
changes that differ greatly from those observed during passive video viewing. To address
this issue, this study devised a stress induction protocol that combined different levels of
problem-solving (Sudoku game at medium and hard difficulty levels) with environmental
stimuli such as videos and audio, creating a context in which students were required to
solve problems amidst various distractions.

3. Materials and Methods
3.1. Experiment Design

In order to replicate a stress-inducing environment, participants were tasked with
completing multiple Sudoku games under different scenarios, including both noisy and
noise-free conditions. Throughout the experiments, various physiological data, including
ECG, PPG, and EEG, were collected from the participants using wearable sensors. Fol-
lowing each Sudoku game, participants were asked to assess their own stress levels by
completing a questionnaire. All participants were healthy students from the campus who
volunteered for the experiment by filling out a registration form posted on the university’s
forum. The registration form included a series of questions, such as their medical history
related to heart diseases, favorite music, and music that caused discomfort. Students
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with heart-related conditions were excluded from participating in the experiment. The
registration form was created using Wenjuanxing [18], a platform that facilitates the design
of questionnaires, exams, voting systems, and rating forms.

A total of 30 participants, consisting of 6 males and 24 females, with a mean age of
20.4, were recruited for the study. Among the participants, 7 were from the Faculty of
Science and Engineering (FOSE), 12 were from the Nottingham University Business School
(NUBS), and 11 were from the Faculty of Humanity and Social Science (FHSS). In terms of
academic status, there were 15 sophomore students, 4 junior students, 8 senior students,
and 3 Ph.D. students, as shown in Table 1. Upon registration, participants were informed
of the experiment’s location and schedule based on their availability. Each experimental
session involved only one participant and took place in a small meeting room equipped
with one desk, a couple of chairs, and a television with a functioning speaker.

Table 1. Participant information. Long dash (—) means no participant.

Faculty Sophomore Junior Senior Ph.D. Total

FOSE 2 1 2 2 7
FHSS 11 — — — 11
NUBS 2 3 6 1 12
Total 15 4 8 3 30

The participants were given a brief introduction to the purpose of the experiment and
were asked to sign a consent form and an information sheet if they agreed to participate
before the experiment began. As the experiment involved solving Sudoku puzzles, the
subjects were briefed on the basic rules of Sudoku. An iPad device running a Sudoku
app that generated puzzles with the highest difficulty level was used. Following this, the
subjects were fitted with sensors to collect physiological data. The experiment commenced
only after confirming that the data receiver terminal was functioning correctly.

For each experiment, the participants were tasked with solving three Sudoku puzzles
within a time limit of 15 min. The scenarios for each experiment were as follows:

• Scenario 1: The participant was left alone in the room, solving Sudoku puzzles while
being exposed to horror or discordant audio, such as white noise, and watching horror
videos, such as zombie movies.

• Scenario 2: No music or videos were played during this scenario. Instead, a person was
present in the room observing the participant while they solved the Sudoku puzzles.

• Scenario 3: The participant was left alone in the room, solving Sudoku puzzles while
being exposed to comforting audio and videos, such as sounds of birds, waterfalls,
and rainfall.

The participants were divided into two study groups. The first group consisted of
15 participants who were assigned to solve Sudoku puzzles with a “medium” difficulty
level. The second group also had 15 participants, but they were assigned to solve Sudoku
puzzles with a “hard” difficulty level. This division was made to investigate the impact of
Sudoku difficulty on changes in stress levels. At the end of each trial, participants were
asked to indicate their stress levels using the re-designed questionnaire. This questionnaire
was designed using Wenjuanxing and was based on the self-report approach proposed
by Li et al. [15]. The questionnaire was adapted and revised for this study. The stress
levels were assessed on a 3-point scale, where scores of 0 to 4 indicated relaxation or little
stress, scores of 5 to 7 indicated medium stress, and scores of 8 indicated high stress. In
order to enhance the level of stress and motivation during the Sudoku puzzle completion,
incentives in the form of prizes were provided to the participants. The participants had
the opportunity to win a prize for each Sudoku puzzle if they were able to successfully
complete it within the given time limit of 15 min. Additionally, if a participant successfully
completed all the Sudoku puzzles within the designated time frame, they were eligible to
receive an additional prize. In total, there were four prizes available to be won.
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3.2. Data Collection

