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Abstract: (1) Background: Being able to objectively assess upper limb (UL) dysfunction in breast cancer
survivors (BCS) is an emerging issue. This study aims to determine the accuracy of a pre-trained lab-
based machine learning model (MLM) to distinguish functional from non-functional arm movements in
a home situation in BCS. (2) Methods: Participants performed four daily life activities while wearing two
wrist accelerometers and being video recorded. To define UL functioning, video data were annotated and
accelerometer data were analyzed using a counts threshold method and an MLM. Prediction accuracy,
recall, sensitivity, f1-score, ‘total minutes functional activity’ and ‘percentage functionally active’ were
considered. (3) Results: Despite a good MLM accuracy (0.77–0.90), recall, and specificity, the f1-score
was poor. An overestimation of the ‘total minutes functional activity’ and ‘percentage functionally active’
was found by the MLM. Between the video-annotated data and the functional activity determined by
the MLM, the mean differences were 0.14% and 0.10% for the left and right side, respectively. For the
video-annotated data versus the counts threshold method, the mean differences were 0.27% and 0.24%,
respectively. (4) Conclusions: An MLM is a better alternative than the counts threshold method for
distinguishing functional from non-functional arm movements. However, the abovementioned wrist
accelerometer-based assessment methods overestimate UL functional activity.

Keywords: accelerometry; actigraphy; activities of daily living; breast neoplasms; functional activity;
machine learning; upper extremity

1. Introduction

Upper limb (UL) dysfunctions are, with a prevalence of 60% after breast cancer surgery,
common in breast cancer survivors [1–5]. From the viewpoint of breast cancer survivors, such
upper limb dysfunctions are very impactful and lead to a high personal burden [6]. Indeed,
upper limb dysfunction not only influences a woman’s independent performance of activities of
daily living, it also negatively affects tasks at work, and leads to a decreased quality of life [6].

Adequately assessing the impact of treatment modalities on upper limb dysfunction
and quality of life in breast cancer survivors is an emerging issue. Upper limb dysfunction is
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most frequently assessed using self-reported outcome measures, like the Disabilities of the
Arm, Shoulder, and Hand Questionnaire (DASH) and its Short Form (Quick-DASH) [1–5,7],
and the Shoulder Pain and Disability Index (SPADI) [4]. In breast cancer survivors, both
the DASH and Quick-DASH have been reported to be valid in upper limb dysfunction eval-
uation [1,2,4,5,7]. Although self-reported outcomes are highly relevant, as they investigate
the women’s perception of their upper limb dysfunction, there are several downsides. For
example, they might be subject to response bias (i.e., a woman can score the items in such
a way that she satisfies her treating clinician) or recall bias might occur (i.e., a woman may
not remember what her actual movement behavior was like). Adding objective upper limb
functional monitoring in daily life to self-reported outcomes could lead to a more comprehen-
sive, all-encompassing upper limb assessment in breast cancer survivors. Wearable motion
sensors could provide the ideal opportunity for this [8]. Upper limb wearables could clarify
functional daily activities in different clinical populations, such as more recently obtained data
in the post-stroke population, who often suffer from severe upper limb impairments [8–11].

To determine upper limb functioning from wearable sensors, the activity counts
method is used as standard [11]. These activity counts quantify the intensity, duration,
and when worn on both wrists, symmetry in arm use [12]. While this counts method is
successful at standardizing research across populations and devices [13], recent research
indicates that it overestimates the duration of upper limb use [9]. This overestimation
appears to be mostly due to the inability of this activity counts method to classify functional
(i.e., task-specific arm movements) from non-functional arm movement (e.g., arm swing
while walking) [14]. Therefore, attempts have been made to enable the categorization of
functional versus non-functional arm movement via machine learning models (MLM) [9,13].
Machine learning is a subgroup of artificial intelligence, based on mathematical algorithms,
with the goal of making predictions based on identifying patterns in a data set. This MLM
creates technological advances for example in cancer diagnosis [15]. The first results of
integrating machine learning techniques in categorizing functional versus non-functional
arm movements are promising [9,13]. A main downside, however, is that these models were
trained, validated, and tested in either healthy persons [9] or persons after stroke [9,13].
They were also developed in standardized settings (e.g., occupational therapy centers),
where variability in context is eliminated [9]. This means that it is currently unknown how
these models can be generalized to real-world data.

