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Abstract: This study introduces a novel system for detecting humans inside a building by utilizing RF
signals from the building’s exterior. Existing RF communication devices encounter signal attenuation
issues when passing through walls, limiting their effectiveness. In contrast, our system employs a
low-power, long-distance communication signal operating at 433 MHz to enhance signal permeability,
enabling the accurate detection of individuals within the building. The system analyzes received
signal strength indicator (RSSI) data using variance and mean analysis algorithms to determine the
presence or absence of people. The evaluation results indicate promising average accuracies of 88%
for the variance analysis algorithm and 97.7% for the mean analysis algorithm. The proposed system
holds potential for real-world deployment, particularly in challenging scenarios such as fire incidents,
where pre-installation is challenging. Continued research and development efforts aim to enhance
the system’s performance and address any limitations, making it more effective and robust in various
practical applications.

Keywords: wireless sensor networks; RSSI; through-the-wall; human detection

1. Introduction

Technology for human detection has evolved continuously since the early 20th century.
Early systems relied on heat detection, light sensors, infrared sensors, and ultrasonic
sensors, but their range was limited, and they were prone to malfunctions caused by
factors such as wind, noise, ultraviolet rays, and nearby heat sources [1,2]. However, the
emergence of vision-based systems utilizing image and video processing techniques has
significantly improved human detection and identification. These systems offer wider
detection ranges and the ability to recognize detailed positions [3,4]. However, vision-based
systems rely on visual data, which can be influenced by environmental conditions at the
camera installation site. This introduces complexity and higher costs in terms of algorithm
implementation and equipment maintenance.

In recent years, there has been growing interest in utilizing wireless signals to over-
come the limitations of traditional systems. This approach involves analyzing the Received
Signal Strength Indicator (RSSI) of Wi-Fi or Bluetooth signals to detect changes caused by
human movement. By leveraging existing wireless network infrastructure, this technology
offers relatively lower costs and is less affected by environmental factors compared with
previous technologies. Wireless-signal-based human detection has various potential appli-
cations, including smart home automation and indoor navigation systems [5,6]. However,
it is still an emerging field, and several technical challenges need to be addressed before
widespread deployment in real-world scenarios.

Radio frequency (RF)-based human detection techniques can be affected by various
environmental factors, such as multipath fading caused by signal reflection, refraction,
and diffraction, which can make it difficult to differentiate between human presence and
environmental variations [7]. One of the key challenges with these RF-based techniques
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is the limited detection range, especially in situations where people are behind multiple
obstacles such as walls. To overcome this limitation, researchers have explored various
methods, including using multi-hop nodes or drones to expand the detection range. In
the study by Dhekne et al. [8], multi-hop nodes were used to improve the detection range
of RF signals and identify sensing targets deep inside the building. This method involves
deploying a network of nodes that can relay signals to each other to cover a larger area and
improve the detection range. Similarly, the study by Ma et al. [9] explored the use of drones
to broaden the detection range. Drones can fly over the area of interest and use RF-based
sensors to detect human presence. However, one of the major limitations of these methods
is that they are vulnerable to node failure or changes. This can make it difficult to install
and use these systems outside the building, where environmental factors can be even more
complex and unpredictable. Therefore, more research is needed to develop robust and
reliable RF-based human detection systems that can overcome these limitations and be
deployed in a wide range of indoor and outdoor environments.

In this paper, we present a new approach for human detection using multiple low-
power transceivers using low-power 433 MHz frequency bands. This approach aims to
overcome the challenges posed by obstacles such as multiple walls and other building
materials that can block or weaken wireless signals. Unlike existing protocols such as Wi-Fi
and Bluetooth, which cannot detect humans in scenarios where signals need to pass through
multiple walls [10], the 433 MHz frequency band operates at a lower frequency, making it
more suitable for long-range communication and more effective at penetrating obstacles.
Therefore, our final goal was to have both the transmitter and receivers positioned outside
the building, as depicted in Figure 1, with the wireless signal being transmitted into the
building to detect the presence of people inside. The received data are then analyzed
using algorithms to determine whether a person is present within the detection range
between the transmitter and receiver. Using a low-power 433 MHz frequency band can
help overcome the challenges of signal attenuation and penetration through obstacles,
which can improve the accuracy and range of human detection. Prior to deploying our
human detection system, it was essential to conduct a setup phase to determine some
optimal threshold values. This involved measuring the RSSI values in both the presence
and absence of people, ensuring that the building was empty during the measurements.
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2. Background

In the field of RF wireless communication, there have been various studies on detecting
human presence using wireless signals. Multiple wireless communication protocols, such
as Wi-Fi, Bluetooth Low Energy (BLE), ultra-wideband (UWB), and Long Range (LoRa),
have been used to detect humans in different ways. In this section, we introduce several
prior studies.