The data collection process involved using three separate healthcare devices to gather
PPG, ECG, and EEG data from the participants, as shown in Figure 1. PPG data were
collected using the Polar Verity Sense (PVS) [19], ECG data were collected using the BMD101
device [20], and EEG data were collected using NeuroSky’s MindWave Mobile 2 (MV2) [21].
The sampling rates for data collection were set at 55 Hz for PVS, 512 Hz for BMD101,
and 512 Hz for MV2. It is important to note that data collection did not occur during the
participant’s self-reporting periods.
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Figure 1. The experiment was designed as a solitary activity, with participants (a–d) solving Sudoku
puzzles in a designated room. Sensors were attached to the participants during the experiment to
collect data.

To capture the signals emitted by BMD101, PVS, and MV2 devices, three distinct
programs were employed. The BMD101 package [20] offered a starting program designed
specifically for acquiring the ECG signal transmitted by BMD101. Additionally, PVS
provided an SDK example for capturing the PPG signal [20]. To collect the EEG signals
transmitted by MV2, a ThinkGear socket [21] developed with Node.js on GitHub was
utilized. The program for receiving ECG and EEG signals was executed on Windows 11,
while the program for capturing the PPG signal ran on an Android platform. All of these
programs recorded the raw data in text files.

3.3. Data Pre-Processing

The raw data obtained from the experiment had varying sampling rates, which posed
challenges when inputting the data into the classification models without preprocessing.
Additionally, there were certain inevitable recording errors during the data collection
process. For example, the start time of PPG data collection may have been slightly delayed
or advanced compared to the other two types of data, resulting in a few missing data points.
Furthermore, there were uncontrollable variables in the experiment, such as instances where
participants completed the Sudoku puzzle in less than 15 min, requiring the experiment to
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be ended earlier. To address these issues, all the data were resampled to a uniform rate of
256 Hz using a resampling method. This resulted in a total of 230,400 data points for each
experiment. Subsequently, a Butterworth band-pass filter was applied to remove noise from
the data. For PPG data, a low-cut frequency of 0.5 Hz and a high-cut frequency of 5 Hz were
utilized. The raw PPG1, PPG2, and PPG3 signals corresponded to the sensor’s green, red,
and infrared light sources, respectively. For ECG data, the low-cut and high-cut frequencies
were set at 5 Hz and 15 Hz, respectively. As for EEG data, a low-cut frequency of 0.1 Hz
and a high-cut frequency of 15 Hz were employed. For the segmentation step, a sliding
window approach with a duration of 10 s and no overlap was employed on the 15 min raw
data. This segmentation divided the original 230,400 data points into 90 segments, with
each segment containing 2560 data points. Figure 2 depicts the unprocessed and filtered
PPG, ECG, and EEG data. The training pipeline for a model is outlined in Figure 3. On the
other hand, Figure 4 illustrates the process of incorporating a collected sample of ECG data,
indicating the various steps involved.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 23 
 

 

The raw data obtained from the experiment had varying sampling rates, which posed 

challenges when inputting the data into the classification models without preprocessing. 

Additionally, there were certain inevitable recording errors during the data collection pro-

cess. For example, the start time of PPG data collection may have been slightly delayed or 

advanced compared to the other two types of data, resulting in a few missing data points. 

Furthermore, there were uncontrollable variables in the experiment, such as instances 

where participants completed the Sudoku puzzle in less than 15 min, requiring the exper-

iment to be ended earlier. To address these issues, all the data were resampled to a uni-

form rate of 256 Hz using a resampling method. This resulted in a total of 230,400 data 

points for each experiment. Subsequently, a Butterworth band-pass filter was applied to 

remove noise from the data. For PPG data, a low-cut frequency of 0.5 Hz and a high-cut 

frequency of 5 Hz were utilized. The raw PPG1, PPG2, and PPG3 signals corresponded to 

the sensor’s green, red, and infrared light sources, respectively. For ECG data, the low-cut 

and high-cut frequencies were set at 5 Hz and 15 Hz, respectively. As for EEG data, a low-

cut frequency of 0.1 Hz and a high-cut frequency of 15 Hz were employed. For the seg-

mentation step, a sliding window approach with a duration of 10 s and no overlap was 

employed on the 15 min raw data. This segmentation divided the original 230,400 data 

points into 90 segments, with each segment containing 2560 data points. Figure 2 depicts 

the unprocessed and filtered PPG, ECG, and EEG data. The training pipeline for a model 

is outlined in Figure 3. On the other hand, Figure 4 illustrates the process of incorporating 

a collected sample of ECG data, indicating the various steps involved. 

