A Cluster-Based Energy-Efficient Secure Optimal Path-Routing Protocol for Wireless Body-Area Sensor Networks
Abstract
:1. Introduction
1.1. Contributions of the Work
- A Secured Optimal Path-Routing (SOPR) protocol for improving the performance of wireless body-area networks is proposed.
- This protocol offers improved packet-delivery ratio, enhanced security, and reduced attack-detection overhead, detection time, energy consumption, and delay compared to existing protocols.
- In addition, this protocol can be applied to different wireless body-area networks, such as those used in healthcare applications or environmental monitoring, to ensure secure and energy-efficient routing.
1.2. Organization of the Work
2. Materials and Methods
3. Proposed Methods
3.1. Formation of Key Encryption for Plain Text
3.2. OTP Algorithm
3.3. Secure Optimal Path-Routing Protocol
3.4. Protocol Description
Algorithm 1 Algorithm for SOPR. |
3.5. Energy Efficiency Using Balanced Energy-Efficient and Reliable Algorithm
4. Results
5. Discussion
5.1. Performance Comparison of Sensor Nodes with Black-Hole Nodes
5.2. Energy Consumption
5.3. Challenges
- The limited battery capacity of devices on the network can reduce the time duration that a device can remain connected to the network. As a result, this might reduce the efficiency of the routing protocol.
- Changes in the network environment can affect the efficiency of the routing protocol, such as changes in the number of nodes in the network or the network topology.
- If a link in the network fails, the routing protocol may fail to identify the correct path on which data packets to travel, resulting in decreased energy efficiency. Moreover, link failure can cause congestion and delays in the network, affecting energy efficiency.
5.4. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behera, T.M.; Samal, U.C.; Mohapatra, S.K.; Khan, M.S.; Appasani, B.; Bizon, N.; Thounthong, P. Energy-Efficient Routing Protocols for Wireless Sensor Networks: Architectures, Strategies, and Performance. Electronics 2022, 11, 2282. [Google Scholar] [CrossRef]
- Gopalakrishnan, M.; Arumugam, G.; Lakshmi, K.; Vel, S. SAC-TA: A Secure Area Based Clustering for Data Aggregation Using Traffic Analysis in WSN. Circuits Syst. 2016, 7, 1404–1420. [Google Scholar] [CrossRef] [Green Version]
- Arafat, M.Y.; Pan, S.; Bak, E. Distributed Energy-Efficient Clustering and Routing for Wearable IoT Enabled Wireless Body Area Networks. IEEE Access 2023, 11, 5047–5061. [Google Scholar] [CrossRef]
- Azad, P.; Sharma, V. Cluster head selection in wireless sensor networks under fuzzy environment. Int. Sch. Res. Not. 2013, 2013, 909086. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, L.C.; Yu, C.M. D2CRP: A Novel Distributed 2-Hop Cluster Routing Protocol for Wireless Sensor Networks. IEEE Internet Things J. 2022, 9, 19575–19588. [Google Scholar] [CrossRef]
- Roshini, A.; Kiran, K. Hierarchical energy efficient secure routing protocol for optimal route selection in wireless body area networks. Int. J. Intell. Netw. 2023, 4, 19–28. [Google Scholar] [CrossRef]
- Firdous, S.; Bibi, N.; Wahid, M.; Alhazmi, S. Efficient Clustering Based Routing for Energy Management in Wireless Sensor Network-Assisted Internet of Things. Electronics 2022, 11, 3922. [Google Scholar] [CrossRef]
- Zaman, K.; Sun, Z.; Hussain, A.; Hussain, T.; Ali, F.; Shah, S.M.; Rahman, H.U. EEDLABA: Energy-Efficient Distance-and Link-Aware Body Area Routing Protocol Based on Clustering Mechanism for Wireless Body Sensor Network. Appl. Sci. 2023, 13, 2190. [Google Scholar] [CrossRef]