Wi-Fi is the most widely used wireless communication technology for human detec-
tion, and uses frequencies of 2.4 GHz and 5 GHz. Initially, human detection was achieved
using RSSI, but later, using Channel State Information (CSI), detailed human activity in-
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formation could be detected. Orthogonal Frequency Division Multiplexing (OFDM) is a
method of multiplexing a transmitted data sequence into many narrowband sub-carriers,
and CSI represents the frequency response characteristics of each OFDM sub-carrier chan-
nel. CSI contains information about signal attenuation, diffraction, reflection, and other
signal distortions between the transmitter and receiver; therefore, it enables more flexible
adaptation to temporal environmental changes, resulting in better localization performance
compared with RSSI [11,12]. In the study by Sigg et al. [13], they used K-Nearest Neigh-
bor (KNN) classifiers to differentiate various bodily activities based on Wi-Fi signal RSSI,
achieving an 80% accuracy rate. Additionally, in the study by Abdelnasser et al. [14], they
achieved 96% recognition accuracy using RSSI values to detect various hand gestures. In
the study by Chen et al. [15], an attention-based bidirectional long short-term memory
(ABLSTM) approach was used to recognize human activity using Wi-Fi CSI measurements
and validate its effectiveness. This study achieved high accuracy in differentiating various
bodily activities such as falling, walking, running, falling, sitting, and standing. In the
study by Xiao et al. [16], they researched a CSI-based indoor positioning system, adopting
backpropagation and K-mean algorithms for real-time differentiation between Line-of-Sight
(LOS) and Non-Line-of-Sight (NLOS) in human detection. These studies using CSI pursue
more refined detection beyond merely detecting human presence [17–22].

BLE, a low-power version of Bluetooth introduced in Bluetooth version 4.0, operates
in the 2.4 GHz frequency band with 40 channels spaced 2 MHz apart. It utilizes Frequency
Hopping Spread Spectrum (FHSS) to mitigate noise interference by dynamically changing
channels 1600 times per second. In the study by Brockmann et al. [23], RSSI variance and
mean analysis algorithms with predetermined thresholds were employed to detect the
presence or absence of a person between the transmitter and receiver in real time. The study
by Münch et al. [24] involved a system using multiple transmitters and receivers to detect
and count people in a classroom. RSSI values were collected and classified into different
datasets; logistic regression, KNN, and Support Vector Machine (SVM) models achieved
over 90% accuracy in detecting people when using the normalized dataset. In S. Naghdi’s
study [25], Radial Basis Function (RBF) and Multi-Layer Perceptron (MLP) networks were
utilized to detect people, with MLP networks demonstrating higher accuracy. Ongoing
studies [26–29] explore Bluetooth’s potential for person detection, aiming for accuracy rates
of 90% or higher across various models.

UWB is a wireless technology that operates in the frequency range of 100 MHz to
3 GHz. In a study by S. D. Liang [30], two experiments were conducted using UWB radar to
detect a person behind a 1-foot thick wall and a 2-inch thick wooden door. The researchers
detected chest movements during breathing and enhanced the weak radar echo signal
using the standard deviation (std) of the breathing signal. By comparing the calculated
std value to a threshold, they determined the presence or absence of a person. Another
study by Yusuf et al. [31] used UWB to estimate the number of people below a ship’s
deck, achieving an 88% accuracy. In a study by Li et al. [32], UWB was used to measure
the signal-to-noise ratio (SNR) for locating survivors in disaster situations, successfully
detecting individuals behind a 20 cm plaster wall at distances of 1.4 m and 1.9 m.

LoRa is a wireless communication technology that typically uses a frequency range of
800–950 MHz, which varies by country. LoRa is known for its long-range connectivity and
low power consumption. The WIDESEE system [33] uses a drone equipped with a single
transmitter–receiver to detect the presence of people by analyzing the reflected signals of
the transmitter. However, LoRa can be susceptible to interference due to its wide detection
range. To address this issue, the Power Spectral Density (PSD) is utilized. The PSD is
obtained by applying FFT to the received signal, which provides information about the
frequency strength, frequency mixture, and noise level. After multiplying the transformed
FFT results with complex numbers and computing the average, the PSD can be obtained.
PSD is useful for comparing the vibration levels of signals with different data counts. By
calculating the PSD at different frequencies and normalizing it, the normalized PSD value
of a specific frequency can approach 1, which can be used to detect the presence of a person



Sensors 2023, 23, 6280 4 of 23

based on the frequency with the highest PSD. The second-order Butterworth low-pass filter
is used to filter out unwanted frequencies, such as drone vibrations and interference, to
ensure accurate detection. The WIDESEE system has been shown to detect people up to
a maximum distance of 53 m in an open square and can detect people inside a high-rise
building surrounded by a 5 cm thick window and 40 cm thick concrete walls.

