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Abstract: Defective wheels pose a significant challenge in railway transportation, impacting opera-
tional performance and safety. Excessive traction and braking forces give rise to deviations from the
intended conical tread shape, resulting in amplified vibrations and noise. Moreover, these deviations
contribute to the accelerated damage of track components. Detecting wheel defects at an early stage is
crucial to ensure safe and comfortable operation, as well as to minimize maintenance costs. However,
the presence of various vibrations, such as those induced by the track, traction motors, and other
rolling stock subsystems, poses a significant challenge for onboard detection techniques. These
vibrations create difficulties in accurately identifying wheel defects in real-time during operational
activities, often resulting in false alarms. This research paper aims to address this issue by using a
hybrid deep learning-based approach for the accurate detection of various types of wheel defects
using accelerometer data. The proposed approach aims to enhance wheel defect detection accuracy
while considering onboard techniques’ cost-effectiveness and efficiency. A realistic simulation model
of the railway wheelset is developed to generate a comprehensive dataset. To generate vibration
data in various scenarios, the model is simulated for 20 s under different conditions, including one
non-faulty scenario and six faulty scenarios. The simulations are conducted at different speeds and
track conditions to capture a wide range of operating conditions. Within each simulation iteration,
a total of 200,000 data points are generated, providing a comprehensive dataset for analysis and
evaluation. The generated data are then utilized to train and evaluate a hybrid deep learning model,
employing a multi-layer perceptron (MLP) as a feature extractor and multiple machine learning mod-
els (support vector machine, random forest, decision tree, and k-nearest neighbors) for performance
comparison. The results demonstrate that the MLP-RF (multi-layer perceptron with random forest)
model achieved an accuracy of 99%, while the MLP-DT (multi-layer perceptron with decision tree)
model achieved an accuracy of 98%. These high accuracy values indicate the effectiveness of the
models in accurately classifying and predicting the outcomes. The contributions of this research work
include the development of a realistic simulation model, the evaluation of sensor layout effectiveness,
and the application of deep learning techniques for improved wheel flat detections.

Keywords: wheel defects; deep learning; wheel flats; false flange; nonlinear dynamics; MLP

1. Introduction

The railway wheelset plays a vital role in railway transportation, ensuring the safe
and comfortable operation of the vehicles. The conical shape of the wheel tread is designed
to maintain optimal performance. However, excessive traction and braking forces at the
wheel–rail interface can cause the wheel’s exterior perimeter to deviate from its desired
conical shape. This either results in a flat or more conical surface of the wheel tread.
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This deviation leads to increased vibrations, noise, and a decrease in ride comfort and
operational safety. Moreover, wheel defects contribute to the accelerated growth of cracks
on the rail tracks, ultimately leading to premature failure of the rail system [1]. Statistical
analysis of mechanical components of trains between 2004 and 2007 revealed that wheelset
faults accounted for 44.7% of train accidents, making them the most significant cause [2].
Therefore, early detection of defective wheels is crucial. To achieve this, an automated
approach capable of accurately distinguishing between healthy and damaged wheels needs
to be developed. Consequently, there is a great interest among railway administrations and
rolling stock operators in finding effective methods for early detection and identification of
wheel flats [3].

Rolling stock inspection is normally performed at fixed intervals and carried out
periodically in workshops. Periodic inspection is expensive due to the unavailability of
rolling stock during maintenance time. Moreover, it is also inefficient, which usually results
in over- or under-maintenance of the components [4]. In the last few decades, various
techniques have been employed in the railway industry, and various monitoring approaches
have been proposed to automatically inspect wheel conditions. Most of these techniques
are based on the concept that the wheel–rail interaction forces increase in a defective
wheel [5,6]. The most popular techniques which have gained plenty of attention from
railway researchers are the onboard techniques and wayside measurement techniques [7].

