
Citation: Zhao, S.; Shang, X.; Wang,

G.; Zhao, H. A Fast Algorithm for

Intra-Frame Versatile Video Coding

Based on Edge Features. Sensors 2023,

23, 6244. https://doi.org/10.3390/

s23136244

Academic Editors: Byung-Gyu Kim

and Dongsan Jun

Received: 23 May 2023

Revised: 5 July 2023

Accepted: 6 July 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Fast Algorithm for Intra-Frame Versatile Video Coding Based
on Edge Features
Shuai Zhao, Xiwu Shang *, Guozhong Wang and Haiwu Zhao

School of Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
m025120510@sues.edu.cn (S.Z.)
* Correspondence: dxsxw@126.com

Abstract: Versatile Video Coding (VVC) introduces many new coding technologies, such as quadtree
with nested multi-type tree (QTMT), which greatly improves the efficiency of VVC coding. However,
its computational complexity is higher, which affects the application of VVC in real-time scenarios.
Aiming to solve the problem of the high complexity of VVC intra coding, we propose a low-complexity
partition algorithm based on edge features. Firstly, the Laplacian of Gaussian (LOG) operator was
used to extract the edges in the coding frame, and the edges were divided into vertical and horizontal
edges. Then, the coding unit (CU) was equally divided into four sub-blocks in the horizontal and
vertical directions to calculate the feature values of the horizontal and vertical edges, respectively.
Based on the feature values, we skipped unnecessary partition patterns in advance. Finally, for the
CUs without edges, we decided to terminate the partition process according to the depth information
of neighboring CUs. The experimental results show that compared with VTM-13.0, the proposed
algorithm can save 54.08% of the encoding time on average, and the BDBR (Bjøntegaard delta bit
rate) only increases by 1.61%.

Keywords: versatile video coding (VVC); fast algorithm; CU partition; edge direction

1. Introduction

In recent years, with the development of information technology, multimedia tech-
nologies such as 4K ultra-high-definition videos, 360-degree immersive multimedia, and
high-dynamic-range videos have rapidly developed, resulting in a rapid and sharp increase
in data volume. This puts tremendous pressure on data storage and transmission, and the
previous high-efficiency video coding standard, high-efficiency video coding (HEVC), has
difficulty meeting the compression requirements [1].

To overcome this difficulty, the Joint Video Coding Expert Group began exploring
the next-generation video standard, and developed a new video coding standard called
Versatile Video Coding (VVC) [2]. The goal of VVC is to achieve compression efficiency
improvement of over 50% while maintaining the same video quality as the HEVC. VVC
introduces a new segmentation technique called Quadtree with Nested Multi-Type Tree
(QTMT) [3]. In addition to the QT partition structure, there are four other multi-type tree
(MTT) partition structures, including vertical binary tree (VBT), horizontal binary tree
(HBT), vertical ternary tree (VTT), and horizontal ternary tree (HTT). Introducing QTMT
makes the shape of coding units (CU) more flexible and diverse, which can increase the
number of CUs that need to be recursively traversed during the rate-distortion optimization
(RDO) process. Figure 1a shows an example of the partition structure obtained after
recursive traversal, and Figure 1b shows the corresponding tree structure. Under the
condition of all intra configuration, the average complexity of VVC is 18 times that of
HEVC [4], which affects the application of VVC in real-time encoding scenarios.

Sensors 2023, 23, 6244. https://doi.org/10.3390/s23136244 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23136244
https://doi.org/10.3390/s23136244
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23136244
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23136244?type=check_update&version=2

Sensors 2023, 23, 6244 2 of 14

Sensors 2023, 23, x FOR PEER REVIEW 2 of 15

Figure 1. Example of the CU partition structure in VVC. (a) example of the partition structure ob-
tained after recursive traversal; (b) the corresponding tree structure.

To solve the problem of high computational complexity in the partition process of
VVC, a fast partition method based on edge features is proposed. The main contributions
of the proposed method are as follows:
(1) Using edge information as the basis for selecting partition modes leads to more ac-

curate results compared to using texture complexity as the basis for selecting parti-
tion modes.

(2) We propose a method for calculating the feature value of the edge, which is exploited
to predict the partition pattern.

(3) The partition information and texture complexity of adjacent CUs are utilized to de-
termine whether to terminate the current CU partition, resulting in more accurate
results.

2. Related Work
Currently, research on fast algorithms for VVC can be divided into two parts: ma-

chine learning-based and coding content-based methods.
For machine learning-based methods, Fu et al. [5] propose a fast decision binary par-

tition algorithm based on Bayesian rules by utilizing the correlation between the current
CU and the sub-CU after horizontal binary segmentation to terminate vertical binary seg-
mentation. Li et al. [6] propose a multi-stage exit CNN (MSE-CNN) model with an early
exit mechanism to determine the CU partition. Then, an adaptive loss function is designed
to train the MSE-CNN model. Zhang et al. [7] divide a CTU into four parts to train a neural
network and calculate the probability of various partition modes in a coding tree unit
(CTU). Once the probability of the partition mode exceeds the threshold, it will be skipped
to achieve complexity reduction. In [8], Zhang et al. design a fast coding unit (CU) parti-
tion and an intra-mode decision algorithm, which uses a random forest classifier (RFC)
model to achieve a fast partition of the CU. Yang et al. [9] transform the QTMT partition
process into multiple binary classification problems for each decision layer, which is pro-
cessed by a decision tree classifier. Although this method saves coding time, BDBR (Bjøn-
tegaard Delta Bit Rate) losses are also high. In [10], Wu et al. propose a Hierarchical Grid
Fully Convolutional Network (HG-FCN) framework to predict level-specific partition
structures, achieving a certain degree of complexity reduction. Saldanha et al. [11] use a
classifier to make early decisions in Direct Component (DC) mode and Planar mode dur-
ing the prediction process, and use the pixel variance of sub-blocks to decide whether to
use intra-frame sub-block partition technology. In [12], a convolutional neural network is
trained to predict partition modes by training a probability vector. In [13], a neural net-

Figure 1. Example of the CU partition structure in VVC. (a) example of the partition structure
obtained after recursive traversal; (b) the corresponding tree structure.

To solve the problem of high computational complexity in the partition process of
VVC, a fast partition method based on edge features is proposed. The main contributions
of the proposed method are as follows:

(1) Using edge information as the basis for selecting partition modes leads to more accurate
results compared to using texture complexity as the basis for selecting partition modes.

(2) We propose a method for calculating the feature value of the edge, which is exploited
to predict the partition pattern.

(3) The partition information and texture complexity of adjacent CUs are utilized to deter-
mine whether to terminate the current CU partition, resulting in more accurate results.

2. Related Work

Currently, research on fast algorithms for VVC can be divided into two parts: machine
learning-based and coding content-based methods.