There are also studies that utilize low-cost Software-Defined Radio (SDR) solutions.
In the study by Uysal et al. [34], the focus is on a dual Through-the-Wall scenario where
both the transmitter and receiver are placed outside the walls of the monitored area.
The experiments are conducted by installing the transmitter and receiver on the outer
sides of the walls of rooms measuring 2.8 × 3.8 m2 and 6.1 × 9 m2, respectively. A
wideband 900 MHz single-frequency signal is used, which passes through the walls twice,
and machine learning (ML) is employed to classify whether there is movement between the
walls, only breathing without movement, or no presence of a person. RSSI is utilized, which
is preprocessed through filtering and downsampling. To efficiently estimate the Respiratory
Rate (RR) from the attenuated signals due to the double walls, a Non-Linear Least Squares
(NLS) approach is employed. A machine-learning-based Decision Tree classifier is then
used, considering the difference between the variance of the RR estimation and the variance
in the observed data as a discriminative criterion, achieving an accuracy of over 99%.
In the study by Jacob et al. [35], a system using a 3.7 GHz frequency is implemented,
where the antenna and the surrounding environment are modified to reliably detect faint
radiation emitted by humans. The system can detect individuals behind wooden doors
at distances of up to 2 m. In the study by Taylor et al. [36], a person detection system
is developed for applications such as elderly care by caregivers. Their system utilizes
Universal Software Radio Peripheral (USRP) and trains a Random Forest machine learning
model using received CSI to classify human movement into “movement” and “no activity”,
enabling the detection and monitoring of people.

However, most of the studies using Wi-Fi CSI that were introduced earlier do not
involve wireless signals passing through multiple walls. Wang et al. [37] introduce several
studies that use Wi-Fi CSI to detect people and discuss whether this can be applied to
experiments that involve passing through walls. These studies demonstrate the use of CSI
to detect people and track their movements when passing through 1–2 walls. However, the
discussion is limited, as they do not delve into the impact of factors such as wall material,
person position, and movement type on the detection performance. Similarly, research
on technologies such as BLE, UWB, and LoRa also lacks consideration of scenarios with
multiple walls and has limitations in terms of performance. There are a few studies among
them that utilize signals passing through two or more walls for person detection [33,34].
Detecting people inside a building from the outside can be challenging due to wireless
signal transmission through exterior and interior walls, as well as obstacles. When signals
pass through objects, refraction occurs, influenced by the refractive index of the medium
they traverse [38]. Transmitting signals between exterior walls involves thick mediums
with obstacles, resulting in significant refraction and signal attenuation. While previous
research using Wi-Fi or ultra-wideband signals has low distance errors for people detection
due to limited signal penetration, it becomes challenging to obtain accurate results in
environments with substantial attenuation, as described above.

Therefore, in this study, we used 433 MHz frequency signals, which have relatively
high signal penetration, for detecting people. We attempted to measure the RSSI outside
the building using low-power, long-range communication 433 MHz frequency transceivers.
This RSSI value is a relative measurement value, so the range varies depending on each
chip supplier; however, in this study, it ranged from approximately −60 to 105 dBm. As the
distance between the transmitter and receiver increases and the interference on the signal
increases, the RSSI value decreases, and the signal strength weakens.
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3. Data Analysis Algorithms
3.1. RSSI Variance Analysis Algorithm

We used variance and mean analysis algorithms for data obtained through experiments
to discriminate a person only by RSSI values while passing an intersection between the
transmitter and the receiver [23].

Var(x) =
1
n

n

∑
i=1

(xi − µ)2 (1)

µcurrent = α ∗ µold + (1 − α) ∗ RSSIcurrent (2)

Equation (1) determines the variance in the RSSI value of the current packet, where
n is the size of the slide window and xi is the RSSI value of the current packet. µ is an
exponentially weighted moving average for RSSI values up to the present packet, and is
obtained by Equation (2). The weight factor, α, is set to α = 0.9 so that the old average
RSSI value has an influence of 90% on the weighted average. The variance is obtained by
collecting the most recent RSSI value by the size, n, of the sliding window, and the RSSI
variance is obtained for packets received by a receiver for one second, considering that the
time for a person to pass through the monitoring area is 0.3–0.5 s [23].