The wayside inspection involves the installation of various sensors along the railway
track at specific locations, allowing for the evaluation of all passing wheels [8,9]. These
techniques utilize vibration, acoustic, image detection, and ultrasonic technologies to
monitor the condition of the trains [10–12]. Hot axle box detectors (HABDs) are commonly
employed in wayside monitoring systems to identify faulty overheating axle bearings by
using thermal imaging. However, HABDs are unable to detect damage at early stages,
as minor faults do not typically cause a noticeable increase in temperature. Additionally,
HABDs are prone to false alarms triggered by environmental conditions [13]. Trackside
acoustic array detectors (TAADS) utilize arrays of microphones to capture the audible
noise produced by passing axle bearings. However, the operating frequency range of
these microphones (normally 22–44 kHz) makes them susceptible to errors resulting from
background noise [14]. To enhance the accuracy of detection, many modern wayside
monitoring systems incorporate machine learning and deep learning algorithms [5,15]. For
example, in [5], a multi-sensor data fusion approach combined with an unsupervised early
damage detection methodology has been proposed, capable of automatically distinguishing
between defective and healthy wheels, particularly considering small flat sizes. This
methodology relies on the evaluation of acceleration and shear time histories recorded on
the rails during the passage of traffic loads. In [15], an improved YOLOv3 framework is
developed for rail wheel surface defect detection, achieving classification detection of four
types of wheel tread defects with an average mean average precision (MAP) accuracy of
0.92. Various types of sensors, including strain gauges and accelerometers, are utilized to
capture input signals for detecting wheel flats.

However, wayside monitoring systems are often costly due to the requirement for
multiple sensors and high-end computing capabilities for comprehensive diagnosis and
effective wheel condition monitoring. For instance, in the Swedish railway network, the
wayside equipment for monitoring rolling stock consists of almost 200 wayside inspection
devices [16]. Moreover, this method also requires detailed information about a target
vehicle (e.g., number of axles and type of wagon) for accurate condition monitoring [17].
The high cost and maintenance issues associated with this method limit its widespread
use. Additionally, the deployment and security of wayside equipment are important
considerations that need to be addressed.

Due to the challenges associated with wayside monitoring techniques, several onboard
techniques have been proposed in the literature [18–23]. One such technique, presented
in [10], detects wheel flat defects by measuring the vertical acceleration on the axle box.
This algorithm operates in the time domain and can identify the presence of wheel flats
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at an early stage and estimate their severity. The results demonstrate that the proposed
wheel flat index is effective for detecting small flats and estimating their severity. In [18],
multiple models and a fuzzy logic-based technique are introduced for detecting conicity in
railway wheelsets. This method indirectly identifies the conicity condition by analyzing
the lateral acceleration of the wheelset. Another onboard detection method proposed in [7],
known as the angle domain synchronous averaging technique (ADSAT), utilizes vertical
axle-box vibration acceleration (ABVA) to monitor the conditions of axle-box bearings.
The results indicate that this method not only achieves better detection than traditional
methods but also mitigates the influence of background noise. In [19], a lightweight
1D convolutional neural network (CNN) architecture, guided by Bayesian optimization,
is presented for wheel flat (WF) detection using car body accelerations. Additionally,
model-based onboard techniques are proposed in [20–23] to detect wheelset conditions
under different environmental conditions, utilizing axle vibration and gyroscopic data for
onboard diagnosis.

The advantage of on-board monitoring systems is that the wheel is monitored con-
tinuously and not only when the vehicle passes a trackside monitoring site. This allows
for the timely detection of emerging wheel defects [10], thus, allowing immediate action
to perform maintenance after the formation of a wheel flat, without requiring a visit to a
trackside monitoring site [10,24]. Furthermore, if the onboard monitoring system provides
positioning, the occurrence of a wheel defect can be linked to a position on the track. The
track at this position can then be inspected and, in cases where a track defect is identified,
appropriate maintenance actions can be issued to avoid further damage to the rail and
other passing vehicles [24]. The early detection of wheel flats can also be correlated with
braking occurrences, if the braking system is monitored, to develop strategies for reducing
their frequency [25]. However, onboard detection methods require equipping all wheels
with sensors for comprehensive diagnosis and effective wheel condition monitoring, which
can be costly and pose maintenance challenges.

Onboard detection techniques face a substantial challenge due to the presence of
diverse vibrations originating from multiple sources within the railway system. These
vibrations, generated by the track, traction motors, and various rolling stock subsystems,
introduce significant complexity and pose obstacles to the accurate identification of wheel
defects in real-time during operational activities [7,26]. The intricate nature of these vi-
brations makes it difficult to distinguish between genuine wheel defects and false alarms,
leading to potential disruptions and unnecessary maintenance interventions. Addressing
the challenge of vibration interference requires innovative approaches that can effectively
separate the signals related to wheel defects from the surrounding vibrations. By employ-
ing machine learning algorithms, it becomes possible to enhance the accuracy of onboard
detection systems and mitigate the impact of background vibrations. These techniques aim
to extract relevant features and patterns associated with wheel defects, enabling reliable
and real-time identification even in the presence of complex vibration environments [27].

