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Abstract: The spine is an important part of the human body. Thus, its curvature and shape are closely
monitored, and treatment is required if abnormalities are detected. However, the current method
of spinal examination mostly relies on two-dimensional static imaging, which does not provide
real-time information on dynamic spinal behaviour. Therefore, this study explored an easier and
more efficient method based on machine learning and sensors to determine the curvature of the spine.
Fifteen participants were recruited and performed tests to generate data for training a neural network.
This estimated the spinal curvature from the readings of three inertial measurement units and had an
average absolute error of 0.261161 cm.

Keywords: spine; neural network; inertial measurement unit; dynamic monitoring

1. Introduction

The spine, or vertebral column, is an important bony structure that connects the
head to the pelvis [1]. Abnormal spinal curvature may cause lower back pain [2] and
neck pain [3–6] and, in severe cases, obvious body imbalance and even cardiorespiratory
complications [7]. However, abnormal curvature is considered a condition that can be
diagnosed and then treated. Methods of diagnosing abnormal curvature include the
forward bend test and radiography [8–10].

School screening was conducted in the United States as far back as the 1960s to detect
scoliosis, which is a kind of spinal deformity that is estimated to affect 2–3 percent of the
general population [11]. Initially, postural tests were conducted and poor posture was
considered a health hazard. Following this, in 1965, the English physician William Adams
devised the Adam’s forward bend test (AFBT) [12], which owing to its effectiveness and
convenience remains a popular and useful method of screening scoliosis [13]. The AFBT
has recently been modified, with the newer technique extending the evaluation of rotational
flexibility and classification of the type of spinal curvature [14]. Nevertheless, the AFBT
is not the only practical examination method. A few years after the AFBT was devised,
Moire topography was developed to analyse the asymmetry of the trunk of the body to
screen for structural scoliosis [15]. Later, Drerup and Hierholzer [16] developed a three-
dimensional (3D) surface screening technique called raster stereography to automatically
define anatomical landmarks on the surface of the back and therefore measure spinal
deformity [16]. However, although this technique is accurate for early detection, it cannot
be used to monitor the progression of spinal curvature [17].

In fact, none of the above-mentioned examination methods are as precise as ra-
diographic examination. Thus, plain radiography imagery is now considered the gold-
standard technique for measuring spinal curvature and detecting spinal deformities [18].
This approach involves passing ionising radiation (X-rays) through the body to obtain a
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two-dimensional (2D) image and a 3D computed tomography scan [19]. Owing to the
risk of radiation exposure, good alternative technologies that reduce radiation exposure
have been devised. A successfully applied alternative technology is magnetic resonance
imaging (MRI), which allows 3D reconstruction of the spine. However, MRI technology has
a limited project volume and requires professional operators. Additionally, a disadvantage
of these three technologies is their high financial cost, which may place a heavy economic
burden on patients and their families [20,21]. Another successfully applied technology
is the DIERS Formetric 4D scanner, which creates a 3D image rather than a radiograph
of the spine [22]. However, this type of scanner is not universally used, owing to the
requirements of operating the equipment and software and for the back of the patient
to be bare. Additionally, with the development of computer vision technology, artificial
intelligence technology has been used to analyse images of the naked back for determining
the spinal curvature [23]. The technologies described above are used for static evaluation of
the spine. However, dynamic assessment should be considered because it is more related
to patients’ health-related quality of life [24]. To this end, motion capture was verified as an
accurate and reliable method of measuring dynamic spinal alignment [18].

Currently, in the healthcare industry, new applications based on the use of sensors
are being developed to help people to understand their body, e.g., sensors that monitor
the heart rate [25–27] or blood sugar concentration [28], and thermometers that measure
body temperature [29] or muscle activity [30]. In particular, it has been found that inertial
measurement units (IMUs) are effective for sensing [31–33]. In terms of the clinical use
of IMUs for examining the spine, [34] validated the reliability of IMU sensors that were
used on the lumbar part of the spine. They also stated the need for further research that
evaluates the performance of IMU sensors for examining healthy populations and other
parts of the spine that they did not study.