  
(a) (b) 

  
(c) (d) 

Sensors 2023, 23, x FOR PEER REVIEW 7 of 23 
 

 

  
(e) (f) 

Figure 2. Collected (a) raw PPG, (b) filtered PPG, (c) raw ECG, (d) filtered ECG, (e) raw EEG, and 

(f) filtered EEG data in this study. The PPG1, PPG2, and PPG3 signals represent the green, red, and 

infrared light captured by the sensor, respectively. Following the application of filtering techniques, 

both motion-related noise in PPG and noise in ECG were effectively reduced. However, there were 

no discernible changes observed in the EEG signal. 

 

Figure 3. Training pipeline of a model. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Collected (a) raw PPG, (b) filtered PPG, (c) raw ECG, (d) filtered ECG, (e) raw EEG, and
(f) filtered EEG data in this study. The PPG1, PPG2, and PPG3 signals represent the green, red, and
infrared light captured by the sensor, respectively. Following the application of filtering techniques,
both motion-related noise in PPG and noise in ECG were effectively reduced. However, there were
no discernible changes observed in the EEG signal.
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These steps include (a) down-sampling the ECG from 494,033 data points to 230,400 data points,
(b) employing a Butterworth filter, (c) segmenting the data, and (d) normalizing the data.

3.4. Models Training
3.4.1. StressNeXt

In the StressNeXt model [22], the parameter quantity is initially reduced using a
1 × 1 convolutional block. The reduced parameters are then passed through four consecu-
tive multi-kernel blocks. Each multi-kernel block comprises multiple convolutional layers
with different sizes, namely 1 × 1, 1 × 3, 1 × 5, and 1 × 7. Within the multi-kernel block,
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the input signal is simultaneously processed by these convolutional layers, and instead
of concatenating the results at the end, similar to the Inception network [23], the feature
maps obtained from these layers are combined by addition. The specific architecture of the
StressNeXt model is depicted in Figure 5.
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3.4.2. LRCN

The attention-LRCN (Long-term Recurrent Convolutional Network) model [14] was
originally designed to take the Short-Term Fourier Transform (STFT) of signals as input,
which consists of 2 dimensions corresponding to frequency and time. However, in this
study, only 1 dimension is used as input. Therefore, the baseline of the attention-LRCN
was taken and adapted to perform classification tasks on 1D input signals from the dataset.
The model begins with two 1D convolutional layers and a max pooling layer to reduce
computation complexity. Next, two residual blocks are applied, each separated by a
max pooling layer that further reduces the feature maps. After the residual blocks, two
LSTM layers are used to extract time-domain features from the signals and perform the
classification task. Figure 6 shows the architecture of the LRCN model.
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3.4.3. Self-Supervised CNN

The process of self-supervised learning consists of two stages as illustrated in Figure 7.
In the first stage, known as pretraining, a self-supervised CNN [9] is trained to recognize
whether an input is a transformed version of the original signals. Various transformations
are applied to the signals, including adding noise, scaling, negating, horizontally flipping,
and permuting the signal. However, in this study, the time-warped transformation was
excluded. Before applying these transformations, the data are segmented and normalized,
as shown in Figure 4. For example, Gaussian noise with parameters µ = 0 and σ = 0.01 is
added to the signal, the signal is scaled by a factor of 1.1, and signal permutation involves
randomly selecting 20 pieces of length 1/4 of the sampling rate (64 data points) and
swapping them to create a permuted version of the original signal. Figure 8 displays both
the transformed PPG signal and the original signal as examples for reference. After the
pretraining stage, the shared layers (convolutional layers) of the self-supervised CNN are
reused for classification tasks.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 23 
 

 

3.4.2. LRCN 

The attention-LRCN (Long-term Recurrent Convolutional Network) model [14] was 

originally designed to take the Short-Term Fourier Transform (STFT) of signals as input, 

which consists of 2 dimensions corresponding to frequency and time. However, in this 

study, only 1 dimension is used as input. Therefore, the baseline of the attention-LRCN 

was taken and adapted to perform classification tasks on 1D input signals from the da-

taset. The model begins with two 1D convolutional layers and a max pooling layer to re-

duce computation complexity. Next, two residual blocks are applied, each separated by a 

max pooling layer that further reduces the feature maps. After the residual blocks, two 

LSTM layers are used to extract time-domain features from the signals and perform the 

classification task. Figure 6 shows the architecture of the LRCN model. 