For machine learning-based methods, Fu et al. [5] propose a fast decision binary
partition algorithm based on Bayesian rules by utilizing the correlation between the current
CU and the sub-CU after horizontal binary segmentation to terminate vertical binary
segmentation. Li et al. [6] propose a multi-stage exit CNN (MSE-CNN) model with an
early exit mechanism to determine the CU partition. Then, an adaptive loss function is
designed to train the MSE-CNN model. Zhang et al. [7] divide a CTU into four parts to
train a neural network and calculate the probability of various partition modes in a coding
tree unit (CTU). Once the probability of the partition mode exceeds the threshold, it will
be skipped to achieve complexity reduction. In [8], Zhang et al. design a fast coding unit
(CU) partition and an intra-mode decision algorithm, which uses a random forest classifier
(RFC) model to achieve a fast partition of the CU. Yang et al. [9] transform the QTMT
partition process into multiple binary classification problems for each decision layer, which
is processed by a decision tree classifier. Although this method saves coding time, BDBR
(Bjøntegaard Delta Bit Rate) losses are also high. In [10], Wu et al. propose a Hierarchical
Grid Fully Convolutional Network (HG-FCN) framework to predict level-specific partition
structures, achieving a certain degree of complexity reduction. Saldanha et al. [11] use
a classifier to make early decisions in Direct Component (DC) mode and Planar mode
during the prediction process, and use the pixel variance of sub-blocks to decide whether
to use intra-frame sub-block partition technology. In [12], a convolutional neural network is
trained to predict partition modes by training a probability vector. In [13], a neural network
model is trained using cross-entropy and is used for early termination of the partition
process. In [14], a fast algorithm based on machine learning is proposed, which uses
texture complexity to determine the division direction and a lightweight neural network
to determine the division mode. In [15], the authors present a low-complexity method,

Sensors 2023, 23, 6244 3 of 14

which is formed of five binary Light Gradient Boosting Machine (LightGBM) classifiers.
In [16], a fast CU partitioning decision algorithm is presented based on texture complexity
and convolutional neural networks (CNNs). It utilizes a symmetric convolution kernel to
extract features and redesigns the loss function.

For coding content-based methods, Zhang et al. [17] propose a fast partition scheme
based on adjacent sub-regions, which skips unnecessary partition modes in advance based
on the similarity of adjacent sub-regions in the horizontal and vertical directions. In [18],
Song et al. measure the texture complexity in the vertical and horizontal directions accord-
ing to the sum of the mean absolute deviation (SMAD) of the sub-blocks. On this basis,
unnecessary division modes are skipped. In [19], Li et al. use the gradient of the Scharr
operator to describe texture information, and use the edge differences of sub blocks to de-
scribe structural information. On this basis, they propose a fast algorithm based on texture
features. In [20], Shang et al. make a rapid decision on the CU partition process by utilizing
the partition mode and size distribution of adjacent CUs, and optimize the decision-making
process of inter-frame prediction modes. In [21], Zhang et al. use corner features and
average color brightness differences to classify screen content. Then, for different screen
contents, they exploit different strategies to predict the coding mode. In [22], Fan et al. use
a Sobel operator to calculate the gradient of a CU and terminate the QT partition based on
the gradient. Then, texture information is used to measure the differences between partition
structures, based on which partition patterns are determined. Shang et al. [23] predict the
quadtree division depth of the current CU in advance by analyzing the correlation between
adjacent CUs. Additionally, image texture features are utilized to make early decisions
about the MTT division process. In [24], Zhang et al. determine whether to split using CU
texture information, and skip unnecessary partition modes according to the distribution
of the residual coefficients. In [25], a latitude-based preprocessing is introduced to enable
early termination of the coding unit (CU) partition in the polar region. In [15], the authors
apply the factor of average background luminance for just-noticeable distortion to identify
the visually distinguishable (VD) pixels within a coding unit (CU).

Although the above methods achieve some complexity reduction, they do not achieve
a good balance between complexity reduction and compression performance loss. Com-
plexity reduction that maintains good compression performance is limited, and the im-
provement in the application of VVC in real-time scenarios is not significant. Compression
performance with higher complexity reduction has a greater loss, and cannot meet the
coding requirements.

3. Proposed Method
3.1. Principle

In the final partition results of VVC, the MTT partition structure accounts for almost
one-third of all partition structures. It is the most complex operation, averaging over 90% of
the total encoding time [10]. In the MTT partition decision process, the choice of partition
mode has great flexibility, but only one of the vertical or horizontal directions is used in the
final decision. Therefore, if we can skip unnecessary MTT partition modes in advance, we
can effectively reduce the time complexity of intra-frame coding.

From the partition results, some CUs tend to have larger partition sizes. However, the
encoding process still exhaustively searches all CU size options to find the optimal mode.
If the partition process for these CUs can be terminated in advance, it will also effectively
reduce the time complexity.

Figure 2a shows a CU partition result for the sequence Johnny in VVC intra coding. By
observing Figure 2a, it can be seen that for regions containing edges, smaller partition sizes
are usually adopted to adapt to complex texture directions and achieve better compression
efficiency. In addition, the selection of partition mode is related to the direction of the edge.
In contrast, regions without edges have simpler textures, and larger partition sizes are
usually adopted. Inspired by this, we divided the encoding frames into two categories:
complex-texture areas with edges and simple-texture areas without edges. For complex-

Sensors 2023, 23, 6244 4 of 14

texture areas, edge features are computed to skip unnecessary partition modes, while
for-simple-texture areas, the partition process is terminated in advance.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 15

From the partition results, some CUs tend to have larger partition sizes. However,
the encoding process still exhaustively searches all CU size options to find the optimal
mode. If the partition process for these CUs can be terminated in advance, it will also
effectively reduce the time complexity.

Figure 2a shows a CU partition result for the sequence Johnny in VVC intra coding.
By observing Figure 2a, it can be seen that for regions containing edges, smaller partition
sizes are usually adopted to adapt to complex texture directions and achieve better com-
pression efficiency. In addition, the selection of partition mode is related to the direction
of the edge. In contrast, regions without edges have simpler textures, and larger partition
sizes are usually adopted. Inspired by this, we divided the encoding frames into two cat-
egories: complex-texture areas with edges and simple-texture areas without edges. For
complex-texture areas, edge features are computed to skip unnecessary partition modes,
while for-simple-texture areas, the partition process is terminated in advance.

(a)

(b)

Sensors 2023, 23, x FOR PEER REVIEW 5 of 15

(c)

Figure 2. (a) The partition result for Johnny under QP = 32. (b) The edge extraction for Johnny with
σ = 0.1. (c) The edge extraction for Johnny with σ = 2.1.