In addition to sensors, data-driven approaches, such as machine learning, are necessary
for training a model that relates data obtained from IMU sensors to the degree of spinal
curvature [33]. Recently, neural network (NN) techniques and data from IMUs have been
combined in human motion analyses. The motion information of multiple joints during
walking was accurately predicted using only a single IMU sensor and an artificial NN
model, which demonstrated the feasibility of applying this combination in the analysis
of biomechanical dynamics [35]. Similarly, a convolutional NN method was successfully
adopted to estimate golf swing phases using data collected from an IMU sensor placed
on different body parts [36]. However, it does not seem possible to estimate the degree
of spinal curvature using only one IMU sensor, as spinal curvature varies from person to
person and usually has two apexes. Hence, more sensors are needed for such applications.

Accordingly, the purpose of this paper is to describe a new method to estimate and
monitor spinal curvature in real time using three IMU sensors and machine learning
technology. Hardware with three IMUs was developed and an NN model was built to
estimate the curvature from the hardware readings. The estimates were compared with
the results of a motion capture system, which were also the ground truth for the machine
learning model, to evaluate the accuracy and reliability of this new method.

2. Materials and Methods

The NN was designed to estimate the spinal curvature from the orientations of the
IMUs in three different locations. The ground-truth spinal curvature was obtained using
a Vicon motion capture system and a custom-developed sensor strip, via the following
five steps: (1) sensor strip development, (2) data collection, (3) data processing, (4) neural
network training, and (5) cross-validation.

Spinal curvature is defined as a line representing the curve of the spine, which can be
interpolated from 10 points along the line. Each point is represented by a 3D vector with a
position in the x-, y-, and z-dimensions. The points are ordered from bottom to top, with
the last point representing the location of the vertebra prominens (C7).
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2.1. Sensor Attachment

A custom-made vest and strip were created for mounting the three IMUs along the
spine. The vest was tightly fitted to each participant’s body with elastic belts that prevented
the dislocation of the vest during body movement. The strip was a 7 cm wide and 50 cm
long piece of elastic fabric that had electric components sewn onto its surface.

The sensor strip used in the study consisted of five components: three IMUs, a micro-
controller unit, and a power-delivery module. Two of the IMUs were MPU-9250 modules
from InvenSense, while the third was an LSM6DS3 module from STMicroelectronics on
an Arduino Nano 33 IoT board. Both types of IMU module had an integrated 3D digital
accelerometer and 3D digital gyroscope. The MPU-9250 is a small multi-chip module that
combines a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer, and in-
cludes a Digital Motion Processor for complete 9-axis MotionFusion output, making it ideal
for motion-tracking applications. The device also features 16-bit ADCs, programmable digi-
tal filters, a precision clock, an embedded temperature sensor, and programmable interrupts,
and supports both I2C and SPI serial interfaces. The sensitivity scale factors of gyroscope,
accelerometer, and magnetometer are 16.4 LSB/(◦/s), 2048 LSB/g and 0.6 µT/LSB, respec-
tively. The IMUs were positioned at three different distances from the top of the fabric strap,
and the printed circuit boards were aligned with the centre of the actual IMU integrated
circuit to ensure accurate measurements along the centre of the strap with aligned IMU
orientations. A schematic of the sensor strip is available in Figure 1.
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Figure 1. Schematic of the sensor strip with three IMUs, one battery, one microcontroller unit and
eight retro-reflective markers.

2.2. Data collection
2.2.1. Participants

Fifteen healthy participants without physical or mobility impairment were recruited
for the study. The details of the research work were explained to all of the participants,
and they gave written informed consent prior to the start of the experiment. The research
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was given ethical approval by the Hong Kong Polytechnic University (reference number
HSEARS20171214002). The demographic information of the participants is summarised in
Table 1.

Table 1. Demographic information of the participants.

Characteristics Value

Number of participants 15
Number of male/female participants 4/11

Height (cm) (Mean ± SD) 163.53 ± 7.74
Length of spine (cm) (C7 to S2) (Mean ± SD) 50.33 ± 3.96

Age (Mean ± SD) 25.40 ± 3.85

2.2.2. Instrumentation

The spinal curvature of the participants was measured using a Vicon motion capture
system. The data were collected with software developed for the study; i.e., Vicon’s
Datastream SDK. Ten 14 mm reflective markers were attached to the sensor strip 5 cm apart
from each sensor, starting from the top of the sensor strip. The participants were instructed
to wear a tight vest with Velcro on the back. The sensor strip was then attached to the back
of the vest, with the top of the strip aligned to C7 of the spine. The participants were then
asked to stand at the centre of the measurement chamber. A system check was performed
before the data collection began.

