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Abstract: Versatile Video Coding (VVC) introduces many new coding technologies, such as quadtree
with nested multi-type tree (QTMT), which greatly improves the efficiency of VVC coding. However,
its computational complexity is higher, which affects the application of VVC in real-time scenarios.
Aiming to solve the problem of the high complexity of VVC intra coding, we propose a low-complexity
partition algorithm based on edge features. Firstly, the Laplacian of Gaussian (LOG) operator was
used to extract the edges in the coding frame, and the edges were divided into vertical and horizontal
edges. Then, the coding unit (CU) was equally divided into four sub-blocks in the horizontal and
vertical directions to calculate the feature values of the horizontal and vertical edges, respectively.
Based on the feature values, we skipped unnecessary partition patterns in advance. Finally, for the
CUs without edges, we decided to terminate the partition process according to the depth information
of neighboring CUs. The experimental results show that compared with VTM-13.0, the proposed
algorithm can save 54.08% of the encoding time on average, and the BDBR (Bjøntegaard delta bit
rate) only increases by 1.61%.

Keywords: versatile video coding (VVC); fast algorithm; CU partition; edge direction

1. Introduction

In recent years, with the development of information technology, multimedia tech-
nologies such as 4K ultra-high-definition videos, 360-degree immersive multimedia, and
high-dynamic-range videos have rapidly developed, resulting in a rapid and sharp increase
in data volume. This puts tremendous pressure on data storage and transmission, and the
previous high-efficiency video coding standard, high-efficiency video coding (HEVC), has
difficulty meeting the compression requirements [1].

To overcome this difficulty, the Joint Video Coding Expert Group began exploring
the next-generation video standard, and developed a new video coding standard called
Versatile Video Coding (VVC) [2]. The goal of VVC is to achieve compression efficiency
improvement of over 50% while maintaining the same video quality as the HEVC. VVC
introduces a new segmentation technique called Quadtree with Nested Multi-Type Tree
(QTMT) [3]. In addition to the QT partition structure, there are four other multi-type tree
(MTT) partition structures, including vertical binary tree (VBT), horizontal binary tree
(HBT), vertical ternary tree (VTT), and horizontal ternary tree (HTT). Introducing QTMT
makes the shape of coding units (CU) more flexible and diverse, which can increase the
number of CUs that need to be recursively traversed during the rate-distortion optimization
(RDO) process. Figure 1a shows an example of the partition structure obtained after
recursive traversal, and Figure 1b shows the corresponding tree structure. Under the
condition of all intra configuration, the average complexity of VVC is 18 times that of
HEVC [4], which affects the application of VVC in real-time encoding scenarios.
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Figure 1. Example of the CU partition structure in VVC. (a) example of the partition structure ob-
tained after recursive traversal; (b) the corresponding tree structure. 
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CU and the sub-CU after horizontal binary segmentation to terminate vertical binary seg-
mentation. Li et al. [6] propose a multi-stage exit CNN (MSE-CNN) model with an early 
exit mechanism to determine the CU partition. Then, an adaptive loss function is designed 
to train the MSE-CNN model. Zhang et al. [7] divide a CTU into four parts to train a neural 
network and calculate the probability of various partition modes in a coding tree unit 
(CTU). Once the probability of the partition mode exceeds the threshold, it will be skipped 
to achieve complexity reduction. In [8], Zhang et al. design a fast coding unit (CU) parti-
tion and an intra-mode decision algorithm, which uses a random forest classifier (RFC) 
model to achieve a fast partition of the CU. Yang et al. [9] transform the QTMT partition 
process into multiple binary classification problems for each decision layer, which is pro-
cessed by a decision tree classifier. Although this method saves coding time, BDBR (Bjøn-
tegaard Delta Bit Rate) losses are also high. In [10], Wu et al. propose a Hierarchical Grid 
Fully Convolutional Network (HG-FCN) framework to predict level-specific partition 
structures, achieving a certain degree of complexity reduction. Saldanha et al. [11] use a 
classifier to make early decisions in Direct Component (DC) mode and Planar mode dur-
ing the prediction process, and use the pixel variance of sub-blocks to decide whether to 
use intra-frame sub-block partition technology. In [12], a convolutional neural network is 
trained to predict partition modes by training a probability vector. In [13], a neural net-

Figure 1. Example of the CU partition structure in VVC. (a) example of the partition structure
obtained after recursive traversal; (b) the corresponding tree structure.