A threshold, Tv, is used as an element that determines the state of human detection in
a variance analysis algorithm. If the variance at a certain point exceeds the threshold Tv, it
is determined that a person has been detected and the state is indicated as 1. Conversely, if
the variance is lower than Tv, it is judged that there are no people, and the state is indicated
as 0. If the Tv is too low or too high, it is possible to detect it incorrectly, so a reasonably
balanced Tv value should be found throughout the test. Through some experiments, the
result was derived by setting n = 10 and Tv = 3 dBm, which is at the balance point for
human detection.

The following experiment was conducted for five minutes to show the variance
algorithm performance in a simple LOS environment. The transmission rate of the packet
was one packet per 100 ms, and a total of 3000 RSSI values were analyzed. One experimental
scenario is detailed in Table 1. From the RSSI values obtained in these experiments, variance
is obtained using Equations (1) and (2).

Table 1. Experimental scenario to apply variance and mean analysis algorithms.

Time 0~60 s 60~120 s 120~180 s 180~240 s 240~300 s

Scenario No
human

A person periodically
passing between the

transceiver

No
human

A person standing
between the transceiver

No
human

A state graph, as shown in Figure 2a, appears when a state of human detection is
drawn through a variance analysis with the threshold Tv = 3 dBm. Using this variance
value, we can obtain a state graph, as shown in Figure 2b, which indicates whether a person
is present or not. It can be observed that a person is detected (state = 1) between 60 and
120 s, and at 180 and 240 s. However, during the period from 180 to 240 s, the algorithm
fails to detect a person who is present but stationary (state = 0).

The biggest problem with the RSSI variance analysis algorithm is that it cannot detect
a person based on variance if the person is stationary within the detection range, as the
variance value does not change. In the previous experiment, while a person moving
between the transmitter and receiver was detected between 60 and 120 s, the algorithm
failed to detect a person standing between the transmitter and receiver during packet
transmission between 180 and 240 s. To address this, the RSSI average analysis algorithm
must be applied.
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3.2. RSSI Mean Analysis Algorithm

The RSSI average analysis algorithm is suitable for detecting stationary people between
the transmitter and receiver, and can detect people based on the attenuation of RSSI values.
Attenuation is represented as the difference between the exponentially weighted moving
average µ and the current RSSI value, calculated as (µ − RSSIcurrent). If the absolute value
of this attenuation is above a certain threshold, it predicts that a person has been detected.
The exponentially weighted moving average, µ, at a specific point used in the attenuation
calculation is calculated using Equation (2), and unlike the RSSI variance analysis algorithm,
this µ value is not updated in events where a person is detected. Thus, the µ value only
changes in situations where the environment changes (e.g., when obstacles are added or
removed between the transmitter and receiver), and remains fixed otherwise. To distinguish
the presence of a person using attenuation values, an experiment is conducted to designate
pairs of coordinates (RSSIcurrent, attenuation) corresponding to the current RSSI value and
its corresponding attenuation value. Linear regression analysis is then performed on these
pairs of coordinates.

Figure 3a shows a linear regression graph drawn using 50 pairs of RSSIcurrent and its
corresponding attenuation values obtained from an experiment where a person is passing
by. During the experiment, the person passes through the detection range, stays still within
the detection range, or is outside the detection range. Random samples of 50 pairs of
data obtained from the experiment were selected as pairs of coordinates. If the detection
environment does not change, the µ value is also fixed, and since the µ of the pair of
coordinates (RSSIcurrent, attenuation) does not change, all coordinates are plotted on the
linear regression graph as pairs of coordinates. The linear regression equation for the
first-degree function when the environment does not change is expressed by Equation (3).
Here, m is the slope of the linear regression graph and c is the y-intercept of the graph.

attenuation = m ∗ RSSIcurrent + c (3)