 

Figure 6. The LRCN architecture consists of 1D convolutional layers followed by ReLU activation. 

3.4.3. Self-Supervised CNN 

The process of self-supervised learning consists of two stages as illustrated in Figure 

7. In the first stage, known as pretraining, a self-supervised CNN [9] is trained to recognize 

whether an input is a transformed version of the original signals. Various transformations 

are applied to the signals, including adding noise, scaling, negating, horizontally flipping, 

and permuting the signal. However, in this study, the time-warped transformation was 

excluded. Before applying these transformations, the data are segmented and normalized, 

as shown in Figure 4. For example, Gaussian noise with parameters 𝜇 = 0 and 𝜎 = 0.01 

is added to the signal, the signal is scaled by a factor of 1.1, and signal permutation in-

volves randomly selecting 20 pieces of length 1/4 of the sampling rate (64 data points) and 

swapping them to create a permuted version of the original signal. Figure 8 displays both 

the transformed PPG signal and the original signal as examples for reference. After the 

pretraining stage, the shared layers (convolutional layers) of the self-supervised CNN are 

reused for classification tasks. 

 
(a) 

 
(b) 

Figure 7. Self-supervised CNN architecture for (a) pretrain and (b) classifier. 
Figure 7. Self-supervised CNN architecture for (a) pretrain and (b) classifier.

The shared layer of the self-supervised CNN is composed of three convolutional
blocks. Each block consists of two 1D convolutional layers and is followed by a max
pooling operation. In the first convolutional block, there are 32 filters with a filter size of 32.
The second block has 64 filters with a size of 16, and the third block uses 128 filters with
a size of 8. The max pooling layers in each block have a size of 8 and a stride of 2. After
passing through the shared layer, the feature maps have dimensions of 128 × 605. These
feature maps are then inputted into a global max pooling layer, resulting in an output size
of 128 × 1.

3.4.4. Training Parameters

The models’ performance was evaluated using k-fold stratified cross-validation. This
approach ensures that each split contains all class labels rather than having one-fold with
labels from only one class. The value of k was set to 3 for this training. The optimizer
used was Adam, with a learning rate of 0.001. During the training of the models, the total
number of epochs was set to 300, while for the self-supervised CNN pretraining stage, it
was set to 150 epochs. The validation accuracy of each epoch and F1-score were averaged
and returned as the performance for each fold. After completing the cross-validation, the
performance of each fold was averaged again to obtain the final model performance.

The models were developed using the PyTorch framework and executed on an HP
Shadow Elf 7 laptop running Windows 11. The laptop was equipped with an NVIDIA
GeForce RTX 3060 Laptop GPU, an Intel(R) Core (TM) i7-11800H CPU operating at 2.30 GHz,
and 16 GB of RAM.
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4. Results and Discussion

Various signal combinations, such as PPG, ECG, EEG, PPG + ECG, PPG + EEG,
ECG + EEG, and PPG + ECG + EEG, were explored to determine the most effective signals
for stress detection. The performance of the models was evaluated using accuracy and
F1-score as metrics. Accuracy represents the percentage of correctly classified data in
relation to the entire dataset and serves as a straightforward measure of performance which
is represented as follows:

accuracy =
1
n ∑(pi == yi)
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where pi is the predicted label of the ith sample, and yi is the true label of the ith sample.
If pi is the same as yi, pi == yi, it is 1, otherwise, it is 0. F1-score can be interpreted as a
harmonic means of precision and recall,

F1 = 2 × precision × recall
precision + recall

where precision assesses the classifier’s capacity to avoid mislabeling negative samples as
positive, while recall evaluates the classifier’s ability to identify all positive samples, with
the equations as follows:

precision =
TP

TP + FP

recall =
TP

TP + FN
where TP is true positive, FP is false positive, and FN is false negative.