To solve the problem of high computational complexity in the partition process of
VVC, a fast partition method based on edge features is proposed. The main contributions
of the proposed method are as follows:

(1) Using edge information as the basis for selecting partition modes leads to more accurate
results compared to using texture complexity as the basis for selecting partition modes.

(2) We propose a method for calculating the feature value of the edge, which is exploited
to predict the partition pattern.

(3) The partition information and texture complexity of adjacent CUs are utilized to deter-
mine whether to terminate the current CU partition, resulting in more accurate results.

2. Related Work

Currently, research on fast algorithms for VVC can be divided into two parts: machine
learning-based and coding content-based methods.

For machine learning-based methods, Fu et al. [5] propose a fast decision binary
partition algorithm based on Bayesian rules by utilizing the correlation between the current
CU and the sub-CU after horizontal binary segmentation to terminate vertical binary
segmentation. Li et al. [6] propose a multi-stage exit CNN (MSE-CNN) model with an
early exit mechanism to determine the CU partition. Then, an adaptive loss function is
designed to train the MSE-CNN model. Zhang et al. [7] divide a CTU into four parts to
train a neural network and calculate the probability of various partition modes in a coding
tree unit (CTU). Once the probability of the partition mode exceeds the threshold, it will
be skipped to achieve complexity reduction. In [8], Zhang et al. design a fast coding unit
(CU) partition and an intra-mode decision algorithm, which uses a random forest classifier
(RFC) model to achieve a fast partition of the CU. Yang et al. [9] transform the QTMT
partition process into multiple binary classification problems for each decision layer, which
is processed by a decision tree classifier. Although this method saves coding time, BDBR
(Bjøntegaard Delta Bit Rate) losses are also high. In [10], Wu et al. propose a Hierarchical
Grid Fully Convolutional Network (HG-FCN) framework to predict level-specific partition
structures, achieving a certain degree of complexity reduction. Saldanha et al. [11] use
a classifier to make early decisions in Direct Component (DC) mode and Planar mode
during the prediction process, and use the pixel variance of sub-blocks to decide whether
to use intra-frame sub-block partition technology. In [12], a convolutional neural network is
trained to predict partition modes by training a probability vector. In [13], a neural network
model is trained using cross-entropy and is used for early termination of the partition
process. In [14], a fast algorithm based on machine learning is proposed, which uses
texture complexity to determine the division direction and a lightweight neural network
to determine the division mode. In [15], the authors present a low-complexity method,



Sensors 2023, 23, 6244 3 of 14

which is formed of five binary Light Gradient Boosting Machine (LightGBM) classifiers.
In [16], a fast CU partitioning decision algorithm is presented based on texture complexity
and convolutional neural networks (CNNs). It utilizes a symmetric convolution kernel to
extract features and redesigns the loss function.

For coding content-based methods, Zhang et al. [17] propose a fast partition scheme
based on adjacent sub-regions, which skips unnecessary partition modes in advance based
on the similarity of adjacent sub-regions in the horizontal and vertical directions. In [18],
Song et al. measure the texture complexity in the vertical and horizontal directions accord-
ing to the sum of the mean absolute deviation (SMAD) of the sub-blocks. On this basis,
unnecessary division modes are skipped. In [19], Li et al. use the gradient of the Scharr
operator to describe texture information, and use the edge differences of sub blocks to de-
scribe structural information. On this basis, they propose a fast algorithm based on texture
features. In [20], Shang et al. make a rapid decision on the CU partition process by utilizing
the partition mode and size distribution of adjacent CUs, and optimize the decision-making
process of inter-frame prediction modes. In [21], Zhang et al. use corner features and
average color brightness differences to classify screen content. Then, for different screen
contents, they exploit different strategies to predict the coding mode. In [22], Fan et al. use
a Sobel operator to calculate the gradient of a CU and terminate the QT partition based on
the gradient. Then, texture information is used to measure the differences between partition
structures, based on which partition patterns are determined. Shang et al. [23] predict the
quadtree division depth of the current CU in advance by analyzing the correlation between
adjacent CUs. Additionally, image texture features are utilized to make early decisions
about the MTT division process. In [24], Zhang et al. determine whether to split using CU
texture information, and skip unnecessary partition modes according to the distribution
of the residual coefficients. In [25], a latitude-based preprocessing is introduced to enable
early termination of the coding unit (CU) partition in the polar region. In [15], the authors
apply the factor of average background luminance for just-noticeable distortion to identify
the visually distinguishable (VD) pixels within a coding unit (CU).