3.2. Edge and Edge Feature Extraction
Traditional edge detection operators such as the Sobel operator [26] are based on

first-order derivatives to determine the edges of an image. However, first-order deriva-
tives only reflect the velocity of pixel changes in an image, and cannot prove the presence
of edges, leading to inaccurate edge detection and localization. The Canny operator [27]
has higher accuracy in edge detection than the Sobel operator, but it still has errors and
high computational complexity, which goes against our intention to reduce the computa-
tional complexity. The Laplacian of Gaussian (LOG) operator [28] is based on second-or-
der derivatives to determine the edges of an image. Second-order derivatives reflect the
degree of frequency changes (discontinuity) in the pixel change curve of an image, and
can detect more details. Additionally, the extraction of edge positions is more accurate,
overcoming the shortcomings of previous operators. Additionally, the LOG operator uses
a Gaussian filter to smooth the image before edge detection [29], which eliminates noise
interference. Therefore, we chose the LOG operator to extract the edges of the image and
used the results to calculate edge features.

The LOG operator has accurate edge position detection and can extract more com-
plete edges. Before extracting the edges, the Gaussian filter is used to remove the noise in
the image. The setting of the standard deviation threshold of the Gaussian distribution
during the filtering process affects the edge extraction effect. As shown in Figure 2b, if the
value is set too low or is not set, there will be a lot of noise in the extracted edges. If the
value is set too high, some edge information may be lost. To obtain the best value, we
designed the following experiment.

The first step was to calculate the average partition depth of the coding frame. Then,
for different values of σ, the average partition depth of the CU at the edge was calculated,
and the difference between the two was computed. A small difference indicates that too
many non-edge pixels are detected as edge pixels, while a large difference suggests that
the edge pixels are accurately extracted. For the coding frame I(x, y), the edge detection
process is as follows. First, the image was smoothed using a Gaussian filter, and then, a
Laplacian operator was applied to obtain the edge pixels p(x, y), which are given by Equa-
tions (1) and (2). Here, g(x, y) is a 2D Gaussian function, and σ is the threshold value of
the standard deviation of the Gaussian distribution, which was determined through ex-
periments.

Figure 2. (a) The partition result for Johnny under QP = 32. (b) The edge extraction for Johnny with
σ = 0.1. (c) The edge extraction for Johnny with σ = 2.1.

Sensors 2023, 23, 6244 5 of 14

3.2. Edge and Edge Feature Extraction

Traditional edge detection operators such as the Sobel operator [26] are based on
first-order derivatives to determine the edges of an image. However, first-order derivatives
only reflect the velocity of pixel changes in an image, and cannot prove the presence of
edges, leading to inaccurate edge detection and localization. The Canny operator [27] has
higher accuracy in edge detection than the Sobel operator, but it still has errors and high
computational complexity, which goes against our intention to reduce the computational
complexity. The Laplacian of Gaussian (LOG) operator [28] is based on second-order
derivatives to determine the edges of an image. Second-order derivatives reflect the degree
of frequency changes (discontinuity) in the pixel change curve of an image, and can detect
more details. Additionally, the extraction of edge positions is more accurate, overcoming
the shortcomings of previous operators. Additionally, the LOG operator uses a Gaussian
filter to smooth the image before edge detection [29], which eliminates noise interference.
Therefore, we chose the LOG operator to extract the edges of the image and used the results
to calculate edge features.

The LOG operator has accurate edge position detection and can extract more complete
edges. Before extracting the edges, the Gaussian filter is used to remove the noise in the
image. The setting of the standard deviation threshold of the Gaussian distribution during
the filtering process affects the edge extraction effect. As shown in Figure 2b, if the value is
set too low or is not set, there will be a lot of noise in the extracted edges. If the value is set
too high, some edge information may be lost. To obtain the best value, we designed the
following experiment.

The first step was to calculate the average partition depth of the coding frame. Then, for
different values of σ, the average partition depth of the CU at the edge was calculated, and
the difference between the two was computed. A small difference indicates that too many
non-edge pixels are detected as edge pixels, while a large difference suggests that the edge
pixels are accurately extracted. For the coding frame I(x, y), the edge detection process is as
follows. First, the image was smoothed using a Gaussian filter, and then, a Laplacian operator
was applied to obtain the edge pixels p(x, y), which are given by Equations (1) and (2). Here,
g(x, y) is a 2D Gaussian function, and σ is the threshold value of the standard deviation of the
Gaussian distribution, which was determined through experiments.

p(x, y) = ∇2[g(x, y) ∗ I(x, y)] (1)

The order of differentiation and convolution can be interchanged:

∇2g(x, y) =
1

2πσ4 (
x2 + y2

σ2 − 2)exp(− x2 + y2

2σ2) (2)

We selected five video sequences with different resolutions and texture complexity
from the JVET Common Test Conditions (CTC) [30], including FoodMarket4 (3840 × 2160),
Kimono1 (1920 × 1080), BasketballPass (1920 × 1080), BQMall (832 × 480), and BQSquare
(416 × 240). We calculated the difference between the average partition depth of the edge
blocks detected at different values and the average partition depth of all coding blocks. The
experimental results are shown in Figure 3. The horizontal axis represents the threshold
value of σ, and the vertical axis represents the difference between the depth of coding
unit (CU) partition at the edge and the depth of partition for all CUs within the frame at
different sigma values.

From Figure 4, we can observe that there are significant differences in the curves
between different sequences, but the trend of change is consistent. When the value of σ
is less than 0.6, the difference in partition depth between the edge coding blocks and the
average depth is relatively small. This indicates that the edge image obtained by the LOG
operator contains a large amount of noise and cannot accurately extract edges. When the
value of σ is greater than 2.1, the difference in depth almost does not change with increasing
σ, indicating that the extracted edges are relatively accurate. However, as the threshold

Sensors 2023, 23, 6244 6 of 14

value increases, some edges may be lost. Therefore, in this experiment, the threshold
value for the standard deviation of the Gaussian distribution was set to 2.1, and the edges
extracted under this threshold are shown in Figure 2c.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 15

2(,) [(,) * (,)]p x y g x y I x y= ∇ (1)

The order of differentiation and convolution can be interchanged:
2 2 2 2

2
4 2 2

1 x yg(,) ()exp()
2 2

x yx y
σ σ σ

+ +∇ = −
π

-2 (2)

We selected five video sequences with different resolutions and texture complexity
from the JVET Common Test Conditions (CTC) [30], including FoodMarket4 (3840 × 2160),
Kimono1 (1920 × 1080), BasketballPass (1920 × 1080), BQMall (832 × 480), and BQSquare
(416 × 240). We calculated the difference between the average partition depth of the edge
blocks detected at different values and the average partition depth of all coding blocks.
The experimental results are shown in Figure 3. The horizontal axis represents the thresh-
old value of σ, and the vertical axis represents the difference between the depth of coding
unit (CU) partition at the edge and the depth of partition for all CUs within the frame at
different sigma values.

Figure 3. Depth difference ratios under different σ values.