It is of high clinical relevance to assess whether a learned model developed in healthy
persons in a standardized setting can be generalized to a real-life setting (e.g., a home
environment). Therefore, in this study, we will assess whether a model for the categorization
of functional versus non-functional upper limb movements developed in healthy persons
holds true in a clinical breast cancer population and whether this lab-based model also
generalizes to a real-world environment. More specifically, in this study, we will assess
the accuracy of a pre-trained lab-based MLM, developed by Lum et al. (2020) (which
distinguishes functional from non-functional arm movements) [9] in breast cancer survivors’
home situations by analyzing the model’s output and video-recorded data. Lum et al.
developed a lab-based decision tree machine learning model with an accuracy of 92.6%
in detecting functional activity in healthy controls and individuals with stroke. The non-
functional and functional activity prediction was made per 4-s epoch [9]. We hypothesize
that the model’s accuracy will be lower in a home situation than in a lab-based environment.
Additionally, we hypothesize that, in terms of upper limb use, the MLM will be closer to
the ground truth data than the activity counts method.

2. Materials and Methods
2.1. Participants

Recruitment for this study was through a larger project at the University Hospitals Leu-
ven (B-3000 Leuven, Belgium) about identifying the prognostic factors for the development of
upper limb dysfunction in breast cancer survivors (UPLIFT) (clinicaltrails.com: NCT05297591).
From the large UPLIFT cohort, a convenient sample of 10 breast cancer patients was recruited
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for the present study. The study was conducted by the Declaration of Helsinki, and the
protocol was approved by the Ethics Committee Research UZ/KU Leuven (s66248). Ten
participants, with or without upper limb impairments, were asked to participate. To be
included, participants had to have had breast surgery at least one month prior. Participants
were excluded if they had: distant metastases, a history of breast surgery, planned bilateral
surgery, a neurological or rheumatological disease, and a cognitive and language function-
ing enabling incoherent Dutch communication between the examiner and the participant.
Informed consent was obtained from all participants involved in the study.

2.2. Test Protocol in the Home Environment

The protocol used for the pre-trained lab-based MLM developed by Lum et al. (2020)
was used in the present study, whereby participants were asked to perform four typical
activities of daily living in their own home environment while wearing activity trackers
and being video-recorded during the whole period [9]. For this study, we aimed to assess
the pre-trained model in a home situation in breast cancer survivors. Therefore, the same
activity instructions were given to the participants as described by Lum et al. [9].

Participants were instructed to perform the following four activities: laundry, kitchen,
simulated shopping, and bed-making. All details about the performed activities are pro-
vided in Table 1. During the performance of these activities, participants wore two ac-
celerometers (ActiGraph wGT3X-BT, sample frequency: 30 Hz, Actigraph Corporation,
Pensacola, FL, USA), one on each wrist. Simultaneously the active participants were video
recorded (Sony FDR-AX33, 25 fps). To mimic daily life as closely as possible, the women
were instructed to perform the task as they would naturally. The video and accelerometer
data were synchronized by a “calibration movement” consisting of three to five fast arm
flexion movements in front of the camera. With the calibration movement, potential time
delays between the sensors were detected and the signals were synchronized. Any data
recorded before the first and after the second calibration was discarded. Furthermore, spot
checks were performed to ensure synchronization was maintained throughout the data
collection. In between activities, the participants were instructed to sit down while having
a conversation with the researchers to increase the non-functional activity time. There is no
limitation in the duration of performing the four activities.

Table 1. Description of the performed activities.

Activities Description

Laundry activity

Participants were instructed to (1) move clothes from a closet or basket
into a washer and close the washer, (2) remove the clothes from the
washer, put them in the dryer, and close the door, and (3) remove the
clothes from the dryer and fold them or hang them back in the closet.

Kitchen activity
Participants were instructed to (1) load and unload four or five items
from the dishwasher, (2) cut an apple, (3) pick up one item from the floor,
and (4) use a broom or a dust mop for home to sweep the floor.

Shopping activity

Participants were instructed to (1) gather four or five items out of the
supply closet in their grocery store bag or box, (2) place them into the car,
step into the car, then step out, and remove the groceries from the car,
and (3) put the groceries back in the supply closet.