This paper presents a novel technique to address the challenges faced by onboard tech-
niques. The proposed technique utilizes axle vibration data exclusively, thereby reducing
the reliance on multiple sensors. Moreover, the proposed technique incorporates a hybrid
deep learning approach, which plays a crucial role in mitigating the influence of back-
ground vibrations. The utilization of hybrid deep learning algorithms allows for enhanced
detection performance by effectively distinguishing between genuine wheel defects and
the vibrations induced by the track, traction motors, and other rolling stock subsystems.
By harnessing the power of deep learning, the proposed technique aims to overcome the
limitations and false alarms commonly encountered in onboard detection systems.

A significant novelty of this research is the automatic detection of defective wheels
at a very early stage, representing a substantial improvement in the effectiveness of the
proposed method and facilitating its full implementation in real-world applications. The
research work’s key contributions are as follows:
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(a) Development of a realistic simulation model of the railway wheelset to generate a
comprehensive dataset.

(b) Evaluation of the effectiveness of the proposed method considering a minimalist
layout of sensors.

(c) Enhancement of wheel flat detection through the application of hybrid deep learn-
ing technique.

2. Methodology

The methodology section of this research paper outlines the approach used to develop
a deep learning model for the detection of defects on railway wheelsets using vibration
measurements. This section describes the data collection process, the deep learning ar-
chitecture employed, the training procedure, and the model evaluation methodology. By
leveraging the inherent capabilities of deep learning, the proposed methodology aims
to automatically learn relevant features directly from the raw vibration measurements,
eliminating the need for explicit feature extraction. The following subsections provide a
detailed overview of the methodology, highlighting the steps taken to train and evaluate
the deep learning model accurately.

2.1. Development of a Realistic Simulation Model

A nonlinear wheelset simulation model presented in [21–23,28] is used to develop
the simulation model in Simulink to mimic the behavior of the actual wheelset dynamics.
The model is modified to consider all the disturbances that are faced by an actual railway
vehicle (e.g., irregularities in track in the lateral direction, variation in gauge and track
geometry) to generate data that are close to real-time scenarios. Only the lateral and yaw
dynamics of the system are considered, which are most affected by the wheel defects. The
model is described in Equations (1)–(5).
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The simulations are in different conditions to develop a comprehensive dataset. The
following scenarios are considered in the development of the dataset.

Variation in speed (VX): In previous similar studies [18–24] speed was kept constant
to detect the anomalies. However, in real-time scenarios, speed is not constant. Therefore,
in this study, data are generated at variable speeds (25 km/h, 50 km/h, 75 km/h, 100 km/h,
120 km/h, and 150 km/h).

Variation in track conditions: Track condition also changes with time and location.
Therefore, the data are generated by varying the track parameters (µ, kA, ε, and kS).

Variation in wheelset condition: Wheel profile plays an important role in the safe and
reliable operation of railway vehicles. Due to wear and tear during the operation wheel
profile is changed. The variation in the wheel profile is incorporated during the simulation
by varying wheel conditions (λw).
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Track disturbances: The creep forces generated at the wheel–rail interface are di-
rectly affected by the track irregularities, such as lateral variation and variation in gauge.
Therefore, these disturbances are also considered in this study.

The data collection process is depicted in Figure 1. A simulation model of a nonlinear
railway wheelset is developed in MATLAB/Simulink. Varying forward speed, varying
wheel conditions, and varying track conditions are given as input to the model. Practically,
a 3-axis accelerometer is placed on the left side of the axle (opposite side of the traction
motor) to measure axle vibration. A preprocessing unit is used to remove any bias in the
vibration data and to extract vibrations in lateral direction. Simulations are run for 20 s in
each of the scenarios, including one non-faulty scenario and six faulty scenarios, to develop
the dataset. Some of the results are given in Figure 2. It is quite evident from Figure 2
that the frequency and the amplitude of the lateral acceleration are directly affected by the
changes in the speed as well as by the wheel profile variation. An accelerometer is placed
on the axle of the wheelset to capture lateral vibrations during the simulation process. A
total of 200,000 data points are generated in each scenario which is archived in CSV format
for later use.
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2.2. Hybrid Detection Architecture

The overall block diagram for defect detection is shown in Figure 3. The defect
detection architecture proposed in this research paper combines an MLP as a feature
extractor with a machine learning model for the final classification of conicity values. The
input features used in this architecture are derived from vibration data only. This is one of
the main contributions of this work because in the presence of disturbances and variable
parameters it is difficult to detect wheel defects using vibration data only.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 2. Lateral acceleration of the wheelset in different conditions. 

