Integrated Edge Deployable Fault Diagnostic Algorithm for the Internet of Things (IoT): A Methane Sensing Application
Abstract
:1. Introduction
1.1. Motivation and Contribution
1.2. Related Work
2. Materials and Methodology
2.1. Methane Sensing Edge Device
2.1.1. Sensing Module
2.1.2. Processor Module
2.1.3. Communication Module
2.1.4. Faults in SED
2.2. Integrated Fault Diagnosis Algorithm
2.2.1. Fault Tree Analysis
2.2.2. RF Classifiers
2.3. Implementation and Working
- Sensing Module
- ∘
- The sensing device was exposed to various glass jars with different biogenic-process start dates to induce upper and lower threshold limit exceeding the faulted.
- ∘
- Data line of the sensor was disconnected temporarily to induce no payload fault.
- Processor Module
- ∘
- A forever-while (1) loop was used to induce the watchdog timer reset, resulting in the “E0” error.
- ∘
- Programmatically, the threshold values were adjusted to be in lower values and the chip was exposed to a light source in order to induce an on-chip temperature error.
- ∘
- A Regulated Power Supply system was used to induce a supply voltage error; error code “E1”.
- ∘
- External load (resistor-bank) was added to consume more current to induce a short-circuit scenario; error code “E3”.
- Communication Module
- ∘
- The ESP8266 was programmatically disconnected to induce link-failure; changing the SSID/password.
- ∘
- The ESP8266 was connected to different access points with varied physical distance to induce RTT time-out.
Algorithm 1: Integrated Fault Detection and Identification Approach |
Function ProcessSensorData: Input: Excel file path data ← ReadExcelData(excelFilePath)//Read sensor data from Excel if data is present then RFFunction(data)//Call RF function with sensor data else FTAFunction()//Call FTA function Function RFFunction(data): result ← Trained Random Forest model(data)//Check for faulty data if result is not faulty then SendToCloud(data)//Send data to cloud else FTAFunction()//Call FTA function Function FTAFunction(): if sensor data is present then SensorFault()//Call SensorFault function ProcessorFault()//Call ProcessorFault function else LinkFailure()//Call LinkFailure function RTTFunction()//Call RTTFunction Function SensorFault(): //Paraphrase the sensor value from the payload and check against threshold value … Function ProcessorFault(): //Paraphrase the processor value/Error codes from the payload and check against threshold value … Function LinkFailure(): //Base station tries to ping the particular node … Function RTTFunction(): //A RTT measurement is done and cross-checked against the threshold value … Function SendToCloud(data): //The sensor value or the list of faulty equipment is sent to the Cloud through MQTT protocol. … |
3. Results and Discussions
3.1. Datasets
3.2. Performance of RF Classifier
3.3. Performance of the FTA
3.4. Performance of the Integrated Algorithm
- Reduced latency: Edge fault detection algorithms can detect faults much faster than traditional methods, which can help to prevent costly downtime.