2.2.3. Motion Capture Experiment

Two motion sets were required for all of the participants. The first motion set had
10 steps, which covered eight directions of movement that a human typically performs.
The first step was flexion, which meant that the participants bent forwards to 90 degrees.
The participants were then asked to extend backwards as far as possible. The third step
was left lateral flexion, during which the participants bent to the left side without raising
their pelvises or feet. In the fourth step, the participants bent to the right side with the
same requirements. In the fifth step, the participants were asked to bend to the left side
and forwards at the same time. The sixth step was bending to the right and forwards at
the same time. The seventh step was a combination of bending to the left and extending
backwards as far as possible, and the eighth step was a combination of bending to the right
and extending backwards. The ninth and tenth steps were rotation to both sides to slightly
twist the spine. The participants were instructed to return to a normal standing posture
between steps and to ensure each movement was slow and steady. The complete motion
set is shown in Figure 2.

The second motion set covered the spinal curve between the forward bending motions
in the first motion set and comprised nine steps. The participants first bent forwards at
90 degrees and then extended to the right side. This posture was the starting position for
the motion set. Next, the participants were asked to slowly move to the left side without
raising or lowering their bodies, which was the first sweep. The third step was raising their
heads approximately 22.5 degrees from horizontal, which was equal to one-fourth of the
vertical standing posture. In the fourth step, the participants swept to the right side without
raising or lowering their bodies. In the fifth and sixth steps, they raised their heads again
to approximately 30 degrees and slowly moved to the left, respectively. In the seventh step,
they raised their heads once again to approximately 45 degrees, and in the eighth step they
swept to the right side. Finally, the participants slowly returned to the vertical standing
posture. Figure 3 shows the movements for the second motion set. The first and second
motion sets were performed four times and twice, respectively, to ensure the reliability of
the collected data.
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2.3. Data Processing

The raw data collected were processed before being used to train the NN. The data
collected from the motion capture system and the sensor strip were processed separately
and then combined to construct the dataset.

2.3.1. Motion Capture Data Processing

The Vicon motion capture system captured the locations of the markers in a stream of
frames. One or more markers were not visible in some of the frames, so these incomplete
frames were eliminated. The recognised markers in a frame were not ordered, so they were
sorted by selecting the closest marker to the previous marker, with the marker that was
closest to the ground taken as the first marker.

The reported locations of the markers were relative to the centre of the measurement
chamber. The origin was moved to the first marker by subtracting the distance from the
first marker from the distances of the sorted markers.

The locations were expressed by 3D vectors with forward, rightward, and upward
axes in units of millimetres. The vectors were scaled to −1 and 1 by dividing the forward
and rightward axes by 50 mm and the upward axis by 500 mm. The data were not restricted
to −1 and 1, such that it was possible to have values that exceeded −1 and 1.

2.3.2. Sensor Strip Data Processing

The sensor strip provided data from the accelerometer, also in a stream of frames.
However, the sensor strip and the motion-capture system worked asynchronously at the
hardware level. Hence, the frames reported by the sensor strip were not synchronised with
those reported by the motion-capture system. The frames were therefore synchronised by
linear interpolation.
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ward bending motions performed in Motion Set 1: (a) starting position, (b) first sweep, (c) first
raising, (d) second sweep, (e) second raising, (f) third sweep, (g) third raising, (h) final sweep, and
(i) standing posture.

Each motion capture frame was checked for a timestamp t in the IMU data frames
IMU (t). All of the IMU data frames that had the exact timestamp of any one of the motion-
capture data frames were used without interpolation. Otherwise, the frames immediately
before IMU (t0) and after the IMU (t1) timestamp t were used to interpolate the value of
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IMU (t), where t0 and t1 are the timestamps of the frames, respectively. The interpolation
equation is written as

IMU (t) =

{
IMU(t), i f IMU(t) exists,

IMU(t0) +
IMU(t1)−IMU(t0)

t1−t0
, otherwise.