2.2. Hybrid Detection Architecture  
The overall block diagram for defect detection is shown in Figure 3. The defect de-

tection architecture proposed in this research paper combines an MLP as a feature extrac-
tor with a machine learning model for the final classification of conicity values. The input 
features used in this architecture are derived from vibration data only. This is one of the 
main contributions of this work because in the presence of disturbances and variable pa-
rameters it is difficult to detect wheel defects using vibration data only.  

 
Figure 3. Model architecture.

To ensure effective feature extraction, the MLP undergoes a pre-training phase, as
shown in Figure 4a. During pre-training, the model is initialized with appropriate weights
and biases, enabling it to extract meaningful patterns from the input data. This initialization
process sets a foundation for the MLP to learn and capture relevant features that are crucial
for accurate defect detection in railway wheelsets.

2.3. MLP—Fully Connected Network

The model presented in this research paper is designed for defect detection in railway
wheelsets using vibration data. The architecture, shown in Figure 5, consists of an MLP as
a feature extractor and a subsequent machine-learning model for the final classification of
conicity values. The feature extraction process begins with the MLP, which includes three
parallel dense networks. Each network has multiple dense layers with decreasing numbers
of units, incorporating the GELU activation function. Regularization is applied to the first
dense layer of the first parallel network using a kernel regularizer.

During training, the model is initially pre-trained to initialize the weights and biases.
This pre-training step helps the MLP extract meaningful patterns from the vibration data,
facilitating effective feature extraction. Once the MLP is pre-trained, the last classification
layer is removed. Instead, the layer where the outputs of all three branches are concatenated
is used to extract the features learned by the MLP. This concatenated layer combines the fea-
tures extracted from each parallel network with the input layer, providing a comprehensive
representation of the input data. A training summary of the MLP is given in Table 1.
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MLP has been pre-trained and equipped with the ability to extract relevant features, these extracted
features serve as inputs to the subsequent machine learning model, as shown in (b). The machine
learning model leverages the extracted features to perform the final classification of conicity values.
By utilizing the comprehensive and representative features obtained from the MLP, the machine
learning model can make accurate predictions regarding the severity of defects in railway wheelsets.
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Table 1. MLP training summary.

Total Parameters 4471

Trainable parameters 4471
Non-trainable parameters 0

These extracted features serve as the inputs to the subsequent machine learning model,
which performs the final classification of conicity values. The machine learning model
utilizes the extracted features to make accurate predictions regarding the severity of defects
in railway wheelsets. By removing the last classification layer and extracting features from
the concatenated layer, the model focuses on capturing and utilizing the learned represen-
tations of the input data. This approach enhances the effectiveness of defect detection by
leveraging the discriminative power of the extracted features for classification purposes.

2.4. Hyperparameters

The details of the hyperparameter are given in Table 2. The model uses a Gaussian
error linear unit (GELU) as an activation function with a categorical cross-entropy loss
function and Adam optimizer.

Table 2. Hyperparameters.

Hyperparameters

Loss function Categorical cross entropy
Activation function GELU
Optimization algorithm Adam
# of training epochs 100
Batch size 100

2.4.1. GELU Activation Function

The GELU activation function outperforms ReLU in the presented architecture due
to its smoothness, improved representation learning capabilities, and ability to alleviate
the vanishing gradient problem. These advantages enable more stable training, enhanced
feature extraction, and improved accuracy in defect detection for railway wheelsets. The
GELU activation function is defined as follows in Equation (6):

GELU(x) = 0.5x ·
(

1 + tanh

(√
2
π

·
(

x + 0.044715x3
)))

(6)

2.4.2. Categorical Cross Entropy Loss Function

Categorical cross entropy is utilized as the loss function for the final classification
model. This choice is motivated by the nature of the defect detection task, where the goal
is to classify conicity values into different categories or severity levels. Categorical cross
entropy is well-suited for multi-class classification problems, providing a measure of the
dissimilarity between the predicted conicity values and the true labels. By minimizing
this loss function, the model is encouraged to accurately classify the severity of defects in
railway wheelsets.