Bed making activity Participants were instructed to (1) remove the sheets and pillowcases
from their bed and (2) replace them.

2.3. Data Analysis
2.3.1. Video Annotation, i.e., Ground Truth

The video data were analyzed for upper limb functioning by one researcher (JE). Upper
limb functioning was defined by the Functional Arm Activity Behavioral Observation
System (FAABOS) [10,16]. This observation system distinguishes functional (i.e., task-
specific arm movements) from non-functional activities (e.g., arm swing while walking),
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and is considered the ground truth data for our comparison. When the annotator noted
arm function, a timeline marker was placed in the video indicating whether the left, right,
or both arm sides were functionally active. These timeline markers showed the functional
activity’s beginning and end time points. All video data were annotated by frame into
three categories. Category “0” meant “unknown” and included the calibration procedure.
Category “1” were non-functional activities, including arm swings from walking and
quiet sitting. Category “2” were functional activities and contained every movement
that was considered functional by the FAABOS [10,16]. After removing the unknown
data, the data were relabeled to either “0”, denoting non-functional arm activities, or “1”,
denoting functional arm activities. The outcome ‘the total minutes of functional activity’
was calculated as the sum of all time spent in functional arm use per four seconds epoch.

Video data were annotated with Adobe Premiere Pro version 2023. After completing
the video annotation, the timeline markers were exported to a CSV file for further analysis
in MATLAB (version 2021b).

2.3.2. Accelerometer Data Pre-Processing

From the accelerometer data, functional activity was defined using two separate
methods: (1) the counts threshold method, first proposed by Uswatte et al. (2000) [11], and
(2) a pre-trained MLM created by Lum et al. (2020) [9].

First, the acceleration data were pre-processed. The raw acceleration data in three
directions were extracted from the native ActiGraph files using the Python module pygt3x
(version 0.3.8). After these data were imported to MATLAB, the axes were redefined to
match the configurations used by Lum et al. (2020) [9], i.e., they were defined in the
anatomical position with the x-axis being the vertical axis (in line with the arm with the
cranial direction being the positive direction); the y-axis being the medio-lateral axis (with
a positive direction pointing medially for the right hand and laterally for the left hand); and
the z-axis being the anterior-posterior axis (with a positive direction pointing anteriorly)
(Figures 1 and 2).

Sensors 2023, 23, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 1. Redefining of the axis to match the configurations used by Lum et al. for the left side [9]. 
The red arrows indicate the gravitational acceleration. 

 
Figure 2. Redefining of the axis to match the configurations used by Lum et al. for the right side [9]. 
The red arrows indicate the gravitational acceleration. 

2.3.3. Counts Threshold Method 
Activity counts were calculated from the raw acceleration data using the Python 

package agcounts (version 0.1.7), developed by Neishabouri et al. (2022) [17]. The 

Figure 1. Redefining of the axis to match the configurations used by Lum et al. for the left side [9].
The red arrows indicate the gravitational acceleration.



Sensors 2023, 23, 6100 5 of 12

Sensors 2023, 23, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 1. Redefining of the axis to match the configurations used by Lum et al. for the left side [9]. 
The red arrows indicate the gravitational acceleration. 

 
Figure 2. Redefining of the axis to match the configurations used by Lum et al. for the right side [9]. 
The red arrows indicate the gravitational acceleration. 

2.3.3. Counts Threshold Method 
Activity counts were calculated from the raw acceleration data using the Python 

package agcounts (version 0.1.7), developed by Neishabouri et al. (2022) [17]. The 

Figure 2. Redefining of the axis to match the configurations used by Lum et al. for the right side [9].
The red arrows indicate the gravitational acceleration.

2.3.3. Counts Threshold Method

Activity counts were calculated from the raw acceleration data using the Python
package agcounts (version 0.1.7), developed by Neishabouri et al. (2022) [17]. The sampling
frequency was kept at 30 Hz, and the to the epoch size was 1 s. We chose this method over
the ActiGraph software to ensure repeatability without needing proprietary software. The
outcome ‘total minutes active’ was calculated as the sum of the 1 s epochs where the counts
threshold exceeded 1, according to the previously used method by Lum et al. [9].