- Sangeetha, G.; Vijayalakshmi, M.; Ganapathy, S.; Kannan, A. An improved congestion-aware routing mechanism in sensor networks using fuzzy rule sets. Peer-to-Peer Netw. Appl. 2020, 13, 890–904. [Google Scholar] [CrossRef]
- Logambigai, R.; Kannan, A. Fuzzy logic based unequal clustering for wireless sensor networks. Wirel. Netw. 2016, 22, 945–957. [Google Scholar] [CrossRef]
- Logambigai, R.; Ganapathy, S.; Kannan, A. Energy–efficient grid–based routing algorithm using intelligent fuzzy rules for wireless sensor networks. Comput. Electr. Eng. 2018, 68, 62–75. [Google Scholar] [CrossRef]
- Pandiyaraju, V.; Logambigai, R.; Ganapathy, S.; Kannan, A. An energy efficient routing algorithm for WSNs using intelligent fuzzy rules in precision agriculture. Wirel. Pers. Commun. 2020, 112, 243–259. [Google Scholar] [CrossRef]
- Gayathri, A.; Ruby, D.; Manikandan, N.; Gopalakrishnan, T.; Anusha, K.; Narayanasamy, P. Data location integration with stable routing: Stable and optimal data transmission in wireless sensor networks. Trans. Emerg. Telecommun. Technol. 2022, e4627. [Google Scholar] [CrossRef]
- Shimly, S.M.; Smith, D.B.; Movassaghi, S. Experimental analysis of cross-layer optimization for distributed wireless body-to-body networks. IEEE Sens. J. 2019, 19, 12494–12509. [Google Scholar] [CrossRef]
- Förster, A.; Murphy, A.L.; Schiller, J.; Terfloth, K. An efficient implementation of reinforcement learning based routing on real WSN hardware. In Proceedings of the 2008 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, Avignon, France, 12–14 October 2008; pp. 247–252. [Google Scholar]
- Hu, T.; Fei, Y. QELAR: A machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Trans. Mob. Comput. 2010, 9, 796–809. [Google Scholar]
- Patel, A.; Shah, H.B. Reinforcement learning framework for energy efficient wireless sensor networks. Int. Res. J. Eng. Technol. IRJET 2015, 2, 128–134. [Google Scholar]
- Khan, F.; Memon, S.; Jokhio, S.H. Support vector machine based energy aware routing in wireless sensor networks. In Proceedings of the 2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI), Rawalpindi, Pakistan, 1–2 November 2016; pp. 1–4. [Google Scholar]
- Kumar, K.A.; Avinash, J.; Poornima, G. QoS Aware Load Balancing in Cognitive Wireless Sensor Networks using Machine Learning Concepts. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 2377–2381. [Google Scholar]
- Singh, K.; Kaur, J. Machine learning based link cost estimation for routing optimization in wireless sensor networks. Adv. Wirel. Mob. Commun. 2017, 10, 39–49. [Google Scholar]
- Masoud, M.Z.; Jaradat, Y.; Jannoud, I.; Al Sibahee, M.A. A hybrid clustering routing protocol based on machine learning and graph theory for energy conservation and hole detection in wireless sensor network. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719858231. [Google Scholar] [CrossRef] [Green Version]
- Murudkar, C.V.; Gitlin, R.D. Optimal-capacity, shortest path routing in self-organizing 5G networks using machine learning. In Proceedings of the 2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 8–9 April 2019; pp. 1–5. [Google Scholar]
- Hendriks, T.; Camelo, M.; Latré, S. Q 2-routing: A Qos-aware Q-routing algorithm for wireless ad hoc networks. In Proceedings of the 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Limassol, Cyprus, 15–17 October 2018; pp. 108–115. [Google Scholar]