4.1. Scenario-Based Self-Reporting Stress Analysis

Figures 9 and 10 presented the changes in stress levels across different scenarios
while participants solved “medium” and “hard” levels of Sudoku puzzles, respectively.
The results indicated that a majority of participants experienced an increase in stress
levels in scenario 1, which involved noisy and horror audio/videos. About half of the
participants (13 out of 30) reported higher stress levels in scenario 2, where they were
monitored by another person. Conversely, in scenario 3, which included comforting audio
and video, most participants (22 out of 30) reported a decrease in stress levels. When
comparing scenario 3 to scenario 1, 20 out of 30 participants demonstrated a decrease in
stress levels in the final scenario. Additionally, in scenario 1, participants solving the “hard”
Sudoku puzzles tended to experience higher levels of stress compared to those solving the
“medium” Sudoku puzzles. Similarly, in scenario 3, participants solving the “medium”
Sudoku puzzles showed a reduction in stress levels compared to those solving the “hard”
Sudoku puzzles.
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4.2. Classifiers Evaluation

Table 2 displays the accuracy and F1-score results for different models and combina-
tions of biosignals used in the classification. The results revealed that the LRCN model
demonstrated the highest effectiveness in predicting stress levels when utilizing ECG data,
achieving an average accuracy of 93.42% and an F1-score of 88.11%. Other models also
exhibited high levels of accuracy and F1-score, with StressNeXt and self-supervised CNN
achieving the best performance when combining ECG and EEG signals. Notably, the
utilization of EEG alone resulted in the lowest accuracy and F1-score across all models.
This observation could potentially be attributed to participants’ suboptimal reduction of
movements during the experiments, as proposed by [24,25]. The presence of muscle noise
might have compromised the effectiveness of the collected EEG data in this study.

Table 2. Performances of various models and different data combinations.

Model Name Data Accuracy F1-Score

StressNeXt

PPG 83.90% 69.04%
ECG 85.71% 69.61%
EEG 66.31% 39.40%

PPG + ECG 88.22% 77.48%
PPG + EEG 83.26% 68.35%
ECG + EEG 90.02% 80.45%

PPG + ECG + EEG 86.90% 74.26%

LRCN

PPG 84.27% 70.49%
ECG 93.42% 88.11%
EEG 80.15% 62.36%

PPG + ECG 86.77% 74.66%
PPG + EEG 83.89% 69.67%
ECG + EEG 91.39% 84.31%

PPG + ECG + EEG 84.44% 71.35%

Self-Supervised CNN

PPG 81.66% 63.98%
ECG 90.07% 81.11%
EEG 74.44% 28.90%

PPG + ECG 86.05% 71.47%
PPG + EEG 84.72% 69.90%
ECG + EEG 90.32% 81.04%

PPG + ECG + EEG 80.69% 52.70%
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Table 3 displays the accuracy and F1-score outcomes for the various model and
biosignal combinations utilized in the stress level classification under different experimental
scenarios. The findings suggest that the StressNeXt model was most successful in predicting
stress levels in scenario 3, while the LRCN model was the most effective in scenarios 1 and
2. ECG was found to be the most effective signal in analyzing stress levels, with all models
achieving around 95% accuracy and 90% F1-score when utilizing ECG data. On the other
hand, EEG was found to be the least effective signal for detecting stress levels, with all
models yielding the lowest accuracies and F1-scores, less than 70% in scenarios 1 and 2 and
90% in scenario 3. In addition, it can be observed that all models were able to predict stress
levels rather effectively in scenario 3, with accuracy and F1-score reaching approximately
90% for all signal combinations.

Table 4 displays a comparison of the difficulty levels of Sudoku for each model.
The accuracy rates and F1-scores of the StressNeXt model were slightly higher in the
“medium” level Sudoku sample group compared to the “hard” level Sudoku sample group.
Conversely, the other two models exhibited slightly lower accuracy rates and F1 scores in
the “medium” level Sudoku sample group compared to the “hard” level Sudoku sample
group. However, these differences were not found to be statistically significant.