In the absence of a person, the attenuation’s absolute value is generally 0. However,
external noise unrelated to a person can introduce slight deviations from zero. To account
for this noise, a filter is used to detect a person when the absolute value of attenuation
reaches or surpasses a predetermined constant value, Tg. This value is typically determined
through experimentation, finding the threshold that effectively distinguishes between the
presence and absence of a person while considering the impact of noise. This value is
usually smaller than the attenuation when a person moves. Tg is represented by a horizontal
line parallel to the x-axis in Figure 3b.
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When there is a change in the detection environment, the value of the exponential mov-
ing average, µ, becomes variable. Consequently, the pair of values (RSSIcurrent, attenuation)
deviates from the linear regression graph described by Equation (3), affecting the graph
itself. In a stable environment, µ remains fixed and the slope, m, is equal to −1. When the
environment changes and a new linear regression graph is generated, the slope, m, remains
as −1 while only the y-intercept value changes. The linear regression graph shifts by a
certain amount along the y-axis, and the maximum magnitude of this shift in the y-intercept
is denoted as a constant value, β. By specifying values for Tg and β, it becomes possible
to define the region where the presence or absence of a person can be distinguished. This
region is referred to as the Tm area, enclosed by three linear function graphs, Tg, Td1, and
Td2, as illustrated in Figure 3b. Td is defined by Equation (4), which is a filter considering
environmental changes, and is expressed as Td1 when + β is added to Equation (3), and as
Td2 when − β is added.

Td = m ∗ RSSIcurrent + c ± β (4)

In the mean analysis algorithm, similar to the threshold value, Tv, utilized in the
variance analysis algorithm, the threshold parameters, Tg and β, are determined during
the parameter-setting stage by combining them with suitable values. The objective is to
find the combination that yields the highest accuracy of the algorithm by comparing the
predicted data with the actual data. The state of person detection is binary, indicating one
of two states. If the attenuation falls within the Tm area, it is determined that a person has
been detected, and the state is denoted as 1. Conversely, if the attenuation lies outside
the Tm area, it is determined that there is no person, and the state is denoted as 0. In the
verification stage, the F1-score is calculated to evaluate the algorithm’s performance.

Precision is a metric that represents the number of true positive results (i.e., the number
of times the analysis algorithm correctly identifies an observed event as positive) divided
by the total number of positive results returned by the algorithm, which includes true
positives and false positives (i.e., the number of times the analysis algorithm incorrectly
identifies an observed event as positive).

Recall, on the other hand, is a metric that represents the number of true positive results
divided by the total number of actual positive instances in the dataset, which includes
true positives and false negatives (i.e., the number of times the analysis algorithm fails to
identify an observed event as positive).

In summary, precision measures the accuracy of positive predictions made by the
analysis algorithm, while recall measures the algorithm’s ability to identify all positive
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instances in the dataset. Both metrics are important when evaluating the performance of a
binary classification algorithm.

The F1-score is a single metric that combines both precision and recall, and it can be
calculated using the following equation:

F1 score = 2 ∗ precision ∗ recall
precision + recall

The F1-score is a harmonic mean of precision and recall, and it ranges from 0 to 1,
with a higher score indicating better performance. It is a useful metric for evaluating the
overall effectiveness of a binary classification algorithm because it balances both precision
and recall, taking into account both false positives and false negatives. A higher F1-score
indicates a better balance between precision and recall, while a lower score indicates that
the algorithm is either biased towards precision or recall.

Section 5 presents the results of experiments conducted at a specified location where
there is at least one wall separating the transmitter and receiver. The laser transmitters
and receivers are employed to collect actual human movement data in order to calculate
accuracy. The laser receiver detects the signals emitted by the laser transmitter as a person
moves between the RF transmitter and receiver. By utilizing the laser-based system,
the presence or absence of a person can be accurately determined, and these data are
then compared with the RSSI values obtained through RF signals. The combination of
laser-based detection and RF signal measurements provides a comprehensive dataset for
analyzing and evaluating the accuracy of the system’s detection capabilities. Precision and
recall will be calculated to evaluate the experiment’s performance, and the F1-score will be
computed to determine its accuracy.

4. Experimental Overview
4.1. The Direction of the Experiment

In some recent studies [23–25,27,29,34], methods of determining the presence or ab-
sence of a person through RSSI values were used. However, most of these studies used
high-frequency signals; this method is difficult to use in special situations due to low
wall permeability. This paper proposes a new method for indoor human detection using
low-power 433 MHz frequency wireless signals, which can penetrate walls more effectively
than high-frequency signals. This study aimed to verify whether RSSI values can be used to
detect human presence even in environments where the frequency band is lower than Wi-Fi,
and whether the proposed algorithm is effective in detecting people behind multiple walls
from outside the building. We conducted experiments using the STM32 board (Geneva,
Switzerland) and 433 MHz frequency band to check if the RSSI values are affected by hu-
man movement. They aimed to verify whether detection using RSSI values is possible even
in an environment where the frequency band is relatively lower than Wi-Fi. We verified
the practicality of detecting people from outside the building even when there are two or
more walls between the transmitter and receiver. For our experiments, we manufactured
a PCB using the STM32F103C8T6 and CC1120 wireless communication modules (Dallas,
TX, USA), which use the ARM Cortex-M3 MCU shown in Figure 4 as a transceiver for
human detection.