From Figure 4, we can observe that there are significant differences in the curves be-
tween different sequences, but the trend of change is consistent. When the value of σ is
less than 0.6, the difference in partition depth between the edge coding blocks and the
average depth is relatively small. This indicates that the edge image obtained by the LOG
operator contains a large amount of noise and cannot accurately extract edges. When the
value of σ is greater than 2.1, the difference in depth almost does not change with increas-
ing σ, indicating that the extracted edges are relatively accurate. However, as the thresh-
old value increases, some edges may be lost. Therefore, in this experiment, the threshold
value for the standard deviation of the Gaussian distribution was set to 2.1, and the edges
extracted under this threshold are shown in Figure 2c.

For CUs containing edges, we used edge feature values (efvs) to measure the direc-
tional characteristics of the edges. Compared to other methods, efvs are easier to calculate
and more intuitively reflect the directional characteristics of the edges. The calculation
process of efvs is as follows:

x

y

efvefv =
efv

 (3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

D

σ
FoodMarket4 Kimono1 BasketballPass

BQMall BQSquare

Figure 3. Depth difference ratios under different σ values.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 15

efvx and efvy are the edge feature values in the horizontal and vertical directions of the
edge, respectively, and are calculated as follows.

We differentiated the edge image obtained by the LOG operator to make its features
more obvious in the vertical and horizontal directions. The formula used is as follows.

(,) (, 1) (, 1)Dx x y p x y p x y= − − + (4)

y(,) (1,) (1,)D x y p x y p x y= − − + (5)

where Dx(x, y) represents the horizontal edge pixels, Dy(x, y) represents the vertical edge
pixels, p(x, y) represents the edge pixels obtained by the LOG operator, and (x, y) repre-
sents the pixel coordinates. The result is shown in Figure 4. As shown in Figure 4b, it is
not difficult to see that although the optimized edge features in the horizontal direction
are more obvious, there are still some pixels in the vertical direction. If we directly calcu-
late the edge feature value in the horizontal direction at this time, there will be a large
error. Similarly, if we calculate the edge feature value in the vertical direction at this time,
it will also result in a large error. Considering the partition characteristics of VVC, we
propose the following method to calculate the edge feature value.

(a)

(b)

(c)
Figure 4. Image differentiation effect. (a) Original edge map. (b) Horizontal edges. (c) Vertical edges.

Firstly, the current CU was divided into four sub-blocks along the horizontal direc-
tion, named HA, HB, HC, and HD, respectively, from top to bottom. Then, the number of
horizontal edge pixels in each sub-block was calculated, as follows:

4
A

h
w

x=1 y=1

H = Dx x,y （ ） (6)

2

4

B

h
w

hx=1 y=

H = Dx x,y （ ） (7)

3
4

2

C

h
w

hx=1 y=

H = Dx x,y （ ） (8)

Figure 4. Image differentiation effect. (a) Original edge map. (b) Horizontal edges. (c) Vertical edges.

For CUs containing edges, we used edge feature values (efvs) to measure the directional
characteristics of the edges. Compared to other methods, efvs are easier to calculate and
more intuitively reflect the directional characteristics of the edges. The calculation process
of efvs is as follows:

e f v =
e f vx
e f vy

(3)

efvx and efvy are the edge feature values in the horizontal and vertical directions of the
edge, respectively, and are calculated as follows.

We differentiated the edge image obtained by the LOG operator to make its features
more obvious in the vertical and horizontal directions. The formula used is as follows.

Dx(x, y) = |p(x, y− 1)− p(x, y + 1)| (4)

Sensors 2023, 23, 6244 7 of 14

Dy(x, y) = |p(x− 1, y)− p(x + 1, y)| (5)

where Dx(x, y) represents the horizontal edge pixels, Dy(x, y) represents the vertical edge
pixels, p(x, y) represents the edge pixels obtained by the LOG operator, and (x, y) represents
the pixel coordinates. The result is shown in Figure 4. As shown in Figure 4b, it is not
difficult to see that although the optimized edge features in the horizontal direction are
more obvious, there are still some pixels in the vertical direction. If we directly calculate
the edge feature value in the horizontal direction at this time, there will be a large error.
Similarly, if we calculate the edge feature value in the vertical direction at this time, it will
also result in a large error. Considering the partition characteristics of VVC, we propose the
following method to calculate the edge feature value.

Firstly, the current CU was divided into four sub-blocks along the horizontal direction,
named HA, HB, HC, and HD, respectively, from top to bottom. Then, the number of
horizontal edge pixels in each sub-block was calculated, as follows:

HA =
w

∑
x=1

h
4

∑
y=1

Dx(x, y) (6)

HB =
w

∑
x=1

h
2

∑
y= h

4

Dx(x, y) (7)

HC =
w

∑
x=1

3h
4

∑
y= h

2

Dx(x, y) (8)

HD =
w

∑
x=1

h

∑
y= 3h

4

Dx(x, y) (9)

After obtaining the number of edge pixels for the four horizontal sub-blocks, we
compared their sizes and recorded the largest number of pixels as HM. The second largest
was recorded as HSec. Similarly, we divided the CU into four vertical sub-blocks, from left
to right, as VA, VB, VC, and VD, and then, calculated the number of vertical edge pixels in
each sub-block. The calculation process is as follows:

VA =

w
4

∑
x=1

h

∑
y=1

Dy(x, y) (10)

VB =

w
2

∑
x= w

4

h

∑
y=1

Dy(x, y) (11)

VC =

3w
4

∑
x= w

2

h

∑
y=1

Dy(x, y) (12)

VD =
w

∑
x= 3w

4

h

∑
y=1

Dy(x, y) (13)

Once we obtained the number of edge pixels in the four vertical sub-blocks, we took the
largest pixel count as VM, and the second largest as VSec. Then, we can calculated the edge
feature value efvx in the horizontal direction and efvy in the vertical direction as follows.

e f vx = HM + HSec (14)

Sensors 2023, 23, 6244 8 of 14

e f vy = VM + VSec (15)

We conducted experiments on the reference software VVC VTM-13.0 to determine the
relationship between the final partition mode and efv. In the experiment, we continued
to use the five video sequences in the Joint Video Exploration Team (JVET) Common
Test Conditions (CTC), including FoodMarket4 (3840 × 2160), Kimono1 (1920 × 1080),
BasketballPass (1920 × 1080), BQMall (832 × 480), and BQSquare (416 × 240). The first five
frames of each sequence were encoded with the profiles of all the intra coding. We collected
the statistical results of efv and the corresponding vertical and horizontal partition modes,
which are shown in Table 1.

Table 1. Statistical analysis of partition modes under different edge feature values.