Although the above methods achieve some complexity reduction, they do not achieve
a good balance between complexity reduction and compression performance loss. Com-
plexity reduction that maintains good compression performance is limited, and the im-
provement in the application of VVC in real-time scenarios is not significant. Compression
performance with higher complexity reduction has a greater loss, and cannot meet the
coding requirements.

3. Proposed Method
3.1. Principle

In the final partition results of VVC, the MTT partition structure accounts for almost
one-third of all partition structures. It is the most complex operation, averaging over 90% of
the total encoding time [10]. In the MTT partition decision process, the choice of partition
mode has great flexibility, but only one of the vertical or horizontal directions is used in the
final decision. Therefore, if we can skip unnecessary MTT partition modes in advance, we
can effectively reduce the time complexity of intra-frame coding.

From the partition results, some CUs tend to have larger partition sizes. However, the
encoding process still exhaustively searches all CU size options to find the optimal mode.
If the partition process for these CUs can be terminated in advance, it will also effectively
reduce the time complexity.

Figure 2a shows a CU partition result for the sequence Johnny in VVC intra coding. By
observing Figure 2a, it can be seen that for regions containing edges, smaller partition sizes
are usually adopted to adapt to complex texture directions and achieve better compression
efficiency. In addition, the selection of partition mode is related to the direction of the edge.
In contrast, regions without edges have simpler textures, and larger partition sizes are
usually adopted. Inspired by this, we divided the encoding frames into two categories:
complex-texture areas with edges and simple-texture areas without edges. For complex-
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texture areas, edge features are computed to skip unnecessary partition modes, while
for-simple-texture areas, the partition process is terminated in advance.
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3.2. Edge and Edge Feature Extraction

Traditional edge detection operators such as the Sobel operator [26] are based on
first-order derivatives to determine the edges of an image. However, first-order derivatives
only reflect the velocity of pixel changes in an image, and cannot prove the presence of
edges, leading to inaccurate edge detection and localization. The Canny operator [27] has
higher accuracy in edge detection than the Sobel operator, but it still has errors and high
computational complexity, which goes against our intention to reduce the computational
complexity. The Laplacian of Gaussian (LOG) operator [28] is based on second-order
derivatives to determine the edges of an image. Second-order derivatives reflect the degree
of frequency changes (discontinuity) in the pixel change curve of an image, and can detect
more details. Additionally, the extraction of edge positions is more accurate, overcoming
the shortcomings of previous operators. Additionally, the LOG operator uses a Gaussian
filter to smooth the image before edge detection [29], which eliminates noise interference.
Therefore, we chose the LOG operator to extract the edges of the image and used the results
to calculate edge features.

The LOG operator has accurate edge position detection and can extract more complete
edges. Before extracting the edges, the Gaussian filter is used to remove the noise in the
image. The setting of the standard deviation threshold of the Gaussian distribution during
the filtering process affects the edge extraction effect. As shown in Figure 2b, if the value is
set too low or is not set, there will be a lot of noise in the extracted edges. If the value is set
too high, some edge information may be lost. To obtain the best value, we designed the
following experiment.