In the experiments, the CC1120 wireless communication module was used with
specific settings, as outlined in Table 2. The module operated at a frequency of 433 MHz,
and it is possible to configure the following parameters:

• Bandwidth: the maximum bandwidth can be set to 200 kHz.
• Bit Rate: the maximum bit rate can be set to 100 kbps.
• Tx Power: the maximum power can be set to 15 dBm.
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Table 2. CC1120 module setup.

CC1120 Module Setup

Carrier Frequency 433 MHz
Tx Power 10 dBm
Bit Rate 1.2 kbps

Modulation 2-FSK
Bandwidth

Antenna
8.5 KHz

12dbi (DexMRtic, Model: SD-10)

It is worth highlighting that adherence to domestic regulations in South Korea is
crucial when utilizing the 433 MHz frequency. In this study, we initially employed RF
settings that aligned with the regulated parameters specified by Korean policy. However,
we are now interested in exploring additional settings beyond these limitations. These
restrictions are as follows:

• Bandwidth: the bandwidth should be set to 8.5 kHz or less.
• Bit Rate: within this bandwidth, the bit rate can be set to 1.2 kbps to prevent data

corruption.
• Tx Power: the transmission power should be set to 10 dBm or less.

Regarding the modulation format, the CC1120 module offers various options, includ-
ing 2-FSK, 2-GFSK, ASK/OOK, 4-FSK, and 4-GFSK. For the narrowband settings in the
experiments, 2-FSK modulation was selected. This choice is recommended by the manu-
facturer for optimal sensitivity in such scenarios. Although the CC1120 module does not
provide detailed channel information like Wi-Fi, it does offer the RSSI for each received
packet. The next consideration is the impact of multipath propagation. Multipath prop-
agation occurs when wireless signals are reflected, refracted, and diffracted by obstacles
in the environment, resulting in multiple copies of the signal arriving at the receiver at
different times and amplitudes. This can cause signal fading, interference, and errors in
signal detection and decoding. To enhance the accuracy of human detection by mitigating
the effects of multipath propagation, multiple separated receiver modules are employed
for comparative analysis. As detailed in Section 5, three distinct receiver modules were
utilized, with each module receiving packets containing sequence numbers from a single
transmitter. The sequence numbers from each receiver serve as a temporal axis for predict-
ing human detection and generating datasets. However, the current hardware limitations,
such as the number of available serial communication ports on the board, necessitated the
use of three separate receiver modules. For future considerations, we plan to explore the
possibility of implementing a single board with three receiving RF modules. This approach
offers the advantages of a consolidated system while maintaining the benefits of multiple
receiving points for enhanced accuracy in human detection.
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4.2. Data Analysis

We conducted several experiments to determine the effects of factors such as antennas,
signal strength, the presence or absence of obstacles, and distance on the RSSI values.
All experiments were conducted in corridors and rooms in an 11-storey building, and
omnidirectional antennas were used. The transmitter transmitted packets to the receiver
at 0.2 s intervals, and a person walked back and forth between the transceivers for 180 s.
Four experiments were conducted with different settings, including varying the TX power,
the position of the transmitter and receiver, and the distance between them. There was a
wall between the transmitter and receiver when the receiver was in the laboratory. The
experimental settings are shown in Table 3.

Table 3. Content of various element analysis experiments affecting signal.

TX Power Transmitter
Position

Receiver
Position Distance

Ex_1 15 dBm Corridor Corridor 30 m
Ex_2 6 dBm Corridor Corridor 20 m
Ex_3 6 dBm Corridor Laboratory 10 m
Ex_4 15 dBm Corridor Laboratory 30 m

The experimental results in Figure 5 show that the RSSI value remained stable when
there was no human present, but when a person walked between the transceivers, the RSSI
value was affected. The signal strength was attenuated by the wall, but the affected signal
showed a noticeable pattern that could be distinguished from other patterns regardless of
the wall’s presence.
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One notable distinction of this system compared with other protocols lies in the
range of signal attenuation. In the case of the 433 MHz frequency band, as depicted in
Figure 5, the attenuation of RSSI when a person is present is relatively small, around
±1~2 dBm. This attenuation is significantly lower compared with the approximately
±10 dBm attenuation observed in Wi-Fi measurements at frequencies such as 2.4 GHz and
5 GHz [14]. The lower frequency of the 433 MHz signal enables it to traverse obstacles
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more easily than higher-frequency Wi-Fi signals, resulting in reduced signal attenuation.
Consequently, our system can accurately detect the presence of a person even when facing
±1~2 dBm attenuation. However, it should be noted that this attenuation is dependent
on the experimental environment, and our approach requires a setup phase to determine
the threshold accordingly. Furthermore, by employing multiple separated receivers, we
can mitigate the impact of RSSI attenuation range variations among different boards. This
approach ensures that even if some boards exhibit smaller attenuation ranges, the system’s
performance remains robust.