- Improved accuracy: Machine learning algorithms can learn to identify patterns in data, which can lead to improved accuracy in fault detection.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, P.; Liu, H.; Xin, R.; Carval, T.; Zhao, J.; Xia, Y.; Zhao, Z. Effectively Detecting Operational Anomalies In Large-Scale IoT Data Infrastructures By Using A GAN-Based Predictive Model. Comput. J. 2022, 65, 2909–2925. [Google Scholar] [CrossRef]
- Pamula, A.S.P.; Ravilla, A.; Madiraju, S.V.H. Applications of the Internet of Things (IoT) in Real-Time Monitoring of Contaminants in the Air, Water, and Soil. Eng. Proc. 2022, 27, 26. [Google Scholar] [CrossRef]
- Cheng, B.; Zhu, D.; Zhao, S.; Chen, J. Situation-Aware IoT Service Coordination Using the Event-Driven SOA Paradigm. IEEE Trans. Netw. Serv. Manag. 2016, 13, 349–361. [Google Scholar] [CrossRef]
- Min, H.; Fang, Y.; Wu, X.; Lei, X.; Chen, S.; Teixeira, R.; Zhu, B.; Zhao, X.; Xu, Z. A fault diagnosis framework for autonomous vehicles with sensor self-diagnosis. Expert Syst. Appl. 2023, 224, 120002. [Google Scholar] [CrossRef]
- Ma, X.; Dong, Z.; Quan, W.; Dong, Y.; Tan, Y. Real-time assessment of asphalt pavement moduli and traffic loads using monitoring data from Built-in Sensors: Optimal sensor placement and identification algorithm. Mech. Syst. Signal Process. 2023, 187, 109930. [Google Scholar] [CrossRef]
- Burhan, M.; Rehman, R.A.; Khan, B.; Kim, B.S. IoT Elements, Layered Architectures and Security Issues: A Comprehensive Survey. Sensors 2018, 18, 2796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardi, M.; Pascale, F.; Santaniello, D. Internet of Things: A General Overview between Architectures, Protocols and Applications. Information 2021, 12, 87. [Google Scholar] [CrossRef]
- Ma, K.; Li, Z.; Liu, P.; Yang, J.; Geng, Y.; Yang, B.; Guan, X. Reliability-Constrained Throughput Optimization of Industrial Wireless Sensor Networks With Energy Harvesting Relay. IEEE Internet Things J. 2021, 8, 13343–13354. [Google Scholar] [CrossRef]
- Xu, S.; Huang, W.; Huang, D.; Chen, H.; Chai, Y.; Ma, M.; Zheng, W.X. A Reduced-Order Observer-Based Method for Simultaneous Diagnosis of Open-Switch and Current Sensor Faults of a Grid-Tied NPC Inverter. IEEE Trans. Power Electron. 2023, 38, 9019–9032. [Google Scholar] [CrossRef]
- Ayoub, I.; Balakrichenan, S.; Khawam, K.; Ampeau, B. DNS for IoT: A Survey. Sensors 2023, 23, 4473. [Google Scholar] [CrossRef]
- Chen, Y.; Zhen, Z.; Yu, H.; Xu, J. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture. Sensors 2017, 17, 153. [Google Scholar] [CrossRef] [Green Version]
- Salunke, R.; Nobahar, M.; Alzeghoul, O.E.; Khan, S.; La Cour, I.; Amini, F. Near-Surface Soil Moisture Characterization in Mississippi’s Highway Slopes Using Machine Learning Methods and UAV-Captured Infrared and Optical Images. Remote Sens. 2023, 15, 1888. [Google Scholar] [CrossRef]
- Gu, Y.; Zheng, G. Dynamic Evolution Characteristics of the Gear Meshing Lubrication for Vehicle Transmission System. Processes 2023, 11, 561. [Google Scholar] [CrossRef]
- Li, L.; Tan, Y.; Xu, W.; Ni, Y.; Yang, J.; Tan, D. Fluid-induced transport dynamics and vibration patterns of multiphase vortex in the critical transition states. Int. J. Mech. Sci. 2023, 252, 108376. [Google Scholar] [CrossRef]
- Lu, M.-C.; Huang, Q.-X.; Chiu, M.-Y.; Tsai, Y.-C.; Sun, H.-M. PSPS: A Step toward Tamper Resistance against Physical Computer Intrusion. Sensors 2022, 22, 1882. [Google Scholar] [CrossRef] [PubMed]