The first step was to calculate the average partition depth of the coding frame. Then, for
different values of σ, the average partition depth of the CU at the edge was calculated, and
the difference between the two was computed. A small difference indicates that too many
non-edge pixels are detected as edge pixels, while a large difference suggests that the edge
pixels are accurately extracted. For the coding frame I(x, y), the edge detection process is as
follows. First, the image was smoothed using a Gaussian filter, and then, a Laplacian operator
was applied to obtain the edge pixels p(x, y), which are given by Equations (1) and (2). Here,
g(x, y) is a 2D Gaussian function, and σ is the threshold value of the standard deviation of the
Gaussian distribution, which was determined through experiments.

p(x, y) = ∇2[g(x, y) ∗ I(x, y)] (1)

The order of differentiation and convolution can be interchanged:

∇2g(x, y) =
1

2πσ4 (
x2 + y2

σ2 − 2)exp(− x2 + y2

2σ2 ) (2)

We selected five video sequences with different resolutions and texture complexity
from the JVET Common Test Conditions (CTC) [30], including FoodMarket4 (3840 × 2160),
Kimono1 (1920 × 1080), BasketballPass (1920 × 1080), BQMall (832 × 480), and BQSquare
(416 × 240). We calculated the difference between the average partition depth of the edge
blocks detected at different values and the average partition depth of all coding blocks. The
experimental results are shown in Figure 3. The horizontal axis represents the threshold
value of σ, and the vertical axis represents the difference between the depth of coding
unit (CU) partition at the edge and the depth of partition for all CUs within the frame at
different sigma values.

From Figure 4, we can observe that there are significant differences in the curves
between different sequences, but the trend of change is consistent. When the value of σ
is less than 0.6, the difference in partition depth between the edge coding blocks and the
average depth is relatively small. This indicates that the edge image obtained by the LOG
operator contains a large amount of noise and cannot accurately extract edges. When the
value of σ is greater than 2.1, the difference in depth almost does not change with increasing
σ, indicating that the extracted edges are relatively accurate. However, as the threshold
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value increases, some edges may be lost. Therefore, in this experiment, the threshold
value for the standard deviation of the Gaussian distribution was set to 2.1, and the edges
extracted under this threshold are shown in Figure 2c.
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For CUs containing edges, we used edge feature values (efvs) to measure the directional
characteristics of the edges. Compared to other methods, efvs are easier to calculate and
more intuitively reflect the directional characteristics of the edges. The calculation process
of efvs is as follows:

e f v =
e f vx
e f vy

(3)

efvx and efvy are the edge feature values in the horizontal and vertical directions of the
edge, respectively, and are calculated as follows.

We differentiated the edge image obtained by the LOG operator to make its features
more obvious in the vertical and horizontal directions. The formula used is as follows.

Dx(x, y) = |p(x, y− 1)− p(x, y + 1)| (4)
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Dy(x, y) = |p(x− 1, y)− p(x + 1, y)| (5)

where Dx(x, y) represents the horizontal edge pixels, Dy(x, y) represents the vertical edge
pixels, p(x, y) represents the edge pixels obtained by the LOG operator, and (x, y) represents
the pixel coordinates. The result is shown in Figure 4. As shown in Figure 4b, it is not
difficult to see that although the optimized edge features in the horizontal direction are
more obvious, there are still some pixels in the vertical direction. If we directly calculate
the edge feature value in the horizontal direction at this time, there will be a large error.
Similarly, if we calculate the edge feature value in the vertical direction at this time, it will
also result in a large error. Considering the partition characteristics of VVC, we propose the
following method to calculate the edge feature value.

Firstly, the current CU was divided into four sub-blocks along the horizontal direction,
named HA, HB, HC, and HD, respectively, from top to bottom. Then, the number of
horizontal edge pixels in each sub-block was calculated, as follows:

HA =
w

∑
x=1

h
4

∑
y=1

Dx(x, y) (6)

HB =
w

∑
x=1

h
2

∑
y= h

4

Dx(x, y) (7)

HC =
w

∑
x=1

3h
4

∑
y= h

2

Dx(x, y) (8)

HD =
w

∑
x=1

h

∑
y= 3h

4

Dx(x, y) (9)

After obtaining the number of edge pixels for the four horizontal sub-blocks, we
compared their sizes and recorded the largest number of pixels as HM. The second largest
was recorded as HSec. Similarly, we divided the CU into four vertical sub-blocks, from left
to right, as VA, VB, VC, and VD, and then, calculated the number of vertical edge pixels in
each sub-block. The calculation process is as follows:

VA =

w
4

∑
x=1

h

∑
y=1

Dy(x, y) (10)

VB =

w
2

∑
x= w

4

h

∑
y=1

Dy(x, y) (11)