Furthermore, another point to consider is the scenario where multiple people pass
through the detection range, rather than just one person. When comparing the scenario of
one person walking through the detection range with the scenario of three people walking
through, it was observed that when multiple people pass through the detection range,
the RSSI attenuation is measured to be much greater. This implies that if the algorithm
in Section 3 is capable of detecting one person, it should also be able to detect multiple
people passing through with even greater attenuation. The difference in attenuation can be
used to distinguish between scenarios where one person or multiple people pass through.
However, detecting people in a smaller attenuation range is more challenging, which is why
Section 5 focuses on experimenting with scenarios where only one person passes through.

5. Experiment and Results

This section aims to verify the accuracy of the analysis algorithm introduced in
Sections 3.1 and 3.2 through actual experiments, specifically in scenarios where individuals
move around randomly. The experiments are conducted in three different scenarios. First,
a single wall is placed between the transmitter and receiver, and a person walks along
a predetermined scenario. Second, two walls are placed, and a person walks randomly.
Finally, the transmitter and receiver are placed outside the building, and a person walks
randomly inside the building. The transceiver setup for each experiment is given in Table 4.

Table 4. Transceiver setup locations for each experiment.

Transceiver Setup

Ex_A Experiment with a single wall (Section 5.1)

Ex_B Experiment with two walls (Section 5.2)

Ex_C
Experiment with multiple inside walls: the transmitter and receiver are

placed outside the building with multiple interior walls between them, and
a person walks randomly inside the building (Section 5.3)

Before conducting the experiments, it was essential to address the issue of detection
range. At present, the measurement method entails an individual traversing a designated
line positioned between the laser transmitter and receiver in order to obtain the measure-
ments. However, the received RSSI value will be affected n seconds before and after the
person enters the laser line. This period should be considered as a human detection event.
To address this issue, the detection range is extended to include the 2–4 s before and after
the human is detected in the ground truth data from the laser receiver. The extended
detection range depends on the distance between the transmitter and receiver. To account
for the variation in the detection range depending on the location of the experimental
device, the offset is obtained and stored in the initial parameter setup phase, which narrows
the gap between the predicted data obtained through the analysis algorithm and the actual
data. This offset is applied to the predicted data in the verification phase. To ensure optimal
performance in the specific environment of the experiment, it is recommended to choose
the receiver board that provides the best performance. Thus, for each experiment, the
receiver board may be replaced accordingly.

As reported in Section 5, all experiments followed a similar process. In each experi-
ment, the transmitter sent packets every 0.2 s, and each of the three receivers collected a
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total of 5000 packets over a duration of 1000 s. During the experiment, a single participant
randomly moved back and forth. The experiment consisted of an initial setup phase to
set the values of linear regression and Tv, Tg, and β, followed by a validation phase to
calculate the accuracy. In the setup phase, the algorithm from Section 3 was applied to 70%
(3500 packets) of the measurement data to obtain parameter values (e.g., Tv, Tg, β, offset,
etc.). In the validation phase, these parameter values were applied to 30% (1500 packets) of
the measurement data to compare the predicted data with the actual measured data and
calculate the accuracy. For experiments B and C (excluding Experiment A), this process was
repeated twice. Experiment B had two phases, denoted as B1 and B2, while Experiment C
also had two phases, denoted as C1 and C2.

In the conducted experiments, the detection algorithm was executed offline, but the
RSSI value of each received packet on each module with a packet ID was transmitted to the
server in real time. This transmission was facilitated using Wi-Fi on each receiver module to
send the RSSI information to a mobile Access Point (AP). The AP acted as an intermediary,
relaying the data to the server via an LTE connection for subsequent processing and analysis.
All experimental data were saved on the server for further reference and analysis. In our
initial implementation, we utilized three separate modules. However, to optimize the
deployment of the detection system, an alternative approach involves integrating three
receiver modules into a single board with at least three serial communication I/O ports
to accommodate the modules. By consolidating the modules onto a single board and
leveraging its capabilities, the detection system can be efficiently executed on the board
itself in real time, eliminating the need for separate modules. This integration enhances the
system’s performance and streamlines its operation.