The confusion matrices for StressNeXt, LRCN, and self-supervised CNN with different
input signals for all scenarios and difficulty levels of Sudokus are displayed in Figure 11,
Figure 12, and Figure 13, respectively. The total number of samples after data segmentation
was 8100, with 6030 samples for stress level class 0, 1710 samples for class 1, and 360 samples
for class 2. The confusion matrices were obtained by averaging the confusion matrix of
the validation set in each fold of the 3-fold validation. It is apparent that there is more
training data on class 0, and the model seems to lean towards predicting class 0 stress level.
StressNeXt was unable to predict class 2 stress levels with ECG, whereas other models can
effectively classify most of the class 2 stress using only ECG. The self-supervised CNN
failed to distinguish other classes from class 0 with EEG or all signals combined as input
and was incapable of classifying any class 2 stress with combined PPG and ECG as input.

Table 3. Performance of various models and different combinations of data in different scenarios.

Model Name Scenario Data Accuracy F1-Score

StressNeXt

Scenario 1

PPG 84.78% 79.90%
ECG 93.48% 90.83%
EEG 63.39% 48.68%

PPG + ECG 89.52% 85.44%
PPG + EEG 80.98% 73.95%
ECG + EEG 92.71% 90.02%

PPG + ECG + EEG 87.88% 84.37%

Scenario 2

PPG 86.64% 79.53%
ECG 96.80% 94.27%
EEG 64.81% 47.75%

PPG + ECG 83.73% 65.20%
PPG + EEG 84.18% 75.01%
ECG + EEG 95.93% 91.33%

PPG + ECG + EEG 89.37% 76.86%

Scenario 3

PPG 95.22% 78.55%
ECG 97.79% 91.37%
EEG 86.86% 46.81%

PPG + ECG 97.79% 91.62%
PPG + EEG 94.80% 77.17%
ECG + EEG 98.78% 95.39%

PPG + ECG + EEG 98.29% 92.88%
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Table 3. Cont.

Model Name Scenario Data Accuracy F1-Score

LRCN

Scenario 1

PPG 81.78% 78.10%
ECG 95.13% 93.72%
EEG 69.93% 55.68%

PPG + ECG 88.52% 85.41%
PPG + EEG 81.15% 77.31%
ECG + EEG 93.51% 91.17%

PPG + ECG + EEG 81.51% 77.14%

Scenario 2

PPG 82.94% 72.06%
ECG 96.46% 93.90%
EEG 73.35% 54.19%

PPG + ECG 85.21% 74.37%
PPG + EEG 83.31% 73.50%
ECG + EEG 97.96% 96.67%

PPG + ECG + EEG 87.84% 75.98%

Scenario 3

PPG 95.43% 78.90%
ECG 97.16% 93.63%
EEG 90.42% 57.76%

PPG + ECG 95.44% 84.94%
PPG + EEG 92.14% 68.00%
ECG + EEG 96.71% 90.31%

PPG + ECG + EEG 92.00% 67.49%

Self-Supervised
CNN

Scenario 1

PPG 92.06% 90.09%
ECG 95.06% 93.01%
EEG 63.35% 28.10%

PPG + ECG 88.22% 82.41%
PPG + EEG 91.08% 89.11%
ECG + EEG 87.62% 80.42%

PPG + ECG + EEG 90.05% 87.98%

Scenario 2

PPG 92.95% 89.92%
ECG 96.61% 94.54%
EEG 69.90% 30.35%

PPG + ECG 90.53% 79.41%
PPG + EEG 90.08% 85.39%
ECG + EEG 96.15% 93.09%

PPG + ECG + EEG 88.56% 76.57%

Scenario 3

PPG 95.48% 78.54%
ECG 98.50% 94.66%
EEG 89.95% 37.93%

PPG + ECG 95.14% 77.24%
PPG + EEG 95.80% 82.97%
ECG + EEG 97.06% 85.73%

PPG + ECG + EEG 94.89% 77.83%
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Table 4. Performance of various models and different combinations of data was evaluated across
different difficulty levels of Sudoku puzzles.