Loss = −∑

output
size

i=1 yi·logŷi (7)

2.4.3. Adaptive Moment Estimation (ADAM) Optimizer

The ADAM optimizer is a widely used optimization algorithm for training neural
networks. It offers several advantages that contribute to its popularity. ADAM utilizes
adaptive learning rates, adjusting the learning rate for each parameter individually based
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on the gradients’ history. This adaptive nature allows for faster convergence and efficient
parameter updates. The inclusion of momentum helps accelerate optimization by maintain-
ing a running average of past gradients. ADAM also handles sparse gradients effectively,
which is common in deep learning models. Additionally, it incorporates L2 regularization,
preventing overfitting and improving generalization. Overall, these features make ADAM
a versatile and effective optimizer for neural network training.

3. Results
3.1. Training Procedure

The entire training procedure for the proposed algorithm consists of pretraining an
MLP for feature extraction and then feeding these feature vectors to ML model training.
The steps are shown in Table 3.

Table 3. Training procedure.

Step Step Name Details

1 Data preparation

Prepare and arrange the entire dataset with the number
of columns as the number of features and the output
label as the last column. The number of rows is the
number of datapoints.

2 Pre-training phase

An MLP network is trained as a classifier first with
inputs as feature vectors and output as conicity labels.
The model is trained for 50 epochs using the GELU
activation function and ADAM optimizer.

3 Feature extraction

The trained model in Step 2 is then used where the last
classification layer is removed, giving us the
concatenated layer. The output of this layer is of size
3 × 100. This is a feature matrix from the pre-trained
MLP network.

4 ML model training
Multiple ML models, such as SVM, DT, RF, and kNN,
are then trained on the extracted feature matrix from
Step 3.

3.2. Model Performance

The results are gathered by following a training procedure where the MLP network is
first pre-trained. Then, using the trained model, the last classification layer is removed to
extract features. These features are then fed to ML models one by one, and a comparison
is drawn. Each model is analyzed for its accuracy, precision, recall, and F1 score. The
performance metrics are summarized in Table 4.

Table 4. Performance comparison.

Model Performance Metrics

Accuracy Precision Recall F1 Score

MLP 88.6% 89.6% 88.6% 88.7%
MLP-RF 99.0% 99.2% 99.2% 99.1%
MLP-DT 98.9% 98.9% 98.0% 98.9%
MLP-KNN 95.0% 94.5% 94.5% 94.0%
MLP-SVM 83.1% 85.6% 83.1% 83.5%

RF = random forest, DT = decision tree; KNN = k-nearest neighbor, SVM = support vector machine.

Figure 6 shows the performance comparison of MLP, SVM, RF, DT, and k-N. The
MLP-RF shows the highest detection accuracy, precision, and F1 Score.
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3.3. Results Interpretation

The performance results in the previous section show four types of performance
metrics, namely accuracy, precision, recall, and F1 score. The results are summarized in
Table 5.

Table 5. Summary of results.

Model Results Interpretation

MLP

This model achieved an accuracy of 88.6%, which means it correctly classified 88.6% of the defects.
The precision of 89.6% indicates that when it predicted a defect, it was correct 89.6% of the time. The
recall of 88.6% indicates that it identified 88.6% of the actual defects. The F1 score, which considers
both precision and recall, is 88.7%.

MLP-RF

This model achieved high accuracy of 99.0%, indicating that it performed exceptionally well in
classifying defects. The precision and recall of 99.2% suggest it had a very low rate of false positives
and false negatives. The F1 score of 99.1% reflects the overall effectiveness of the model in
detecting defects.

MLP-DT

This model achieved an accuracy of 98.9%, indicating strong performance in defect detection. The
precision of 98.9% suggests that it had a very low rate of false positives. However, the recall of 98.0%
indicates it missed a small portion of actual defects. The F1 score of 98.9% reflects a good balance
between precision and recall.

MLP-kNN

This model achieved an accuracy of 95.0%, indicating a relatively high performance in detecting
defects. The precision and recall of 94.5% suggest a low rate of false positives and false negatives.
The F1 score of 94.0% reflects a good overall performance, though slightly lower than the
previous models.