VC =

3w
4

∑
x= w

2

h

∑
y=1

Dy(x, y) (12)

VD =
w

∑
x= 3w

4

h

∑
y=1

Dy(x, y) (13)

Once we obtained the number of edge pixels in the four vertical sub-blocks, we took the
largest pixel count as VM, and the second largest as VSec. Then, we can calculated the edge
feature value efvx in the horizontal direction and efvy in the vertical direction as follows.

e f vx = HM + HSec (14)
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e f vy = VM + VSec (15)

We conducted experiments on the reference software VVC VTM-13.0 to determine the
relationship between the final partition mode and efv. In the experiment, we continued
to use the five video sequences in the Joint Video Exploration Team (JVET) Common
Test Conditions (CTC), including FoodMarket4 (3840 × 2160), Kimono1 (1920 × 1080),
BasketballPass (1920 × 1080), BQMall (832 × 480), and BQSquare (416 × 240). The first five
frames of each sequence were encoded with the profiles of all the intra coding. We collected
the statistical results of efv and the corresponding vertical and horizontal partition modes,
which are shown in Table 1.

Table 1. Statistical analysis of partition modes under different edge feature values.

Encoding Sequence Proportion of Vertical
Division (%)

Proportion of Horizontal
Division (%)

(a) FoodMarket4
efv > 1 33 67
efv < 1 65 35

efv > 1.2 21 79
efv < 0.8 83 17

(b) Kimono1
efv > 1 30 70
efv < 1 67 34

efv > 1.2 19 81
efv < 0.8 75 25

(c) BasketballPass
efv > 1 21 79
efv < 1 72 28

efv > 1.2 19 81
efv < 0.8 75 25

(d) BQMall
efv > 1 38 62
efv < 1 71 29

efv > 1.2 25 75
efv < 0.8 70 30

(e) BQSquare
efv > 1 38 62
efv < 1 71 29

efv > 1.2 25 75
efv < 0.8 70 30

From Table 1, we can see that the percentages of vertical and horizontal partition
modes vary with different sequences. We can also observe a clear relationship between
partition modes and the value of efv. When efv is greater than 1, the number of horizontal
edge pixels is greater than that of vertical edge pixels, and the edge features tend to be
horizontal. Therefore, the CU partition tends to be horizontal, and the proportion of
the horizontal partition increases with an increase in the ratio. When efv is less than 1,
the number of vertical edge pixels is greater than that of horizontal edge pixels, and the
edge features tend to be vertical. Therefore, the CU partition tends to be vertical, and the
proportion of the vertical partition increases as efv decreases.

Based on the statistical data in Table 1, a fast CU decision-making scheme was designed
based on the following rules. When the efv value is greater than the higher threshold Th, it
means that the probability of horizontal direction is greater than that of vertical direction,
and the current CU is more likely to have horizontal edges. In this case, we skip the
vertical partition mode. Conversely, when the efv value is less than the lower threshold
Tl, it indicates that the current CU is more likely to have vertical edges. Thus, we skip
the horizontal partition mode. When efv is between Th and Tl, it indicates that the edge
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direction feature is not obvious. In this case, each CU partition has almost the same
probability, and no partition mode is skipped in advance.

3.3. Early Termination of Simple-Texture Regions

Simple-texture regions in CUs tend to favor larger partition sizes. We can terminate
the partition process in advance. As shown in Figure 1, we find that the partition depth of
CUs in simple-texture regions is very close to the partition depth of adjacent simple-texture
region CUs, and the texture complexity of CUs decreases with an increase in partition
depth. Therefore, we can use the partition depth and texture complexity of adjacent CUs as
a basis for early termination of partition in simple-texture CUs. The distribution of adjacent
CUs is shown in Figure 5.
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We propose the following method to determine whether to terminate the partition
process of a simple-texture-region CU in advance. First, we obtain the partition depth
of the simple-texture-region CU. As shown in Figure 5, A–E are the adjacent CUs to the
current CU. We refer to the partition information of A, B, and E to obtain the maximum
division depth difference between adjacent CUs, and record the maximum division depth
difference as Dm. The calculation formula of Dm is as follows:

Dm = Dmax − Dmin (16)

where Dmax and Dmin are the maximum and minimum partition depths of adjacent CUs,
respectively. We record the current CU partition depth as CUdepth. If Dm is less than
or equal to 1 and CUdepth is less than Dmax, then the CU partition continues. Otherwise,
further judgment is made based on the texture complexity Ct to determine whether to
terminate the partition. The calculation formula of Ct is as follows:

Ct =

x+w
∑

i=x

y+h
∑

j=y
(p(i, j)− paverage)

2

w× h
(17)

where p(i, j) represents the pixel value at coordinates (i, j), and Paverage is the average pixel
value of the CU. The calculation formula of Paverage is as follows:

paverage =
1

w× h

x+w

∑
i=x

y+h

∑
j=y

p(i, j) (18)
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By calculating the texture complexity Ct of the current CU and its adjacent CUs, when
the texture complexity (Ctcu) of the CU is less than or equal to the minimum texture
complexity (Ctmin) of the adjacent CU, the segmentation process is terminated in advance.

3.4. Flowchart of the Proposed Algorithm

The flowchart of the algorithm process is shown in Figure 6. Firstly, the type of the
current CU is determined using edge information. If it is a CU with a complex-texture
region, the edge feature value (efv) of the current CU is calculated. We skip unnecessary
partition modes for the current CU based on efv. If the efv value is greater than Th, the
vertical partition mode is skipped. If the efv value is less than Tl, the horizontal partition
mode is skipped. Otherwise, we consider that the directional features are not obvious, and
do not skip any mode. For simple-texture regions that do not contain edges, we obtain the
partition information of the current CU and its adjacent CUs. If the difference in partition
depth between adjacent CUs does not exceed 1, we consider that the current CU and its
adjacent CUs have a strong spatial correlation, and use spatial correlation to terminate
partition. If the partition depth of the current CU is less than that of the adjacent CU, the
partition process continues. Otherwise, we further compare the texture complexity of the
current CU with that of the adjacent CU. If the texture complexity of the current CU is less
than or equal to that of the adjacent CU, the partition process is terminated earlier.
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4. Simulation Results

To evaluate the performance of our method, we conducted experiments on the refer-
ence software VVC VTM-13.0. In the experiment, 21 sequences were tested, which belong
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to six sequences with different resolutions recommended by JVET common test conditions.
Four QPs of 22, 27, 32, and 37 were tested in the proposed algorithm. The experiments were
conducted on a Windows 10 64-bit operating system, with an Intel(R) Core(TM) i5-10300H
CPU @ 2.50 GHz. The performance of the algorithm was measured using Ts and BDBR,
where Ts is calculated as follows:

Ts =
To− Tp

To
× 100% (19)

To represent the total encoding time of the original VVC standard, Tp represents the
total encoding time of the proposed method, and BDBR represents the degree of loss in
encoding performance. A smaller BDBR value indicates less compression performance loss.

Table 2 presents the experimental results of the proposed algorithm compared to the
original VTM-13.0 platform under different parameters. When the experimental parameters
Th and Tl are set to 0.6 and 1.5, respectively, the average coding time is reduced by 32.52%,
with a BDBR loss of only 0.36%. For this case, the skip conditions for unnecessary partition
modes are relatively strict with less time saving, and the impact on the coding performance
can be ignored. When Th and Tl are set to 0.8 and 1.3, the average coding time is reduced
by 54.08%, with a BDBR loss of 1.61%. Since more partition modes are skipped under this
condition, more time saving is achieved with a slight increase in BDBR loss.

Table 2. Comparison of algorithm results.

Class Sequence
Reference [9] Reference [15] Reference [16] Algorithm in This Paper

Tl1 = 0.6, Th1 = 1.5 Tl1 = 0.8, Th1 = 1.3
BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%)

A1
Tango2 1.47 52.23 0.74 37.01 1.59 51.85 0.40 32.96 1.54 56.97
Campfire 2.65 64.74 0.66 34.05 1.61 50.11 0.45 33.45 1.63 57.96
CatRobatl 1.77 47.63 0.54 29.91 1.55 50.59 0.32 29.77 1.91 58.41