- Gaddam, A.; Wilkin, T.; Angelova, M.; Gaddam, J. Detecting Sensor Faults, Anomalies and Outliers in the Internet of Things: A Survey on the Challenges and Solutions. Electronics 2020, 9, 511. [Google Scholar] [CrossRef] [Green Version]
- Markulik, S.; Šolc, M.; Petrík, J.; Balážiková, M.; Blaško, P.; Kliment, J.; Bezák, M. Application of FTA Analysis for Calculation of the Probability of the Failure of the Pressure Leaching Process. Appl. Sci. 2021, 11, 6731. [Google Scholar] [CrossRef]
- Antonini, M.; Pincheira, M.; Vecchio, M.; Antonelli, F. An Adaptable and Unsupervised TinyML Anomaly Detection System for Extreme Industrial Environments. Sensors 2013, 23, 2344. [Google Scholar] [CrossRef]
- Rojek, I.; Jasiulewicz-Kaczmarek, M.; Piechowski, M.; Mikołajewski, D. An Artificial Intelligence Approach for Improving Maintenance to Supervise Machine Failures and Support Their Repair. Appl. Sci. 2023, 13, 4971. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Qiao, W.; Luo, H.; He, P. Human Factor Risk Modeling for Shipyard Operation by Mapping Fuzzy Fault Tree into Bayesian Network. Int. J. Environ. Res. Public Health 2021, 19, 297. [Google Scholar] [CrossRef]
- Adday, G.H.; Subramaniam, S.K.; Zukarnain, Z.A.; Samian, N. Fault Tolerance Structures in Wireless Sensor Networks (WSNs): Survey, Classification, and Future Directions. Sensors 2022, 22, 6041. [Google Scholar] [CrossRef]
- Soltanali, H.; Khojastehpour, M.; Farinha, J.T.; Pais, J.E.d.A.e. An Integrated Fuzzy Fault Tree Model with Bayesian Network-Based Maintenance Optimization of Complex Equipment in Automotive Manufacturing. Energies 2021, 14, 7758. [Google Scholar] [CrossRef]
- Santo, Y.; Immich, R.; Dalmazo, B.L.; Riker, A. Fault Detection on the Edge and Adaptive Communication for State of Alert in Industrial Internet of Things. Sensors 2023, 23, 3544. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Wang, H.; Cao, Z.; Liu, X.; Liu, Y.; Huang, Z. An Edge Intelligent Method for Bearing Fault Diagnosis Based on a Parameter Transplantation Convolutional Neural Network. Electronics 2023, 12, 1816. [Google Scholar] [CrossRef]
- Gültekin, Ö.; Cinar, E.; Özkan, K.; Yazıcı, A. Real-Time Fault Detection and Condition Monitoring for Industrial Autonomous Transfer Vehicles Utilizing Edge Artificial Intelligence. Sensors 2022, 22, 3208. [Google Scholar] [CrossRef]
- Bruneo, D.; De Vita, F. Detecting Faults at the Edge via Sensor Data Fusion Echo State Networks. Sensors 2022, 22, 2858. [Google Scholar] [CrossRef]
- Morenas, J.d.L.; Moya-Fernández, F.; López-Gómez, J.A. The Edge Application of Machine Learning Techniques for Fault Diagnosis in Electrical Machines. Sensors 2023, 23, 2649. [Google Scholar] [CrossRef]
- Cao, B.; Zhao, J.; Gu, Y.; Fan, S.; Yang, P. Security-Aware Industrial Wireless Sensor Network Deployment Optimization. IEEE Trans. Ind. Inform. 2019, 16, 5309–5316. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. A Scenario-Generic Neural Machine Translation Data Augmentation Method. Electronics 2023, 12, 2320. [Google Scholar] [CrossRef]
- Raposo, D.; Rodrigues, A.; Silva, J.S.; Boavida, F. A Taxonomy of Faults for Wireless Sensor Networks. J. Netw. Syst. Manag. 2017, 25, 591–611. [Google Scholar] [CrossRef]
- Welcer, M.; Szczepański, C.; Krawczyk, M. The Impact of Sensor Errors on Flight Stability. Aerospace 2022, 9, 169. [Google Scholar] [CrossRef]