Model Name Sudoku
Difficulty Data Accuracy F1-Score

StressNeXt

Medium

PPG 87.75% 78.58%
ECG 90.04% 83.72%
EEG 69.98% 44.72%

PPG + ECG 83.79% 73.58%
PPG + EEG 86.06% 75.56%
ECG + EEG 87.85% 78.48%

PPG + ECG + EEG 86.25% 76.48%

Hard

PPG 85.36% 73.37%
ECG 89.41% 77.91%
EEG 67.59% 43.92%

PPG + ECG 84.96% 70.63%
PPG + EEG 81.80% 67.53%
ECG + EEG 90.05% 79.82%

PPG + ECG + EEG 84.52% 69.55%

LRCN

Medium

PPG 85.52% 74.36%
ECG 91.56% 87.91%
EEG 79.75% 57.72%

PPG + ECG 84.90% 74.16%
PPG + EEG 84.37% 70.64%
ECG + EEG 82.83% 67.56%

PPG + ECG + EEG 84.37% 72.07%

Hard

PPG 82.58% 68.27%
ECG 92.00% 83.55%
EEG 77.14% 58.98%

PPG + ECG 86.98% 75.84%
PPG + EEG 81.55% 66.90%
ECG + EEG 87.74% 75.85%

PPG + ECG + EEG 87.10% 75.75%

Self-Supervised
CNN

Medium

PPG 89.70% 81.48%
ECG 88.71% 80.70%
EEG 75.55% 29.64%

PPG + ECG 87.36% 73.33%
PPG + EEG 92.49% 84.64%
ECG + EEG 84.92% 70.74%

PPG + ECG + EEG 89.38% 80.53%

Hard

PPG 91.29% 83.10%
ECG 89.74% 81.06%
EEG 73.34% 28.20%

PPG + ECG 89.95% 80.51%
PPG + EEG 84.93% 70.77%
ECG + EEG 90.63% 82.80%

PPG + ECG + EEG 89.81% 81.14%
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Figure 11. StressNeXt confusion matrix for (a) PPG as input, (b) ECG as input, (c) EEG as input,
(d) combined PPG and ECG as input, (e) combined PPG and EEG as input, (f) combined ECG and
EEG as input, (g) combined PPG, ECG, and EEG as input.
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Figure 12. LRCN confusion matrix for (a) PPG as input, (b) ECG as input, (c) EEG as input, (d) com-
bined PPG and ECG as input, (e) combined PPG and EEG as input, (f) combined ECG and EEG as
input, (g) combined PPG, ECG, and EEG as input.
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Figure 13. Self-supervised CNN confusion matrix for (a) PPG as input, (b) ECG as input, (c) EEG as 
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Figure 13. Self-supervised CNN confusion matrix for (a) PPG as input, (b) ECG as input, (c) EEG as
input, (d) combined PPG and ECG as input, (e) combined PPG and EEG as input, (f) combined ECG
and EEG as input, (g) combined PPG, ECG, and EEG as input.
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Table 5 illustrates a performance comparison between our proposed model and previ-
ous studies on stress detection. The results indicate that our model outperforms others in
terms of accuracy in scenario 3, where subjects solve Sudoku under comforting conditions.
Similarly, in scenario 2, where subjects solve Sudoku with another individual monitor-
ing, our model achieves the highest F1-score compared to previous models. Overall, our
model demonstrates superior accuracy compared to Transformer [26], Random Forest [27],
AdaBoost DT [17], DeepER Net [28], Artificial Neural Network [29], Deep ECGNet [30],
and CNN-LSTM [31]. The comparison highlights that the effectiveness of these models
may be specific to particular datasets, depending on the scenario design and experiment
settings. Despite the fact that the study conducted by [12], which utilized Deep 1D-CNN,
exhibited superior performance compared to our proposed work, it required more than five
sensors as inputs, which may not be feasible for real-world applications. Furthermore, the
evaluation of individual sensor data on the performance of our proposed model was not
conducted, and the sample size only included 15 participants, which did not adequately
represent the majority of human stress levels. Similarly, the study using SVM-RBF [25]
demonstrated slightly higher accuracy than our proposed work. However, it is worth
noting that our proposed work achieved higher accuracy (93.42%) when utilizing only
EEG signals, compared to [13], which utilized PPG (80%) and GSR + PPG (86.25%) signals.
Perfect comparison becomes relatively challenging as our current study did not incorporate
the GSR signal, as its changes vary based on environmental conditions. In general, most
studies included fewer than 20 participants, and variations in task creation and labeling
methods likely contribute to performance differences. Nonetheless, our study attains the
highest accuracy (98.78%) in scenario 3 and the highest F1-score (96.67%) in scenario 2,
surpassing the existing work.