Encoding Sequence Proportion of Vertical
Division (%)

Proportion of Horizontal
Division (%)

(a) FoodMarket4
efv > 1 33 67
efv < 1 65 35

efv > 1.2 21 79
efv < 0.8 83 17

(b) Kimono1
efv > 1 30 70
efv < 1 67 34

efv > 1.2 19 81
efv < 0.8 75 25

(c) BasketballPass
efv > 1 21 79
efv < 1 72 28

efv > 1.2 19 81
efv < 0.8 75 25

(d) BQMall
efv > 1 38 62
efv < 1 71 29

efv > 1.2 25 75
efv < 0.8 70 30

(e) BQSquare
efv > 1 38 62
efv < 1 71 29

efv > 1.2 25 75
efv < 0.8 70 30

From Table 1, we can see that the percentages of vertical and horizontal partition
modes vary with different sequences. We can also observe a clear relationship between
partition modes and the value of efv. When efv is greater than 1, the number of horizontal
edge pixels is greater than that of vertical edge pixels, and the edge features tend to be
horizontal. Therefore, the CU partition tends to be horizontal, and the proportion of
the horizontal partition increases with an increase in the ratio. When efv is less than 1,
the number of vertical edge pixels is greater than that of horizontal edge pixels, and the
edge features tend to be vertical. Therefore, the CU partition tends to be vertical, and the
proportion of the vertical partition increases as efv decreases.

Based on the statistical data in Table 1, a fast CU decision-making scheme was designed
based on the following rules. When the efv value is greater than the higher threshold Th, it
means that the probability of horizontal direction is greater than that of vertical direction,
and the current CU is more likely to have horizontal edges. In this case, we skip the
vertical partition mode. Conversely, when the efv value is less than the lower threshold
Tl, it indicates that the current CU is more likely to have vertical edges. Thus, we skip
the horizontal partition mode. When efv is between Th and Tl, it indicates that the edge

Sensors 2023, 23, 6244 9 of 14

direction feature is not obvious. In this case, each CU partition has almost the same
probability, and no partition mode is skipped in advance.

3.3. Early Termination of Simple-Texture Regions

Simple-texture regions in CUs tend to favor larger partition sizes. We can terminate
the partition process in advance. As shown in Figure 1, we find that the partition depth of
CUs in simple-texture regions is very close to the partition depth of adjacent simple-texture
region CUs, and the texture complexity of CUs decreases with an increase in partition
depth. Therefore, we can use the partition depth and texture complexity of adjacent CUs as
a basis for early termination of partition in simple-texture CUs. The distribution of adjacent
CUs is shown in Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 15

3.3. Early Termination of Simple-Texture Regions
Simple-texture regions in CUs tend to favor larger partition sizes. We can terminate

the partition process in advance. As shown in Figure 1, we find that the partition depth of
CUs in simple-texture regions is very close to the partition depth of adjacent simple-tex-
ture region CUs, and the texture complexity of CUs decreases with an increase in partition
depth. Therefore, we can use the partition depth and texture complexity of adjacent CUs
as a basis for early termination of partition in simple-texture CUs. The distribution of ad-
jacent CUs is shown in Figure 5.

Figure 5. Adjacent coding unit (CU)s.

We propose the following method to determine whether to terminate the partition
process of a simple-texture-region CU in advance. First, we obtain the partition depth of
the simple-texture-region CU. As shown in Figure 5, A–E are the adjacent CUs to the cur-
rent CU. We refer to the partition information of A, B, and E to obtain the maximum divi-
sion depth difference between adjacent CUs, and record the maximum division depth dif-
ference as Dm. The calculation formula of Dm is as follows:

max minDm = D D− (16)

where Dmax and Dmin are the maximum and minimum partition depths of adjacent CUs,
respectively. We record the current CU partition depth as CUdepth. If Dm is less than or
equal to 1 and CUdepth is less than Dmax, then the CU partition continues. Otherwise, fur-
ther judgment is made based on the texture complexity Ct to determine whether to termi-
nate the partition. The calculation formula of Ct is as follows:

y+hx+w
2

average
i=x j=y

p(i, j) - p
Ct =

w h×

（ ）

(17)

where p(i, j) represents the pixel value at coordinates (i, j), and Paverage is the average pixel
value of the CU. The calculation formula of Paverage is as follows:

1 y+hx+w

average
i=x j=y

p = p(i, j)
w h× (18)

By calculating the texture complexity Ct of the current CU and its adjacent CUs, when
the texture complexity (Ctcu) of the CU is less than or equal to the minimum texture com-
plexity (Ctmin) of the adjacent CU, the segmentation process is terminated in advance.

Figure 5. Adjacent coding unit (CU)s.

We propose the following method to determine whether to terminate the partition
process of a simple-texture-region CU in advance. First, we obtain the partition depth
of the simple-texture-region CU. As shown in Figure 5, A–E are the adjacent CUs to the
current CU. We refer to the partition information of A, B, and E to obtain the maximum
division depth difference between adjacent CUs, and record the maximum division depth
difference as Dm. The calculation formula of Dm is as follows:

Dm = Dmax − Dmin (16)

where Dmax and Dmin are the maximum and minimum partition depths of adjacent CUs,
respectively. We record the current CU partition depth as CUdepth. If Dm is less than
or equal to 1 and CUdepth is less than Dmax, then the CU partition continues. Otherwise,
further judgment is made based on the texture complexity Ct to determine whether to
terminate the partition. The calculation formula of Ct is as follows:

Ct =

x+w
∑

i=x

y+h
∑

j=y
(p(i, j)− paverage)

2

w× h
(17)

where p(i, j) represents the pixel value at coordinates (i, j), and Paverage is the average pixel
value of the CU. The calculation formula of Paverage is as follows:

paverage =
1

w× h

x+w

∑
i=x

y+h

∑
j=y

p(i, j) (18)

Sensors 2023, 23, 6244 10 of 14

By calculating the texture complexity Ct of the current CU and its adjacent CUs, when
the texture complexity (Ctcu) of the CU is less than or equal to the minimum texture
complexity (Ctmin) of the adjacent CU, the segmentation process is terminated in advance.