2.3.4. Machine Learning Pipeline

To match the sampling frequency used in the pre-trained MLM, we resampled our
acceleration data from 30 Hz to 50 Hz using spline interpolation. After resampling the data,
further processing was carried out following the processing protocol of Lum et al. (2020) [9].
Each 4 s epoch of the acceleration data was assigned a label based on video annotation. The
labels were functional, non-functional, mixed, or unknown, with the majority of frames
(i.e., 50%+) in the epoch determining the label. Any data that were labeled unknown were
discarded from further analysis.

From the accelerometer data, 11 features were calculated for each 4 s epoch [9]. These
included the mean and variance of the acceleration in the x, y, and z directions, as well as
the mean, variance, minima, maxima, and Shannon entropy of the Euclidean norm across
the epoch. All features were normalized using min-max scaling. The calculated features
were used in a pre-trained model to predict functional and non-functional blocks. The
classification accuracy was defined as the percentage of data correctly classified into the
functional and non-functional categories, using the video-annotated data as ground truth.
Considering we have an unbalanced data set, we also considered recall, specificity, and
f1-score. These outcomes were analyzed using the methodology described below, and were
based on primary terminologies, illustrated in Table 2 [18,19].
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Table 2. The primary terminologies used for the analyses of the recall, specificity, and f1-score, visualized.

Reality

Functional Activity Non-Functional Activity

Prediction
Functional activity True Positive (TP) False Positive (FP)

Non-functional activity False Negative (FN) True Negative (TN)

The recall is defined as the percentage of functional activity that we predicted correctly
out of all sections of actual functional activity. In this case, recall indicates what percentage,
out of all functional activity, is, in fact, functional activity.

recall =
TP

TP + FN

Specificity is the percentage of correctly labeled sections of non-functional activity
out of all sections of actual non-functional activity. Therefore, specificity indicates what
percentage, out of all non-functional activity, is, in fact, non-functional activity.

specificity =
TN

TN + FP

The f1-score is the harmonic mean of precision and recall. Precision is defined as the
percentage of correctly predicted functional activity out of all sections labeled functional
activity (the true and false positives), where the formula for precision = (TP/TP + FP). This
harmonic mean is best when there is a balance between the two. The f1-score is a value
between 0 and 1, with 0 being the worst score and 1 the best score. If the score is lower than
0.5, the harmonic mean is not good.

f1-score = 2 × recall × precision
recall + precision

= 2 ×
TP

TP+FN × TP
TP+FP

TP
TP+FN + TP

TP+FP

Finally, the number of active minutes was calculated using the predicted functional
blocks. This was done by multiplying the number of functional blocks by 4 s and dividing
by 60.

2.4. Outcomes

Seven outcome parameters were considered in this study: (1) the prediction accuracy,
recall, specificity, and f1-score of the pre-trained MLM; (2) the total minutes of functional
activity based on the video-annotated data, i.e., ground truth; (3) the total minutes of
functional activity predicted by the pre-trained MLM; (4) the total minutes of functional
activity as calculated from the counts threshold method; (5) the percentage in functional
activity following video-annotated data, i.e., the ground truth; (6) the percentage in func-
tional activity predicted by the pre-trained MLM; (7) the percentage in functional activity
calculated with the counts threshold method, whereby the percentage in functional activity
represents the functional activity relative to the total activity time.

2.5. Statistical Analyses

Furthermore, the relationship between prediction accuracy of the pre-trained MLM
and the QuickDASH score (range 0–100) was investigated via a Spearman correlation test
(with a two-sided p-value of <0.05 considered statistically significant). To investigate if
upper limb dysfunctions are presented, does this result in lower accuracy levels?
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3. Results
3.1. Demographic Data

An overview of the characteristics of the ten women participating in this study is
provided in Table 3. Originally, eleven participants signed the informed consent form;
however, only data from ten participants could be used for analysis. One participant had to
be excluded due to corrupted accelerometry data. The age of the participants ranged from
42 to 71 (median 50.5 IQR [43.8–56.0]), and the median BMI was 25.7 (IQR [22.6–28.6]). All
ten participants were treated with surgery, six underwent a mastectomy, four underwent
breast-conserving surgery, seven had a sentinel lymph node biopsy, and three had an
axillary lymph node dissection. Six women were operated on their dominant side, three
received neo-adjuvant chemotherapy, one finished adjuvant chemotherapy, and six finished
radiotherapy. The median QuickDASH score is 11.4 (IQR [3.38–15.9]), whereby a score
of more than 15 means that there are upper limb dysfunctions presented (which was the
case for three women). The average duration of the activity monitoring was 25 min. A
plot representing typical video annotated data and raw accelerometry data is added to the
Supplementary Material S1.