A2
DatLightRoat2 2.11 52.01 0.71 32.12 1.77 47.92 0.26 31.45 1.36 55.25
ParkRunning3 1.32 50.12 0.68 32.11 1.99 54.33 0.27 29.45 1.51 49.07
MarkPlace 1.91 55.21 0.55 34.15 1.86 48.11 0.36 33.11 1.77 55.11

B
Cactus 1.95 51.07 0.61 30.73 1.31 44.95 0.44 31.37 1.54 51.07
BasketballDrive 2.25 62.01 0.74 34.48 1.42 48.33 0.32 35.21 1.56 49.72
BQTerrace 2.07 54.07 0.62 30.85 1.49 46.16 0.27 34.32 1.32 50.01

C

RaceHorses 1.16 46.39 0.46 27.83 1.69 51.04 0.33 31.02 1.55 61.27
BasketballDrill 2.01 46.19 0.40 26.55 1.52 51.18 0.40 34.21 2.17 66.21
BQMall 2.15 53.23 0.65 33.79 1.44 46.95 0.48 30.38 1.54 56.02
PartyScene 1.61 42.73 0.42 31.62 1.79 45.88 0.23 29.32 1.32 47.65

D

RaceHorses 1.33 43.75 0.55 30.17 1.24 48.33 0.24 31.41 1.49 50.21
BasketballPass 2.33 43.85 0.70 30.53 1.18 45.17 0.28 31.87 1.37 45.95
BQSquare 0.81 44.06 0.29 29.97 1.41 40.04 0.78 33.33 1.88 56.35
BlowingBubbles 1.31 55.16 0.43 29.34 1.86 43.86 0.66 35.22 1.57 49.15

E
FourPeople 2.75 55.64 0.78 35.63 1.75 46.68 0.40 31.85 1.54 50.77
Johnny 3.29 56.98 0.69 30.65 1.27 39.21 0.50 27.93 1.62 54.57
KristenAndSara 2.51 57.19 0.59 31.38 1.63 49.82 0.36 32.66 1.62 45.91
Average 1.94 51.17 0.59 31.44 1.56 47.91 0.36 32.52 1.61 54.08

The method proposed in [15] saves 31.44% encoding time with a BDBR loss of 0.59%.
Our method reduces the coding time by 32.52%, while maintaining better coding perfor-
mance. In [15], the CU is divided into four sub-blocks, and the partition mode is skipped
according to the complexity ratio of different combinations of the four sub-blocks. This
method can achieve good results when the texture of the sequence is relatively simple.
However, when the complex texture distribution of the CU is concentrated on one side,
there is a possibility of misjudgment. Our method is more robust and can adapt to dif-
ferent situations of the encoded sequence. When the texture of the encoded sequence is
simple, our method uses spatial correlation to terminate the partition process for CUs with
a simple-texture area in advance. When the texture of the encoded sequence is complex,
our method skips more non-optimal partition modes by utilizing edge features.

Compared with the methods proposed in [9,16], our proposed method achieves an
additional time saving of 2.91% and 6.17% while maintaining better RD performance. The
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reason is that the methods in [9,16] require a large amount of data to train their models,
and the performance of the method may be affected if the training data are insufficient
or not comprehensive enough. The method we propose is based on an analysis of edge
structure and spatial correlation, which requires lower computational complexity.

To further illustrate the rate-distortion performance of our algorithm, we show the RD
curves of the sequences in Figure 7. Figure 7a,b shows the RD curves for BasketballDrill and
BQTerrace, respectively. The red curve represents the RD curve of the proposed method,
and the black curve represents the RD curve of the original algorithm. In the worst case, the
RD curve of the proposed method is slightly lower than that of the original encoder. In the
best case, the RD curve of our proposed method almost coincides with that of the original
encoder. Therefore, our algorithm effectively saves encoding time while maintaining high
RD performance.
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5. Conclusions

This paper proposes a low-complexity algorithm for VVC intra coding. The algorithm
divides the encoding contents into two categories with edge features, complex-texture areas,
and simple-texture areas. In the complex-texture areas, non-essential partition modes are
skipped by analyzing the characteristics of the edge direction. In simple-texture areas, the
partition process is terminated earlier based on spatial correlation. The algorithm is tested
on the reference software VVC VTM-13.0 and achieves an average coding time saving of
54.08% with an increase of 1.61% BDBR.
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