3.4. Flowchart of the Proposed Algorithm

The flowchart of the algorithm process is shown in Figure 6. Firstly, the type of the
current CU is determined using edge information. If it is a CU with a complex-texture
region, the edge feature value (efv) of the current CU is calculated. We skip unnecessary
partition modes for the current CU based on efv. If the efv value is greater than Th, the
vertical partition mode is skipped. If the efv value is less than Tl, the horizontal partition
mode is skipped. Otherwise, we consider that the directional features are not obvious, and
do not skip any mode. For simple-texture regions that do not contain edges, we obtain the
partition information of the current CU and its adjacent CUs. If the difference in partition
depth between adjacent CUs does not exceed 1, we consider that the current CU and its
adjacent CUs have a strong spatial correlation, and use spatial correlation to terminate
partition. If the partition depth of the current CU is less than that of the adjacent CU, the
partition process continues. Otherwise, we further compare the texture complexity of the
current CU with that of the adjacent CU. If the texture complexity of the current CU is less
than or equal to that of the adjacent CU, the partition process is terminated earlier.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 15

3.4. Flowchart of the Proposed Algorithm
The flowchart of the algorithm process is shown in Figure 6. Firstly, the type of the

current CU is determined using edge information. If it is a CU with a complex-texture
region, the edge feature value (efv) of the current CU is calculated. We skip unnecessary
partition modes for the current CU based on efv. If the efv value is greater than Th, the
vertical partition mode is skipped. If the efv value is less than Tl, the horizontal partition
mode is skipped. Otherwise, we consider that the directional features are not obvious, and
do not skip any mode. For simple-texture regions that do not contain edges, we obtain the
partition information of the current CU and its adjacent CUs. If the difference in partition
depth between adjacent CUs does not exceed 1, we consider that the current CU and its
adjacent CUs have a strong spatial correlation, and use spatial correlation to terminate
partition. If the partition depth of the current CU is less than that of the adjacent CU, the
partition process continues. Otherwise, we further compare the texture complexity of the
current CU with that of the adjacent CU. If the texture complexity of the current CU is less
than or equal to that of the adjacent CU, the partition process is terminated earlier.

Start

Extract edges and
differentiate

Include
edges？

Calculate efv

efv >ThSkip Vertical
Partition mode

efv <Tl

Original VVC
partition mode

End

Skip horizontal
division mode

Y

Y

N

N

Y

Get Ct and Dm

Dm<1

Ctcu<Ctmin

Y

Y

N

N

Figure 6. A flowchart of the proposed algorithm.

Figure 6. A flowchart of the proposed algorithm.

4. Simulation Results

To evaluate the performance of our method, we conducted experiments on the refer-
ence software VVC VTM-13.0. In the experiment, 21 sequences were tested, which belong

Sensors 2023, 23, 6244 11 of 14

to six sequences with different resolutions recommended by JVET common test conditions.
Four QPs of 22, 27, 32, and 37 were tested in the proposed algorithm. The experiments were
conducted on a Windows 10 64-bit operating system, with an Intel(R) Core(TM) i5-10300H
CPU @ 2.50 GHz. The performance of the algorithm was measured using Ts and BDBR,
where Ts is calculated as follows:

Ts =
To− Tp

To
× 100% (19)

To represent the total encoding time of the original VVC standard, Tp represents the
total encoding time of the proposed method, and BDBR represents the degree of loss in
encoding performance. A smaller BDBR value indicates less compression performance loss.

Table 2 presents the experimental results of the proposed algorithm compared to the
original VTM-13.0 platform under different parameters. When the experimental parameters
Th and Tl are set to 0.6 and 1.5, respectively, the average coding time is reduced by 32.52%,
with a BDBR loss of only 0.36%. For this case, the skip conditions for unnecessary partition
modes are relatively strict with less time saving, and the impact on the coding performance
can be ignored. When Th and Tl are set to 0.8 and 1.3, the average coding time is reduced
by 54.08%, with a BDBR loss of 1.61%. Since more partition modes are skipped under this
condition, more time saving is achieved with a slight increase in BDBR loss.

Table 2. Comparison of algorithm results.

Class Sequence
Reference [9] Reference [15] Reference [16] Algorithm in This Paper

Tl1 = 0.6, Th1 = 1.5 Tl1 = 0.8, Th1 = 1.3
BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%)

A1
Tango2 1.47 52.23 0.74 37.01 1.59 51.85 0.40 32.96 1.54 56.97
Campfire 2.65 64.74 0.66 34.05 1.61 50.11 0.45 33.45 1.63 57.96
CatRobatl 1.77 47.63 0.54 29.91 1.55 50.59 0.32 29.77 1.91 58.41

A2
DatLightRoat2 2.11 52.01 0.71 32.12 1.77 47.92 0.26 31.45 1.36 55.25
ParkRunning3 1.32 50.12 0.68 32.11 1.99 54.33 0.27 29.45 1.51 49.07
MarkPlace 1.91 55.21 0.55 34.15 1.86 48.11 0.36 33.11 1.77 55.11

B
Cactus 1.95 51.07 0.61 30.73 1.31 44.95 0.44 31.37 1.54 51.07
BasketballDrive 2.25 62.01 0.74 34.48 1.42 48.33 0.32 35.21 1.56 49.72
BQTerrace 2.07 54.07 0.62 30.85 1.49 46.16 0.27 34.32 1.32 50.01

C

RaceHorses 1.16 46.39 0.46 27.83 1.69 51.04 0.33 31.02 1.55 61.27
BasketballDrill 2.01 46.19 0.40 26.55 1.52 51.18 0.40 34.21 2.17 66.21
BQMall 2.15 53.23 0.65 33.79 1.44 46.95 0.48 30.38 1.54 56.02
PartyScene 1.61 42.73 0.42 31.62 1.79 45.88 0.23 29.32 1.32 47.65

D

RaceHorses 1.33 43.75 0.55 30.17 1.24 48.33 0.24 31.41 1.49 50.21
BasketballPass 2.33 43.85 0.70 30.53 1.18 45.17 0.28 31.87 1.37 45.95
BQSquare 0.81 44.06 0.29 29.97 1.41 40.04 0.78 33.33 1.88 56.35
BlowingBubbles 1.31 55.16 0.43 29.34 1.86 43.86 0.66 35.22 1.57 49.15

E
FourPeople 2.75 55.64 0.78 35.63 1.75 46.68 0.40 31.85 1.54 50.77
Johnny 3.29 56.98 0.69 30.65 1.27 39.21 0.50 27.93 1.62 54.57
KristenAndSara 2.51 57.19 0.59 31.38 1.63 49.82 0.36 32.66 1.62 45.91
Average 1.94 51.17 0.59 31.44 1.56 47.91 0.36 32.52 1.61 54.08

The method proposed in [15] saves 31.44% encoding time with a BDBR loss of 0.59%.
Our method reduces the coding time by 32.52%, while maintaining better coding perfor-
mance. In [15], the CU is divided into four sub-blocks, and the partition mode is skipped
according to the complexity ratio of different combinations of the four sub-blocks. This
method can achieve good results when the texture of the sequence is relatively simple.
However, when the complex texture distribution of the CU is concentrated on one side,
there is a possibility of misjudgment. Our method is more robust and can adapt to dif-
ferent situations of the encoded sequence. When the texture of the encoded sequence is
simple, our method uses spatial correlation to terminate the partition process for CUs with
a simple-texture area in advance. When the texture of the encoded sequence is complex,
our method skips more non-optimal partition modes by utilizing edge features.

Compared with the methods proposed in [9,16], our proposed method achieves an
additional time saving of 2.91% and 6.17% while maintaining better RD performance. The

Sensors 2023, 23, 6244 12 of 14

reason is that the methods in [9,16] require a large amount of data to train their models,
and the performance of the method may be affected if the training data are insufficient
or not comprehensive enough. The method we propose is based on an analysis of edge
structure and spatial correlation, which requires lower computational complexity.