Table 3. Demographic data of the participants.

Subj ID Age (Years/Old) BMI (kg/cm2) Operated Side Surgery (Neo-)Adjuvant Treatment QuickDASH Score

P_001 44 31.87 R ME + SN TAM. 0
P_002 48 19.69 L ME + SN Adj. CT +TAM 9.1
P_003 50 25.09 R BCS + SN Adj. RT + TAM 38.6
P_004 53 29.29 L ME + SN / 4.5
P_005 52 26.29 L BCS + SN Adj. RT + TAM 13.6
P_006 45 24.6 L ME + ALND Neo-adj. CT +Adj. RT +AI 11.4
P_007 52 27.88 R ME + ALND Neo-adj. CT +Adj. RT 15.9
P_008 43 23.52 R ME + SN TAM 0
P_009 65 28.37 R BCS + SN Adj. RT + AI 15.9
P_010 72 19.83 L BCS + ALND Neo-adj. CT +Adj. RT + AI 11.4

Median [IQR] 50.5 [43.8–56.0] 25.7 [22.6–28.6] 11.4 [3.38–15.9]

Abbreviations: P, participant; L, left; R, right; ME, mastectomy; BCS, breast-conserving surgery; SN, sentinel lymph
node biopsy; ALND, axillary lymph node dissection; Neo-adj., neo-adjuvant treatment; Adj., adjuvant treatment; CT,
chemotherapy; RT, radiotherapy; TAM, tamoxifen; AI, Aromatase-inhibitor; IQR, interquartile range.

3.2. Prediction Accuracy

Table 4 shows the prediction accuracy, recall, specificity, and f1-score for upper limb
functioning in ten breast cancer survivors for the left and right arm following the pre-
trained MLM [8]. Good accuracy is presented for the pre-trained MLM [9]. The recall,
which indicates that we were correct for all sections in which we predicted actual functional
activity, seems to indicate a good result for the pre-trained MLM [9]. The same good result
is presented for the specificity, indicating that we were correct for all sections where we
predicted actual non-functional activity. However, a poor f1-score is presented. Therefore,
the good recall and specificity score come at the expense of the number of false positives.

Table 4. Prediction accuracy, recall, specificity, and f1-score of the ten breast cancer survivors.

Left Arm Right Arm
Subj ID acc Recall Spec f1 acc Recall spec f1

P_001 0.82 0.96 0.80 0.47 0.82 0.75 0.83 0.45
P_002 0.82 1.00 0.80 0.53 0.87 0.94 0.86 0.63
P_003 0.90 0.89 0.90 0.30 0.89 0.30 0.93 0.25
P_004 0.83 0.94 0.83 0.32 0.83 0.87 0.82 0.57
P_005 0.77 1.00 0.76 0.23 0.78 0.74 0.79 0.45
P_006 0.80 0.85 0.80 0.31 0.88 0.82 0.89 0.55
P_007 0.85 1.00 0.84 0.36 0.88 1.00 0.87 0.63
P_008 0.81 1.00 0.80 0.33 0.83 0.72 0.84 0.44
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Table 4. Cont.

Left Arm Right Arm
Subj ID acc Recall Spec f1 acc Recall spec f1

P_009 0.88 0.95 0.88 0.55 0.86 0.75 0.86 0.47
P_010 0.83 1.00 0.82 0.12 0.81 0.75 0.82 0.32

avg 0.83 0.96 0.82 0.35 0.85 0.77 0.85 0.47

Abbreviations: P, participant; spec, specificity; f1, f1-score; avg, average.