Table 5. Comparative analysis of the performance.

Model Accuracy F1-Score Input Data Scenarios Number of
Participants

Transformer [26] 71.60% 74.20% Raw ECG

Participants write reports for each
of the two provided topics and

make presentation for one of the
provided topics (SWELL dataset)

25

Random Forest
[27] 78.80% 88.80%

Extracted
features of GSR,

heart rate

Students perform multiple tasks,
including sing-a-song, emails,

color-word test, game, arithmetic
question, social conversation,

eating, homework, put hands in
ice bucket

9

AdaBoost DT
(3-class

classification) [17]
80.34% 72.51%

Extracted
features of PPG,

EDA, SKT

Participants read magazines, take
TSST, and watch amusing videos

(WESAD dataset)
17

DeepER Net [28] 83.90% 81.00%
Extracted

features of ECG
and RSP

University students solve math
tasks or color-word test 18

Artificial Neural
Network

(ANN) [29]
84.32% 78.71%

Extracted
features of ACC,

PPG, EDA,
TEMP, RESP,

EMG, and ECG

Participants read magazines, take
TSST, and watch amusing videos

(WESAD dataset)
17

Deep ECGNet [30] 87.39% 73.96% Extracted
features of ECG

Students take multiple tasks,
including arithmetic problems,

color-word test, interview
30
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Table 5. Cont.

Model Accuracy F1-Score Input Data Scenarios Number of
Participants

CNN-LSTM
Network [31] 92.80% 94.56%

Raw ECG,
vehicle dynamic

data,
environmental

parameters

Participants drive on a simulator
with different scenarios, including

urban, highway, city
17

Multi-layer
Perceptron [24] 93.64% 92.44% Raw PPG, EDA,

SKT

Participants read magazines, take
TSST, and watch amusing videos

(WESAD dataset)
17

SVM-RBF [25] 96.25% 96.00%
Extracted

features of PPG,
GSR, EEG

Participants prepare a talk and
speak in front of real audience 40

Deep 1D-CNN [12] 97.48% 96.82%
ECG, EDA, EMG,

RESP, TEMP,
TEMP, ACC

Participants watched a series of
videos 15

Proposed model
(general) 93.42% 88.11%

ECG + EEG

Students solve Sudoku puzzles
under different distractions,

including noisy environment,
another individual monitoring,

comforting conditions

30

Proposed model
(scenario 1) 95.13% 93.72%

Proposed model
(scenario 2) 97.76% 96.67%

Proposed model
(scenario 3) 98.78% 95.39%

5. Conclusions

In this study, a novel experimental approach was used to evaluate stress levels in
participants through the use of Sudoku puzzles as problem-solving tasks. The study utilized
PPG, ECG, and EEG data to extract features and assess stress levels. Various scenarios were
created using audio and video components to examine the impact of environmental stimuli
on stress levels. The results indicated that noisy environments tended to cause higher stress
levels, and higher difficulty level Sudoku puzzles may lead to a higher average stress level.
The stress detection models used in the experiments showed high effectiveness, with the
LRCN model achieving a stress level detection accuracy of 93.42% and an F1-score of 88.11%
when ECG was used as an input signal. When analyzing different scenarios, the StressNeXt
model demonstrated exceptional effectiveness in predicting stress levels under comforting
conditions, achieving an accuracy rate of 98.78% and an F1-score of 95.39%. Conversely,
the LRCN model was most effective in predicting stress levels in two scenarios, achieving
accuracy rates of 95.13% and 97.96%, with F1 scores of 93.72% and 96.67%, respectively.
However, the study has some limitations, such as the subjectivity of self-reporting, which
can result in variations in reported stress levels. To improve the reliability of this study,
more robust self-reporting methods, such as using the Self-Assessment Manikin (SAM), can
be employed to validate the accuracy and reliability of stress level assessment. In addition,
this study aims to explore the potential inclusion of other physiological signals, such as
GSR or respiratory rate, to examine their effectiveness in stress detection. Furthermore, the
study plans to incorporate another dataset containing diverse scenarios and environments
to validate the performance of the proposed deep learning models.
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