- Vimalapriya, M.; VigneshBaalaji, S.; Sandhya, S. Energy-Centric Route Planning using Machine Learning Algorithm for Data Intensive Secure Multi-Sink Sensor Networks. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019, 9, 4866–4875. [Google Scholar]
- Yang, J.; He, S.; Xu, Y.; Chen, L.; Ren, J. A trusted routing scheme using blockchain and reinforcement learning for wireless sensor networks. Sensors 2019, 19, 970. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Yuan, X.; Zhang, P.; Wang, J.; Jiang, C.; Guizani, M. A machine learning approach of load balance routing to support next-generation wireless networks. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 1317–1322. [Google Scholar]
- Ghaffari, A. Real-time routing algorithm for mobile ad hoc networks using reinforcement learning and heuristic algorithms. Wirel. Netw. 2017, 23, 703–714. [Google Scholar] [CrossRef]
- Strykhaliuk, B.; Kolodiy, R.; Faichuk, V. Method for Intelligent Routing Within Ad-Hoc Networks with Complex Topology. In Proceedings of the 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT), Lviv, Ukraine, 2–6 July 2019; pp. 340–343. [Google Scholar]
- FatemiAghda, S.A.; Mirfakhraei, M. An improved cluster routing protocol to increase the lifetime of wireless sensor network (WSN). Wirel. Pers. Commun. 2019, 109, 2067–2075. [Google Scholar] [CrossRef]
- Vinodhini, R.; Gomathy, C. MOMHR: A dynamic multi-hop routing protocol for WSN using heuristic based multi-objective function. Wirel. Pers. Commun. 2020, 111, 883–907. [Google Scholar] [CrossRef]
- Rodrigues, P.; John, J. Joint trust: An approach for trust-aware routing in WSN. Wirel. Netw. 2020, 26, 3553–3568. [Google Scholar] [CrossRef]
- Panchal, A.; Singh, L.; Singh, R.K. RCH-LEACH: Residual energy based cluster head selection in LEACH for wireless sensor networks. In Proceedings of the 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, 14–15 February 2020; pp. 322–325. [Google Scholar]
- Sixu, L.; Muqing, W.; Min, Z. FMUCR: Fuzzy-based multi-hop unequal cluster routing for WSN. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–7. [Google Scholar]
- Naushad, A.; Abbas, G.; Shah, S.A.; Abbas, Z. Energy efficient clustering with reliable and load-balanced multipath routing for WSNs. In Proceedings of the 2020 3rd International Conference on Advancements in Computational Sciences (ICACS), Lahore, Pakistan, 17–19 February 2020; pp. 1–9. [Google Scholar]
- Aalsalem, M.Y.; Khan, W.Z.; Saad, N.; Hossain, M.; Atiquzzaman, M.; Khan, M.K. A new random walk for replica detection in WSNs. PLoS ONE 2016, 11, e0158072. [Google Scholar] [CrossRef] [Green Version]
- Osanaiye, O.; Alfa, A.S.; Hancke, G.P. A statistical approach to detect jamming attacks in wireless sensor networks. Sensors 2018, 18, 1691. [Google Scholar] [CrossRef] [Green Version]
- Mahdi, O.A.; Al-Mayouf, Y.B.; Ghazi, A.B.; Wahab, A.A.; Idris, M. An energy-aware and load-balancing routing scheme for wireless sensor networks. Indones. J. Electr. Eng. Comput. Sci. 2018, 12, 1312–1319. [Google Scholar]
- Abdulkareem, K.H.; Mohammed, M.A.; Gunasekaran, S.; Al-Mhiqani, M.N.; Mutlag, A.A.; Mostafa, S.A.; Ali, N.; Ibrahim, D.A. A review of fog computing and machine learning: Concepts, applications, challenges, and open issues. IEEE Access 2019, 7, 153123–153140. [Google Scholar] [CrossRef]
- Khadidos, A.O.; Shitharth, S.; Khadidos, A.O.; Sangeetha, K.; Alyoubi, K.H. Healthcare data security using IoT sensors based on random hashing mechanism. J. Sens. 2022, 2022, 8457116. [Google Scholar] [CrossRef]