(1)

2.4. Neural Network

An NN was trained to estimate the spinal curvature from an input of three accelerom-
eter readings of an IMU in 3D vectors. The estimation was expressed as nine points along
the curvature in 3D vectors, originating from the first point fixed at (0, 0, 0). See Figure 4
for the input and output of the NN’s training and inference.
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training; (b) the input and output of neural network’s inference.

The network had nine inputs, which represent the x-, y-, and z-axes of the accelerome-
ters. There were 27 nodes at the output, which were the x-, y-, and z-locations of the nine
points along the spinal curvature. The dense layers in between had an hourglass shape of
27, 18, 9, and 18 nodes, respectively, and all were fully connected.

The collected data were divided into training, validation, and testing datasets in
proportions of 50%, 25%, and 25%, respectively. All of the data frames collected in the
same session were placed into the same dataset, so that data from the same session were
not separated into training and testing datasets. The network was trained using a rectified
linear unit as the activation function and the mean squared error as the loss function.
RMSprop was used as the optimiser, with Rho = 0.9 and Momentum = 0. See Table 2 for all
of the parameters. The training converged quickly and stopped at Epoch = 250.

Table 2. Parameters of RMSProp optimiser.

Learning Rate Rho Momentum Epochs Batch Size

0.0001 0.9 0 250 512

The trained NN was cross validated to detect overfitting or memorising. The data
of one male and one female participant were randomly excluded from the collected data
and formed a cross-validation dataset. Hence, the NN had not seen the data used in
cross-validation. See Table 3 for the participant profiles. The performance of the trained
NN was evaluated using the cross-validation dataset, with this being undertaken only once,
after training. This procedure evaluated the performance of the NN using unseen data.
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Table 3. Profile of participants chosen for neural network evaluation.

No. of Participants Gender Age (Years Old) Height (cm) Spine Length (cm)

5 Male 26 174 54
13 Female 24 160 47

3. Results

There were 476,977 frames collected in 15 data sessions. The frames were cleaned and
processed before being used in network training. The number of frames used in NN training,
testing, validation and cross validation were 250900, 83633, 83633 and 58810, respectively.
The training, validation, and testing errors were 0.0251, 0.0244, and 0.0366, respectively.

The collected dataset is available on https://github.com/th-alexmak/Spinal-Curvature-
Dataset (accessed on 22 May 2023) for public access.

The prediction of the trained NN was compared with the ground-truth data. The average
component-wise error of the estimated marker positions was −0.261161 cm ± 2.510505 cm.
For more information, Table A1 in Appendix A provided the error in each component.

The trained neural network was used on two scoliosis patients to evaluate the ap-
plicability of the neural network in subjects with spinal deformities. Three IMUs were
attached to the spine of the patient using adhesive tape, at 11.5 cm, 32 cm, and 44 cm from
C7, respectively. The patients were instructed to sit upright when the readings of IMUs
were recorded. The spinal curvature was then obtained using the neural network on the
recorded IMU readings. See Figure 5 for the estimated spinal curvatures, and Table A2 in
Appendix B for the detailed estimated data. The Cobb angle was measured as the angle
between the most and least tilted point along the estimated spinal curvature. See Table 4 for
the Cobb angle measured from the patient’s X-ray image and the estimated spinal curve.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 5. Estimated spinal curvature of scoliosis patients by the neural network: (a) Subject #1, (b) 
Subject #2. The estimated marker positions are indicated by green dots, and the spinal curvature is 
drawn as a black line. The orientations of each marker are indicated by red (right, x-axis), green (up, 
y-axis), and blue (forward, z-axis), respectively. 

Table 4. Cobb angles of patients measured from X-ray images and estimated spinal curves. 

Subject Code 
Measured Cobb Angle 

X-Ray Image (°) Estimated Spinal Curve (°) 
1 11.0 10.957184 
2 13.1 13.131111 

4. Discussion 
This paper proposes a neural network approach to monitor spinal curvatures in real 

time that successfully predicts the degree of the spinal curvature based on the readings of 
three IMUs with an average absolute error of 0.261161 cm. The results of our study show 
that this technology can provide accurate and reliable measurements of spinal curvatures, 
and offers a promising solution for the real-time monitoring of spinal curvatures. 