To further illustrate the rate-distortion performance of our algorithm, we show the RD
curves of the sequences in Figure 7. Figure 7a,b shows the RD curves for BasketballDrill and
BQTerrace, respectively. The red curve represents the RD curve of the proposed method,
and the black curve represents the RD curve of the original algorithm. In the worst case, the
RD curve of the proposed method is slightly lower than that of the original encoder. In the
best case, the RD curve of our proposed method almost coincides with that of the original
encoder. Therefore, our algorithm effectively saves encoding time while maintaining high
RD performance.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 15

Table 2. Comparison of algorithm results.

Class Sequence
Reference [9] Reference [15] Reference [16] Algorithm in This Paper

 Tl1 = 0.6, Th1 = 1.5 Tl1 = 0.8, Th1 = 1.3
BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%)

A1
Tango2 1.47 52.23 0.74 37.01 1.59 51.85 0.40 32.96 1.54 56.97
Campfire 2.65 64.74 0.66 34.05 1.61 50.11 0.45 33.45 1.63 57.96
CatRobatl 1.77 47.63 0.54 29.91 1.55 50.59 0.32 29.77 1.91 58.41

A2
DatLightRoat2 2.11 52.01 0.71 32.12 1.77 47.92 0.26 31.45 1.36 55.25
ParkRunning3 1.32 50.12 0.68 32.11 1.99 54.33 0.27 29.45 1.51 49.07
MarkPlace 1.91 55.21 0.55 34.15 1.86 48.11 0.36 33.11 1.77 55.11

B
Cactus 1.95 51.07 0.61 30.73 1.31 44.95 0.44 31.37 1.54 51.07
BasketballDrive 2.25 62.01 0.74 34.48 1.42 48.33 0.32 35.21 1.56 49.72
BQTerrace 2.07 54.07 0.62 30.85 1.49 46.16 0.27 34.32 1.32 50.01

C

RaceHorses 1.16 46.39 0.46 27.83 1.69 51.04 0.33 31.02 1.55 61.27
BasketballDrill 2.01 46.19 0.40 26.55 1.52 51.18 0.40 34.21 2.17 66.21
BQMall 2.15 53.23 0.65 33.79 1.44 46.95 0.48 30.38 1.54 56.02
PartyScene 1.61 42.73 0.42 31.62 1.79 45.88 0.23 29.32 1.32 47.65

D

RaceHorses 1.33 43.75 0.55 30.17 1.24 48.33 0.24 31.41 1.49 50.21
BasketballPass 2.33 43.85 0.70 30.53 1.18 45.17 0.28 31.87 1.37 45.95
BQSquare 0.81 44.06 0.29 29.97 1.41 40.04 0.78 33.33 1.88 56.35
BlowingBubbles 1.31 55.16 0.43 29.34 1.86 43.86 0.66 35.22 1.57 49.15

E
FourPeople 2.75 55.64 0.78 35.63 1.75 46.68 0.40 31.85 1.54 50.77
Johnny 3.29 56.98 0.69 30.65 1.27 39.21 0.50 27.93 1.62 54.57
KristenAndSara 2.51 57.19 0.59 31.38 1.63 49.82 0.36 32.66 1.62 45.91

 Average 1.94 51.17 0.59 31.44 1.56 47.91 0.36 32.52 1.61 54.08

To further illustrate the rate-distortion performance of our algorithm, we show the
RD curves of the sequences in Figure 7. Figure 7a,b shows the RD curves for Basket-
ballDrill and BQTerrace, respectively. The red curve represents the RD curve of the pro-
posed method, and the black curve represents the RD curve of the original algorithm. In
the worst case, the RD curve of the proposed method is slightly lower than that of the
original encoder. In the best case, the RD curve of our proposed method almost coincides
with that of the original encoder. Therefore, our algorithm effectively saves encoding time
while maintaining high RD performance.

(a) (b)

Figure 7. The comparison of RD performance between the proposed algorithm and the original en-
coder. (a) RD performance of BasketballDrill. (b) RD performance of BQTerrace.

Figure 7. The comparison of RD performance between the proposed algorithm and the original
encoder. (a) RD performance of BasketballDrill. (b) RD performance of BQTerrace.

5. Conclusions

This paper proposes a low-complexity algorithm for VVC intra coding. The algorithm
divides the encoding contents into two categories with edge features, complex-texture areas,
and simple-texture areas. In the complex-texture areas, non-essential partition modes are
skipped by analyzing the characteristics of the edge direction. In simple-texture areas, the
partition process is terminated earlier based on spatial correlation. The algorithm is tested
on the reference software VVC VTM-13.0 and achieves an average coding time saving of
54.08% with an increase of 1.61% BDBR.

Author Contributions: Methodology, S.Z.; Software, S.Z.; Formal analysis, X.S.; Investigation, S.Z.;
Resources, X.S.; Funding acquisition, G.W. and H.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by [The National Natural Science Foundation of China] grant
number [62001283].

Institutional Review Board Statement: Not applicable for studies not involving humans or animals.

Informed Consent Statement: Studies not involving humans.

Data Availability Statement: Data is unavailable due to privacy or ethical restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 6244 13 of 14

References
1. Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans.

Circuits Syst. Video Technol. 2012, 22, 1649–1668. [CrossRef]
2. Hamidouche, W.; Biatek, T.; Abdoli, M. Versatile video coding standard: A review from coding tools to consumers deployment.

IEEE Consum. Electron. Mag. 2022, 11, 10–24. [CrossRef]
3. Tissier, A.; Mrecat, A.; Amestoy, T. Complexity reduction opportunities in the future VVC intra encoder. In Proceedings of the

International Workshop on Multimedia signal Proeessing, Kuala Lumpur, Malaysia, 27–29 September 2019; IEEE: New York, NY,
USA, 2019; pp. 27–29.

4. Pakdamaf, F.; Adelimanesh, M.; Gabbouj, M. Complexity analysis of next-generation VVC encoding and decoding. In Proceedings
of the Internationail Conference on Lmage Processing, Abu Dhabi, United Arab Emirates, 25–28 October 2020; IEEE: New York,
NY, USA, 2020; pp. 25–28.

5. Fu, T.; Zhang, H.; Mu, F. Fast CU partition algorithm for H. 266/VVC intra-frame coding. In Proceedings of the 2019 IEEE
International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; IEEE: New York, NY, USA, 2019;
pp. 55–60.