- Meng, Y.; Wu, X.; Oladejo, J.; Dong, X.; Zhang, Z.; Deng, J.; Yan, Y.; Zhao, H.; Lester, E.; Wu, T.; et al. Application of Machine Learning in Industrial Boilers: Fault Detection, Diagnosis, and Prognosis. ChemBioEng Rev. 2021, 8, 535–544. [Google Scholar] [CrossRef]
- Zhang, Z.; Mehmood, A.; Shu, L.; Huo, Z.; Zhang, Y.; Mukherjee, M. A Survey on Fault Diagnosis in Wireless Sensor Networks. IEEE Access 2018, 6, 11349–11364. [Google Scholar] [CrossRef]
- Lau, B.C.; Ma, E.W.; Chow, T.W. Probabilistic fault detector for Wireless Sensor Network. Expert Syst. Appl. 2014, 41, 3703–3711. [Google Scholar] [CrossRef]
- Zidi, S.; Moulahi, T.; Alaya, B. Fault Detection in Wireless Sensor Networks Through SVM Classifier. IEEE Sens. J. 2017, 18, 340–347. [Google Scholar] [CrossRef]
- Javaid, A.; Javaid, N.; Wadud, Z.; Saba, T.; Sheta, O.E.; Saleem, M.Q.; Alzahrani, M.E. Machine Learning Algorithms and Fault Detection for Improved Belief Function Based Decision Fusion in Wireless Sensor Networks. Sensors 2019, 19, 1334. [Google Scholar] [CrossRef] [Green Version]
- Haque, S.A.; Rahman, M.; Aziz, S.M. Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare. Sensors 2015, 15, 8764–8786. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Anang, Y.; Watanabe, Y. A Proposal of Fault Tree Analysis for Embedded Control Software. Information 2020, 11, 402. [Google Scholar] [CrossRef]
- Byun, S.; Papaelias, M.; Márquez, F.P.G.; Lee, D. Fault-Tree-Analysis-Based Health Monitoring for Autonomous Underwater Vehicle. J. Mar. Sci. Eng. 2022, 10, 1855. [Google Scholar] [CrossRef]
- Chen, G. Fault Diagnosis Method Based on System-phenomenon-fault Tree. Chin. J. Mech. Eng. 2011, 24, 466–473. [Google Scholar] [CrossRef]
- Mentes, A.; Helvacioglu, I.H. An application of fuzzy fault tree analysis for spread mooring systems. Ocean Eng. 2011, 38, 285–294. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Chang, M.; Chen, H.; Zang, G. Research on Fault Diagnosis Expert System Based on the Neural Network and the Fault Tree Technology. Procedia Eng. 2012, 31, 1206–1210. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Tian, Z.; Chow, T.W.S. Fault diagnosis on wireless sensor network using the neighborhood kernel density estimation. Neural Comput. Appl. 2018, 31, 4019–4030. [Google Scholar] [CrossRef]
- Swain, R.R.; Khilar, P.M.; Dash, T. Multifault diagnosis in WSN using a hybrid metaheuristic trained neural network. Digit. Commun. Netw. 2020, 6, 86–100. [Google Scholar] [CrossRef]
- Aldhafeeri, T.; Tran, M.-K.; Vrolyk, R.; Pope, M.; Fowler, M. A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives. Inventions 2020, 5, 28. [Google Scholar] [CrossRef]
- Shanmugasundar, G.; Vanitha, M.; Čep, R.; Kumar, V.; Kalita, K.; Ramachandran, M. A Comparative Study of Linear, Random Forest and AdaBoost Regressions for Modeling Non-Traditional Machining. Processes 2021, 9, 2015. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhang, J. New machine learning algorithm: Random forest. In Information Computing and Applications; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7473, pp. 246–252. [Google Scholar] [CrossRef]
- Shaik, K.; Ramesh, J.V.N.; Mahdal, M.; Rahman, M.Z.U.; Khasim, S.; Kalita, K. Big Data Analytics Framework Using Squirrel Search Optimized Gradient Boosted Decision Tree for Heart Disease Diagnosis. Appl. Sci. 2023, 13, 5236. [Google Scholar] [CrossRef]