MLP-SVM

This model achieved an accuracy of 83.1%, which indicates it had a moderate level of performance in
detecting defects. The precision of 85.6% suggests it had a relatively low rate of false positives.
However, the recall of 83.1% indicates it missed a significant portion of actual defects. The F1 score of
83.5% reflects the overall effectiveness of the model, considering both precision and recall.

3.4. Classification Results for Conicity Values

Figure 7 shows the error matrix (or confusion matrix) for predicted and ground truth
results. Starting from MLP, the accuracy of valid conicity value (c = 0.15) is 82%, while for
MLP-RF it is 99%, for MLP-DT it is 98.9%, for MLP-kNN it is 94.2%, and for MLP-SVM it is
79.3%. The confusion matrix is plotted for the unseen test data.
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Figure 7. Classification results.

4. Conclusions

In conclusion, this research paper presents the implementation of a hybrid deep
learning-based defect detection system. The system utilizes a multilayer perceptron (MLP)
for feature extraction, which is pre-trained on collected data. Multiple machine learning
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models, including support vector machine (SVM), random forest (RF), decision tree (DT),
and k-nearest neighbors (k-NN), are employed for classifying conicity target values. The
performance of different models in detecting wheel defects was evaluated. The MLP model
achieved an accuracy of 88.6% with balanced precision and recall. MLP-RF exhibited
exceptional performance with high accuracy (99.0%), precision, recall, and F1 score. MLP-
DT demonstrated strong performance with an accuracy of 98.9% and balanced precision
and recall. MLP-kNN achieved a relatively high accuracy of 95.0% with good precision and
recall. MLP-SVM showed moderate performance with an accuracy of 83.1%, relatively low
recall, and moderate precision. Overall, the results indicate the effectiveness of MLP-RF,
MLP-DT, and MLP-kNN in accurately detecting wheel defects, while MLP-SVM showed
relatively lower performance.

These findings suggest the effectiveness of combining deep learning-based feature
extraction with various machine learning models for accurate defect detection and clas-
sification. The achieved results highlight the potential of hybrid approaches in defect
detection applications, showcasing the benefits of leveraging deep learning and traditional
machine learning techniques in tandem. Future research can explore further enhancements
to improve accuracy, explore different feature extraction methods, or investigate the appli-
cability of the proposed system to other defect detection scenarios. One limitation of this
study is the reliance on simulated data to train and evaluate the proposed model. While
efforts have been made to create a realistic simulation model and generate comprehensive
datasets, there may still be discrepancies between simulated data and real-world scenarios.
It is important to validate the model’s performance using real-world data to ensure its
effectiveness in practical applications.

To advance the field of defect detection and classification using hybrid deep learning
methodologies, several avenues for future research can be explored. These include fine-
tuning the pre-trained MLP model specifically for defect detection, investigating alternative
deep learning architectures, such as CNNs or RNNs, and evaluating the effectiveness of
data augmentation techniques. The integration of transfer learning and real-time imple-
mentation in real-time settings should also be considered. Additionally, validation on
diverse datasets, deployment in real-time environments, and integration with automated
decision-making systems are promising areas for further investigation. To achieve practical
implementation, the proposed model can be effectively deployed on an edge computing
platform. This deployment enables the real-time detection of wheel defects, providing
prompt and accurate identification of any issues. By leveraging the computational capabili-
ties of the edge computing platform, the model can efficiently process the incoming data
from sensors and rapidly analyze them for the presence of wheel defects. This approach
ensures that potential defects are promptly detected, and appropriate actions can be taken
to maintain operational safety and efficiency in railway transportation.
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Nomenclature

Symbol Parameter Value and/or Unit
Fa Creep Force N
µ Friction coefficient
kA Reduction factor around the adhesion
r0 Wheel radius 0.5 m
Lg The half gauge of the track 0.75 m
λw Wheel conicity 0.15 rad
ε The gradient of the tangential stress in the adhesion area
VX Vehicle’s forward velocity
Y Lateral motion meter
yg Variation in gauge meter
yt Track disturbance in the lateral direction meter
Ψ Yaw angle radians
kS Reduction factor in a slip
Iw Yaw moment of inertia of wheelset 700 Kgm2

Kw Yaw stiffness 5 × 106 N/rad
mw Wheel weight with induction motor 1250 Kg
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