6. Li, T.; Xu, M.; Tang, R. Deep QTMT: A deep learning approach for fast QTMT-based CU partition of intra-mode VVC. IEEE Trans.
Image Process. 2021, 30, 5377–5390. [CrossRef] [PubMed]

7. Zhang, Q.; Guo, R.; Jiang, B. Fast CU decision-making algorithm based on DenseNet network for VVC. IEEE Access 2021, 9,
119289–119297. [CrossRef]

8. Zhang, Q.; Wang, Y.; Huang, L. Fast CU partition and intra mode decision method for H. 266/VVC. IEEE Access 2020, 8,
117539–117550. [CrossRef]

9. Yang, H.; Shen, L.; Dong, X. Low-complexity CTU partition structure decision and fast intra mode decision for versatile video
coding. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1668–1682. [CrossRef]

10. Wu, S.; Shi, J.; Chen, Z. HG-FCN: Hierarchical Grid Fully Convolutional Network for Fast VVC Intra Coding. IEEE Trans. Circuits
Syst. Video Technol. 2022, 8, 5638–5649. [CrossRef]

11. Saldanha, M.; Sanchez, G.; Marcon, C. Learning-based complexity reduction scheme for VVC intra-frame prediction. In
Proceedings of the 2021 International Conference on Visual Communications and Image Processing (VCIP), Munich, Germany,
5–8 December 2021; IEEE: New York, NY, USA, 2021; pp. 1–5.

12. Tissier, A.; Hamidouche, W.; Vanne, J. CNN oriented complexity reduction of VVC intra encoder. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; IEEE: New York,
NY, USA, 2020; pp. 3139–3143.

13. Hoangvan, X.; NguyenQuang, S.; DinhBao, M. Fast QTMT for H. 266/VVC intra prediction using early-terminated hierarchical
CNN model. In Proceedings of the 2021 International Conference on Advanced Technologies for Communications (ATC), Ho Chi
Minh City, Vietnam, 14–16 October 2021; IEEE: New York, NY, USA, 2021; pp. 195–200.

14. Amna, M.; Imen, W.; Fatma Ezahra, S. Fast multi-type tree partitioning for versatile video coding using machine learning. Signal
Image Video Process. 2023, 17, 67–74. [CrossRef]

15. Taabane, I.; Menard, D.; Mansouri, A. Machine learning based fast QTMTT partitioning strategy for VVenC encoder in intra
coding. Electronics 2023, 12, 1338. [CrossRef]

16. Tsai, Y.H.; Lu, C.R.; Chen, M.J. Visual Perception Based Intra Coding Algorithm for H. 266/VVC. Electronics 2023, 12, 2079.
[CrossRef]

17. Zhang, S.; Zhang, R.; Jing, X. A fast Multi-Type-Tree split decision algorithm of intra coding unit in VVC. In Proceedings of the
IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Bilbao, Spain, 15–17 June 2022;
IEEE: New York, NY, USA, 2022; pp. 1–5.

18. Song, Y.; Zeng, B.; Wang, M. An efficient low-complexity block partition scheme for VVC intra coding. J. Real-Time Image Process.
2022, 19, 161–172. [CrossRef]

19. Li, Q.; Meng, H.; Li, Y. Texture-based fast QTMT partition algorithm in VVC intra coding. Signal Image Video Process. 2022, 17,
1581–1589. [CrossRef]

20. Shang, X.; Li, G.; Zhao, X. Low complexity inter coding scheme for Versatile Video Coding (VVC). J. Vis. Commun. Image Represent.
2023, 90, 103683. [CrossRef]

21. Zhang, Q.; Zhao, Y.; Jiang, B. Fast CU partition decision method based on texture characteristics for H. 266/VVC. IEEE Access
2020, 8, 203516–203524. [CrossRef]

22. Fan, Y.; Sun, H.; Katto, J. A fast QTMT partition decision strategy for VVC intra prediction. IEEE Access 2020, 8, 107900–107911.
[CrossRef]

23. Shang, X.; Li, G.; Zhao, X. Fast CU size decision algorithm for VVC intra coding. Multimed. Tools Appl. 2023, 82, 28301–28322.
[CrossRef]

24. Zhang, D.; Li, Q. An Efficient CU Partition Algorithm for VVC Intra Coding. J. Phys. Conf. Ser. 2021, 1815, 012006. [CrossRef]
25. Bossen, F.; Boycej, J.; Suehring, K. JVET common test conditions and software reference configurations. In Proceedings of the

Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 11th Meeting, San Diego, CA, USA,
10–20 April 2018; pp. 1–6.

https://doi.org/10.1109/TCSVT.2012.2221191
https://doi.org/10.1109/MCE.2022.3144545
https://doi.org/10.1109/TIP.2021.3083447
https://www.ncbi.nlm.nih.gov/pubmed/34057892
https://doi.org/10.1109/ACCESS.2021.3108238
https://doi.org/10.1109/ACCESS.2020.3004580
https://doi.org/10.1109/TCSVT.2019.2904198
https://doi.org/10.1109/TCSVT.2022.3146061
https://doi.org/10.1007/s11760-022-02204-4
https://doi.org/10.3390/electronics12061338
https://doi.org/10.3390/electronics12092079
https://doi.org/10.1007/s11554-021-01174-z
https://doi.org/10.1007/s11760-022-02367-0
https://doi.org/10.1016/j.jvcir.2022.103683
https://doi.org/10.1109/ACCESS.2020.3036858
https://doi.org/10.1109/ACCESS.2020.3000565
https://doi.org/10.1007/s11042-023-14691-9
https://doi.org/10.1088/1742-6596/1815/1/012006

Sensors 2023, 23, 6244 14 of 14

26. Gao, W.; Zhang, X.; Yang, L. An improved Sobel edge detection. In Proceedings of the International Conference on Computer
Science and Information Technology, Chengdu, China, 9–11 July 2010; IEEE: New York, NY, USA, 2010; Volume 5, pp. 67–71.

27. Kong, W.; Zhang, H.; Zhao, W. Research on Canny Edge Feature Detection Technology of Color Image Based on Vector Properties.
In Proceedings of the 2021 IEEE 15th International Conference on Electronic Measurement & Instruments (ICEMI), Nanjing,
China, 29–31 October 2021.

28. Feulefack, P.A. The logarithmic Schrödinger operator and associated Dirichlet problems. J. Math. Anal. Appl. 2023, 517, 126656.
[CrossRef]

29. Ulupinar, F.; Medioni, G. Refining edges detected by a LoG operator. Comput. Vis. Graph. Image Process. 1990, 51, 275–298.
[CrossRef]

30. Shu, Z.-J.; Peng, Z.-J.; Jiang, G.-Y.; Chen, F.; Yuan, B.-S. Fast intra partition and mode prediction for equirectangular projection
360-degree video coding. IET Image Process. 2023, 17, 558–569.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jmaa.2022.126656
https://doi.org/10.1016/0734-189X(90)90004-F

	Introduction
	Related Work
	Proposed Method
	Principle
	Edge and Edge Feature Extraction
	Early Termination of Simple-Texture Regions
	Flowchart of the Proposed Algorithm

	Simulation Results
	Conclusions
	References