- Ganesh, N.; Shankar, R.; Čep, R.; Chakraborty, S.; Kalita, K. Efficient Feature Selection Using Weighted Superposition Attraction Optimization Algorithm. Appl. Sci. 2023, 13, 3223. [Google Scholar] [CrossRef]
- Li, R.; Wu, X.; Tian, H.; Yu, N.; Wang, C. Hybrid Memetic Pretrained Factor Analysis-Based Deep Belief Networks for Transient Electromagnetic Inversion. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–20. [Google Scholar] [CrossRef]
- Li, J.; Deng, Y.; Sun, W.; Li, W.; Li, R.; Li, Q.; Liu, Z. Resource Orchestration of Cloud-Edge–based Smart Grid Fault Detection. ACM Trans. Sens. Netw. 2022, 18, 1–26. [Google Scholar] [CrossRef]
Sensor Value (PPM) | Battery Voltage (V) | Overall Circuit Current (mA) | On-Chip Temperature (°C) | User Defined Error Code | Label |
---|---|---|---|---|---|
325 | 3.2 | 199 | 37.9 | Working | |
245 | 3 | 201 | 34.3 | E0 | Faulty |
312 | 3.1 | 200 | 38.3 | Working | |
212 | 2.9 | 198 | 33.1 | E1 | Faulty |
341 | 3.3 | 202 | 39.8 | Working | |
222 | 2.8 | 198 | 33.5 | E3 | Faulty |
265 | 3 | 200 | 36.3 | Working | |
305 | 3.2 | 203 | 38 | Working |
Measure | Training | Testing | ||||
---|---|---|---|---|---|---|
RF | KNN | SVM | RF | KNN | SVM | |
Sensitivity | 0.9593 | 0.8715 | 0.688 | 0.9728 | 0.8582 | 0.625 |
Specificity | 1 | 0.8315 | - | 1 | 0.8943 | - |
Precision | 1 | 0.9389 | 1 | 1 | 0.949 | 1 |
Negative Predictive Value | 0.9063 | 0.6852 | 0 | 0.9524 | 0.7333 | 0 |
False Positive Rate | 0 | 0.1685 | - | 0 | 0.1057 | - |
False Discovery Rate | 0 | 0.0611 | 0 | 0 | 0.051 | 0 |
False Negative Rate | 0.0407 | 0.1285 | 0.312 | 0.0272 | 0.1418 | 0.375 |
Accuracy | 0.9708 | 0.8615 | 0.688 | 0.9824 | 0.8691 | 0.625 |
F1 Score | 0.9792 | 0.904 | 0.8152 | 0.9862 | 0.9013 | 0.7692 |
Matthews Correlation Coefficient | 0.9324 | 0.6624 | - | 0.9625 | 0.7166 | - |
Description | Iteration-1 | Iteration-2 | Iteration-3 | Iteration-4 | Iteration-5 | Iteration-6 |
---|---|---|---|---|---|---|
No. of Sample Datapoints | 50 | 63 | 72 | 80 | 95 | 158 |
No. of known fault | 10 | 11 | 10 | 8 | 12 | 37 |
Time (ms)—FTA | 2.13 | 2.69 | 3.07 | 3.41 | 4.05 | 6.74 |
Time (ms)—RF-FTA | 1.47 | 1.79 | 1.94 | 2.02 | 2.50 | 4.89 |
Time (ms)—KNN-FTA | 1.69 | 2.06 | 2.25 | 2.37 | 2.92 | 5.58 |
Time (ms)—SVM-FTA | 1.56 | 1.90 | 2.06 | 2.15 | 2.66 | 5.16 |
Percentage reduction execution time between FTA vs. RF-FTA | 30.86% | 33.40% | 36.97% | 40.86% | 38.22% | 27.73% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.V.; Mary, G.A.A.; Mahdal, M. Integrated Edge Deployable Fault Diagnostic Algorithm for the Internet of Things (IoT): A Methane Sensing Application. Sensors 2023, 23, 6266. https://doi.org/10.3390/s23146266
Kumar SV, Mary GAA, Mahdal M. Integrated Edge Deployable Fault Diagnostic Algorithm for the Internet of Things (IoT): A Methane Sensing Application. Sensors. 2023; 23(14):6266. https://doi.org/10.3390/s23146266
Chicago/Turabian StyleKumar, S. Vishnu, G. Aloy Anuja Mary, and Miroslav Mahdal. 2023. "Integrated Edge Deployable Fault Diagnostic Algorithm for the Internet of Things (IoT): A Methane Sensing Application" Sensors 23, no. 14: 6266. https://doi.org/10.3390/s23146266
APA StyleKumar, S. V., Mary, G. A. A., & Mahdal, M. (2023). Integrated Edge Deployable Fault Diagnostic Algorithm for the Internet of Things (IoT): A Methane Sensing Application. Sensors, 23(14), 6266. https://doi.org/10.3390/s23146266