- Shitharth, S.; Kshirsagar, P.R.; Balachandran, P.K.; Alyoubi, K.H.; Khadidos, A.O. An innovative perceptual pigeon galvanized optimization (PPGO) based likelihood Naïve Bayes (LNB) classification approach for network intrusion detection system. IEEE Access 2022, 10, 46424–46441. [Google Scholar] [CrossRef]
- Xiong, H.; Jin, C.; Alazab, M.; Yeh, K.H.; Wang, H.; Gadekallu, T.R.; Wang, W.; Su, C. On the design of blockchain-based ECDSA with fault-tolerant batch verification protocol for blockchain-enabled IoMT. IEEE J. Biomed. Health Inform. 2021, 26, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, Q.; Yin, Z.; Srivastava, G.; Gadekallu, T.R.; Alsolami, F.; Su, C. Blockchain and PUF-based lightweight authentication protocol for wireless medical sensor networks. IEEE Internet Things J. 2021, 9, 8883–8891. [Google Scholar] [CrossRef]
- Khadidos, A.O.; Manoharan, H.; Selvarajan, S.; Khadidos, A.O.; Alyoubi, K.H.; Yafoz, A. A classy multifacet clustering and fused optimization based classification methodologies for SCADA security. Energies 2022, 15, 3624. [Google Scholar] [CrossRef]
- Javaid, N.; Abbas, Z.; Fareed, M.; Khan, Z.A.; Alrajeh, N. M-ATTEMPT: A new energy-efficient routing protocol for wireless body area sensor networks. Procedia Comput. Sci. 2013, 19, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.A.; Mohammadani, K.H.; Soomro, A.A.; Hussain, J.; Khan, S.; Arain, T.H.; Zafar, H. An energy efficient routing protocol for wireless body area sensor networks. Wirel. Pers. Commun. 2018, 99, 1443–1454. [Google Scholar] [CrossRef]
Algorithm Type | Encryption |
---|---|
Input | Plain text from source file |
Output | Cipher text |
Assumptions | Block size = 64, key size = 512 bits, OTP—One-Time Pad, CBC—Cipher Block Chaining |
Parameters Used | Value |
---|---|
Region of sensor fields | 250 × 250 |
Location of the Base Station | 50 × 100 |
Maximum number of nodes | 100 |
Maximum number of rounds | 1500 |
Propagation model | Free-space and Multipath fading channel model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dass, R.; Narayanan, M.; Ananthakrishnan, G.; Kathirvel Murugan, T.; Nallakaruppan, M.K.; Somayaji, S.R.K.; Arputharaj, K.; Khan, S.B.; Almusharraf, A. A Cluster-Based Energy-Efficient Secure Optimal Path-Routing Protocol for Wireless Body-Area Sensor Networks. Sensors 2023, 23, 6274. https://doi.org/10.3390/s23146274
Dass R, Narayanan M, Ananthakrishnan G, Kathirvel Murugan T, Nallakaruppan MK, Somayaji SRK, Arputharaj K, Khan SB, Almusharraf A. A Cluster-Based Energy-Efficient Secure Optimal Path-Routing Protocol for Wireless Body-Area Sensor Networks. Sensors. 2023; 23(14):6274. https://doi.org/10.3390/s23146274
Chicago/Turabian StyleDass, Ruby, Manikandan Narayanan, Gayathri Ananthakrishnan, Tamilarasi Kathirvel Murugan, Musiri Kailasanathan Nallakaruppan, Siva Rama Krishnan Somayaji, Kannan Arputharaj, Surbhi Bhatia Khan, and Ahlam Almusharraf. 2023. "A Cluster-Based Energy-Efficient Secure Optimal Path-Routing Protocol for Wireless Body-Area Sensor Networks" Sensors 23, no. 14: 6274. https://doi.org/10.3390/s23146274
APA StyleDass, R., Narayanan, M., Ananthakrishnan, G., Kathirvel Murugan, T., Nallakaruppan, M. K., Somayaji, S. R. K., Arputharaj, K., Khan, S. B., & Almusharraf, A. (2023). A Cluster-Based Energy-Efficient Secure Optimal Path-Routing Protocol for Wireless Body-Area Sensor Networks. Sensors, 23(14), 6274. https://doi.org/10.3390/s23146274