This method only requires a sensor strip and an electronic device, such as a laptop or 
smartphone. Therefore, its convenience and cost-effectiveness are unrivalled. To be spe-
cific, measuring the spinal curvature can be undertaken in a patient’s home or clinic, thus 
reducing the need for frequent hospital visits and reducing healthcare costs overall. 

Another key advantage of this method is its ability to provide real-time monitoring 
of spinal curvatures. This feature allows for continuous monitoring of spinal curvature 
changes, which can increase the effectiveness of the treatment. Patients can track their 
treatment progress and see the effects, which can increase their engagement and motiva-
tion to continue with the treatment. Medical professionals such as clinicians will find that 
this method offers more accurate data to optimize the treatment plan in a timely manner. 
Additionally, the method enables real-time continuous applications that rely on the spinal 
curvature data, which cannot be realized with traditional methods, such as x-ray imaging. 
For example, the method is well-suited for conducting biofeedback training, including 
postural training, where monitoring of the posture is necessary to provide immediate 
feedback on whether correction is required. Therefore, further applications will be subse-
quently developed. 

One limitation of this study is that the sensor strip is designed for laboratory use, and 
may not be as convenient to use outside the laboratory setting. Therefore, improvements 
to the design of the sensor strip are necessary to enable its application in other settings, 
such as clinics. For instance, it is necessary to cover the electric components when the sen-
sor strip is being used by doctors or patients. Furthermore, outliers are observed in the 
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(b) Subject #2. The estimated marker positions are indicated by green dots, and the spinal curvature
is drawn as a black line. The orientations of each marker are indicated by red (right, x-axis), green
(up, y-axis), and blue (forward, z-axis), respectively.

Table 4. Cobb angles of patients measured from X-ray images and estimated spinal curves.

Subject Code
Measured Cobb Angle

X-Ray Image (◦) Estimated Spinal Curve (◦)

1 11.0 10.957184

2 13.1 13.131111
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4. Discussion

This paper proposes a neural network approach to monitor spinal curvatures in real
time that successfully predicts the degree of the spinal curvature based on the readings of
three IMUs with an average absolute error of 0.261161 cm. The results of our study show
that this technology can provide accurate and reliable measurements of spinal curvatures,
and offers a promising solution for the real-time monitoring of spinal curvatures.

This method only requires a sensor strip and an electronic device, such as a laptop
or smartphone. Therefore, its convenience and cost-effectiveness are unrivalled. To be
specific, measuring the spinal curvature can be undertaken in a patient’s home or clinic,
thus reducing the need for frequent hospital visits and reducing healthcare costs overall.

Another key advantage of this method is its ability to provide real-time monitoring
of spinal curvatures. This feature allows for continuous monitoring of spinal curvature
changes, which can increase the effectiveness of the treatment. Patients can track their
treatment progress and see the effects, which can increase their engagement and motivation
to continue with the treatment. Medical professionals such as clinicians will find that
this method offers more accurate data to optimize the treatment plan in a timely man-
ner. Additionally, the method enables real-time continuous applications that rely on the
spinal curvature data, which cannot be realized with traditional methods, such as x-ray
imaging. For example, the method is well-suited for conducting biofeedback training,
including postural training, where monitoring of the posture is necessary to provide imme-
diate feedback on whether correction is required. Therefore, further applications will be
subsequently developed.

One limitation of this study is that the sensor strip is designed for laboratory use, and
may not be as convenient to use outside the laboratory setting. Therefore, improvements
to the design of the sensor strip are necessary to enable its application in other settings,
such as clinics. For instance, it is necessary to cover the electric components when the
sensor strip is being used by doctors or patients. Furthermore, outliers are observed in the
mid-range of the estimated spinal curvature values. The accuracy and performance can be
perhaps further improved by increasing the number of participants and balancing the ratio
of male and female participants. This, together with the recruitment of participants with a
larger age and body-size ranges, should be the focus of future work.

Another limitation is that an accumulation of error along the markers is observed,
the error of a previous marker is being carried to the subsequent markers. The errors
in x- and z-axes are also significantly larger than that in the y-axis. It is believed that
this is due to the lack of information on world orientation that is perpendicular to the
gravity from the accelerometer readings. However, it is assumed that the accuracy in
estimating the curvature is more important than restoring the correct world orientation. As
the error in terms of marker positions for the same curvature facing south or east can be
very large, the curvature remains the same. For applications that also require an absolute
world orientation, further research is needed on including relevant sensors, for example,
a compass.