3.3. Minutes Active and Percentage Functional

In Table 5, the ‘total minutes of functional activity’ and ‘percentage in functional
activity’ from the video-annotated data (ground truth), pre-trained MLM, and the counts
method are displayed for the left and right arm. These results show that there is still an
overestimation of the functional activity of the upper limb in breast cancer survivors. The
differences between the video-annotated data and the functional activity following the
pre-trained MLM range between 0.08 and 0.23 percent, and the mean is 0.14 (±0.04) for
the left and 0.10 (±0.04) for the right side. For the video-annotated data versus the counts
threshold method, differences are even larger (ranging between 0.14 and 0.38 percent) with
a mean of 0.27 (±0.07) for the left and 0.24 (±0.07) for the right side. Figure 3 displays a
scatter plot of the percentage functional activity in comparison to the ground truth data.

Table 5. The total minutes of functional activity and the percentage functionally active for each
participant following video-annotated data (ground truth), the machine learning model (MLM), and
the counts threshold method (counts threshold). The mean difference indicates the mean of the
difference with the ground truth (mean [SD]).

Left Arm Right Arm
Subj ID Ground Truth MLM Counts Threshold Ground Truth MLM Counts Threshold

Total minutes of functional activity
P_001 15.93 19.73 26.28 16.80 19.60 26.22
P_002 12.33 15.47 16.60 13.53 15.67 16.70
P_003 21.87 24.27 26.88 23.27 23.93 27.13
P_004 19.73 23.80 28.43 17.33 20.60 27.98
P_005 12.53 16.53 17.05 12.73 15.47 16.82
P_006 12.20 15.13 20.27 13.80 15.27 20.50
P_007 10.40 12.33 15.15 11.27 12.93 14.87
P_008 16.07 20.07 19.77 17.07 19.60 20.35
P_009 15.40 17.47 20.33 15.33 17.27 20.32
P_010 14.40 17.47 19.42 14.53 17.47 19.57

Percentage of functionally active
P_001 0.56 0.69 0.92 0.59 0.69 0.92
P_002 0.69 0.87 0.93 0.76 0.88 0.94
P_003 0.79 0.87 0.97 0.84 0.86 0.98
P_004 0.66 0.80 0.95 0.58 0.69 0.94
P_005 0.71 0.94 0.97 0.72 0.88 0.95
P_006 0.58 0.72 0.96 0.65 0.72 0.97
P_007 0.66 0.78 0.96 0.71 0.82 0.94
P_008 0.75 0.94 0.93 0.80 0.92 0.95
P_009 0.71 0.80 0.94 0.71 0.79 0.94
P_010 0.73 0.88 0.98 0.73 0.88 0.99

Mean difference
[SD] 0.14 [0.04] 0.27 [0.07] 0.10 [0.04] 0.24 [0.07]
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3.4. Correlation Accuracy and DASH Scores

A Spearman correlation test was performed between the QuickDASH scores and the pre-
diction accuracy for functional activity of the left and right arm side (rho = 0.544 and = 0.477).
The two-sided p-value was respectively p = 0.104 and p = 0.163, indicating no relationship
between the accuracy and upper limb dysfunctions.

4. Discussion

To the best of our knowledge, this is the first study examining the accuracy of an
MLM for defining functional upper limb activity in breast cancer survivors in a home
situation by comparing the MLM with video-annotated data (i.e., ground truth). The
MLM used was based on the MLM developed by Lum and his colleagues in healthy
persons and persons after stroke [9]. Additionally, a comparison with an activity counts
method was made. The mean difference in percentage of functional activity is, between
the video-annotated data and the functional activity following the pre-trained MLM, was
0.14 (±0.04) for the left and 0.10 (±0.04) for the right side. For the video-annotated data
versus the counts threshold method, the mean differences are 0.27 (±0.07) percentage for
the left and 0.24 (±0.07) percentage for the right side. The results show that this MLM
evaluates upper limb functioning more accurately than the commonly used counts method.
However, the MLM gives an overestimation of upper limb functioning when compared to
the video-annotated data (i.e., ground truth). An overestimation is present in both methods
for the prediction of functional activity compared to the video-annotated data. However,
the overestimation in the prediction of functional activity based on the counts method was
far greater than the estimation based on the MLM. This gives rise to the question of the
validity of the counts threshold method for assessing upper limb functioning.