5. Conclusions

This study demonstrates the potential of machine learning technology and IMU-based
systems for the real-time monitoring of spinal curvatures. This method offers several
advantages, including dynamic assessment, convenience, cost-effectiveness, and reduced
radiation exposure. However, further research is needed to validate these findings and
optimize the design.
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Appendix A

Table A1. Errors (cm) in each component of estimated marker positions.

Marker
Error in x-Axis (cm) Error in y-Axis (cm) Error in z-Axis (cm)

Mean ± SD

Marker 2 −0.039246 ± 0.654629 0.009011 ± 0.407979 0.009011 ± 0.407979
Marker 3 −0.082154 ± 1.458481 0.101323 ± 0.535569 −0.018093 ± 1.402238
Marker 4 −0.144836 ± 1.789642 0.046761 ± 0.779287 −0.166073 ± 1.779907
Marker 5 −0.291647 ± 2.414006 0.099789 ± 0.898368 −0.245607 ± 2.405230
Marker 6 −0.469228 ± 3.085831 0.176705 ± 1.103621 −0.440173 ± 3.037856
Marker 7 −0.632811 ± 3.805284 0.213977 ± 1.293863 −0.593567 ± 3.683613
Marker 8 −0.821146 ± 4.575898 0.298431 ± 1.531894 −0.721798 ± 4.285308
Marker 9 −0.995856 ± 5.349810 0.353473 ± 1.820733 −0.879281 ± 4.881974

Marker 10 −1.187598 ± 6.222460 0.343759 ± 2.205439 −1.053195 ± 5.482679

Appendix B

Table A2. Detailed data of estimated spinal curvature.

Item Subject #1 Subject #2

IMU 1—Acceleration X −0.04517 0.04333
IMU 1—Acceleration Y 0.61755 0.89661
IMU 1—Acceleration Z −0.67151 −0.44287
IMU 2—Acceleration X −0.05713 0.00903
IMU 2—Acceleration Y 0.98938 0.99658
IMU 2—Acceleration Z −0.00684 0.03027
IMU 3—Acceleration X 0.01709 −0.02991
IMU 3—Acceleration Y 0.97375 0.98401
IMU 3—Acceleration Z 0.04199 −0.17786

Marker 2—X −2.4248275756835938 −2.441648244857788
Marker 2—Y 27.026416778564453 34.43146133422852
Marker 2—Z −16.348039627075195 −8.949712753295898
Marker 3—X 2.98522424697876 1.0537102222442627
Marker 3—Y 81.97868347167969 88.9962158203125
Marker 3—Z −26.029380798339844 −15.354696273803713
Marker 4—X 5.769716739654541 2.9824023246765137
Marker 4—Y 110.39649963378906 124.36925506591795
Marker 4—Z −23.595386505126957 −6.963764190673828

https://github.com/th-alexmak/Spinal-Curvature-Dataset
https://github.com/th-alexmak/Spinal-Curvature-Dataset
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Table A2. Cont.

Item Subject #1 Subject #2

Marker 5—X 8.40865707397461 5.85613489151001
Marker 5—Y 160.68186950683594 177.68435668945312
Marker 5—Z −10.85873794555664 6.670775413513184
Marker 6—X 8.916449546813965 6.876500129699707
Marker 6—Y 210.945068359375 230.6820373535156
Marker 6—Z −8.876883506774902 12.186483383178713
Marker 7—X 8.91054630279541 7.606303215026855
Marker 7—Y 258.7609558105469 281.3783569335937
Marker 7—Z −10.991703033447266 12.565881729125977
Marker 8—X 11.808712005615234 11.296859741210938
Marker 8—Y 310.0574035644531 334.2227478027344
Marker 8—Z −14.924169540405272 9.177355766296388
Marker 9—X 13.446818351745604 13.42614459991455
Marker 9—Y 358.4640197753906 384.51568603515625
Marker 9—Z −24.18433952331543 1.3085908889770508

Marker 10—X 12.886392593383787 13.651782035827637
Marker 10—Y 403.5655212402344 431.4049072265625
Marker 10—Z −47.075775146484375 −20.73443984985352
Cobb Angle 10.957183742351745 13.13111123849918
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