Lum et al. developed the MLM algorithm in a laboratory setting and found a cor-
relation with the ground truth of r = 0.99, with an accuracy of 92.6% in the paretic limb
of stroke patients [9]. Our results indicate poorer accuracy scores (i.e., range from 0.77 to
0.90), despite using the same MLM. This could be due to several reasons. First, Lum
et al. developed and fine-tuned the MLM in data collected from ten healthy controls and
ten individuals with stroke [9]. Based on Fisher’s findings, we assumed that breast cancer
survivors’ amount of functional upper limb use would not differ significantly from healthy
controls, and therefore no loss in accuracy of the MLM developed by Lum et al. will present
in our population [8,9]. Unfortunately, our results do not comply with the accuracy results
described by Lum et al. [9].
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In this study, no relation was found between self-reported upper limb dysfunction
in breast cancer survivors and the MLM’s accuracy. However, upper limb impairments
may contribute to the accuracy results of the MLM, for example, the amount of use, could
be different if there are UL dysfunction presented. On the other hand, a limitation of this
study is the rather small sample size. A larger sample size and more variability in the
presence of UL dysfunctions might be essential to determine the consistency of MLM in
healthy participants and women with upper limb dysfunction following breast surgery,
to further determine the influence of the condition on the accuracy. Second, even though
the accuracy, recall, and specificity were relatively high, average of >75%, the f1-score was
low. This indicates that the model prioritizes the prediction of functional activity over the
precision of the model, leading to a large number of false positives. Third, and of utmost
importance, in this study, the MLM’s accuracy was tested outside a controlled lab setting.
While performing this kind of assessment in an ecologically more valid environment, it is
to be expected that unforeseen activities with the arm happen, e.g., opening/closing doors,
or switching lights on/off. Another clear example of additional functional movements that
were observed in the home situation was the arm movements needed for taking the stairs,
or going to the car or the sleeping room to perform the required study task. These kinds of
activities were not included in the validation protocol of Lum [9]. However, holding the
stair railing when taking the stairs was considered a functional activity and thus rated as
such when annotating the video data. Additionally, since we tested the women in their own
home environment, the context was different for each individual. This led to a decrease
in task standardization. For example, in the lab setting, each object was placed at the
same location for each participant (e.g., on a shelf in a fridge). In contrast, in the home
environment, some women had their fruit in a fridge while others stored them in a cellar.
Therefore, although the task description was similar to the task description used by Lum
and colleagues (2020), the context was different [9]. We suggest that the context, especially,
plays an important role in the accuracy, since the results of the women’s QuickDASH
scoring were relatively low (meaning that upper limb dysfunctions were limited), plus
the fact that there was no correlation between the quickDASH scoring and the prediction
accuracy.

To evaluate recovery after breast cancer treatment, the real-world impact and assess-
ment of daily life movement behavior is important [14]. Functional task performances in a
lab setting can be influenced by breast cancer surgery [20,21]. Besides, we know from previ-
ous research that the level of activity can have a positive effect after breast cancer treatment
and that an active approach is effective for treating post-operative pain and impairments in
the shoulder range of motion [22,23]. However, as clinical-based assessments can indicate
what a person’s capabilities are, this does not reflect what a patient actually does in daily
life [14]. Therefore, the importance of assessing functional upper limb movement in breast
cancer survivors in their home situation needs to be highlighted [12,20].

Although the MLM shows promising results for future research, it is too early for a
direct transfer to an unconstrained environment, without a reduction in accuracy. There-
fore, correctly and objectively quantifying functional upper limb activity outside of a lab
setting remains a research priority. The MLM developed by Lum et al. (2020) [9] used a
random forest classifier model to determine the label of functional or non-functional upper
limb activity. Adaptations to this MLM so that it can be transferred to an unconstrained
environment are thus rather difficult. Therefore, as a next step, we suggest improving
the MLM’s accuracy in the home environment and exploring the use of newer machine
learning technics, such as deep learning neural networks.

5. Conclusions

The results of this study show that the machine learning model developed by Lum et al.
more accurately evaluates upper limb functioning than the commonly used counts method.
Interpreting the results of upper limb functioning with the use of the standard counts
threshold method of accelerometry data should therefore be undertaken with caution.
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The error in terms of accuracy is large, since a large amount of non-functional activity is
interpreted as functional activity. A machine learning model is a better alternative, as its
results are closer to the video data, but an overestimation is still present. Future research
should be done in developing a more accurate machine learning algorithm to objectify
upper limb functioning in clinical populations such as breast cancer survivors in daily life
outside of a controlled setting.
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