5.1. Experiment A: Experiment with a Wall

In Experiment A, the setup phase involved conducting the experiment in the same
location as depicted in Figure 6. A 5 cm steel door was positioned between the transmitter
and receiver. The purpose of this experiment was to evaluate the system’s performance in
detecting humans located inside the building while dealing with the obstruction posed by
the steel door.
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The linear regression function for Experiment A is shown in Figure 7 and Table 5. The
graph in Figure 7 provides a rough estimate of the attenuation range when a person is
present. To illustrate this, let us consider Figure 8, which represents the time–RSSI graph
for Board 3 in Figure 7. The solid graph represents the values of RSSI, while the scatter plot
overlaid on it indicates the actual presence of a person at specific times. When there is no
person, the RSSI remains relatively stable with an average of −67 dBm. However, when a
person is present (as indicated by the scatter plot), the RSSI fluctuates between −72 dBm
and −65 dBm. Analyzing Board 3 in Figure 7 specifically, when there is no person, the RSSI
values are −68 dBm and −67 dBm, labeled as “human absence”. When there is a person,
the RSSI values range from −72 dBm to −65 dBm, labeled as “human presence”. Therefore,
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when there is only the “human presence” label (|attenuation| ≥ 2 dBm) present, we can
infer that there is always a person present.
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Table 5. Linear regression analysis results—Boards 3, 4, and 5.

Slope (m) y-Intercept (c)

Board 3 −1.000 −67.000
Board 4 −1.000 −65.000
Board 5 −1.000 −61.000
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Using the slope and y-intercept obtained from the linear regression function, we
substituted them into the mean analysis algorithm during the setup phase to obtain the
maximum F1-score of the variance–mean analysis algorithm, and the corresponding values
of Tg, β, and offset. Table 6 summarizes the maximum F1-scores of the variance–mean
analysis algorithm, and their corresponding parameters for each board, obtained from the
dataset during the setup phase of Experiment A.
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Table 6. Experiment A setup phase results.

F1-Score (Variance) Tv F1-Score (Mean) β Tg Offset

Board 3 1.000 0.77 1.000 0 2 1
Board 4 1.000 0.59 1.000 0 2 1
Board 5 0.908 0.06 0.908 0 1 1

After the setup phase, the obtained parameters were used to generate predicted data,
which were then compared with the actual measured data to calculate accuracy using the
F1-score in the validation phase. During the verification phase, the parameters obtained in
the setup phase were used to generate a state graph that predicted the presence or absence
of a person over time. State values of 1 and 0 indicated the presence and absence of a
person, respectively. Additionally, a scatter plot representing the ground truth data was
superimposed on the predicted solid line graph. The ground truth data represent the actual
measurement data when a person was present. Figure 9 shows an example state graph
obtained in the verification phase.
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The result of the verification phase is a state graph, as shown in Figure 9. Figure 9
provides guidance on how to interpret the results of predictions and compare them with the
actual data. It helps in understanding the relationship between the system’s predictions and
the ground truth. By default, the predicted solid line graph, which predicts the presence or
absence of a person over time, had state values of 1 and 0. When the state was 1, it meant
that the system predicted that there was a person at that time, and when the state was 0,
it meant that the system predicted that there was no person at that time. The additional
scatter plot on the predicted solid line graph represents the actual measurement data where
a person was present, labeled as the ground truth.

The state graph generated during the verification phase can be categorized into four
main cases. As shown in Figure 9, these cases can be labeled as follows:

• Case A represents the scenario where the system accurately predicts the presence of a
person at a specific time.

• Case B indicates the situation where the system correctly predicts the absence of a
person at a certain time.

• Case C, where the system predicts the presence of a person at a certain time, but in
reality, there is no person present.

• Case D case occurs when the system predicts the absence of a person at a certain time,
but in reality, there is a person present.

Cases A and B correspond to correct predictions, while cases C and D denote incorrect
predictions. The F1-score in Table 7 is the result of Experiment A, and the time–state graph
of the verification phase is shown in Figure 10. All boards achieved F1-scores above 0.9
with no outliers in Experiment A.
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Table 7. Experiment A verification phase results.

F1-Score (Variance) F1-Score (Mean)

Board 3 1.000 1.000
Board 4 1.000 1.000
Board 5 0.908 0.907
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5.2. Experiment B: Experiment with Two Walls

Experiment B was performed under identical conditions to Experiment A, except for
the relocation of the receiver. The location for Experiment B involved placing the transmitter
and receiver in separate rooms with a corridor in between, as depicted in Figure 11. The
signal had to pass through two 5 cm steel doors to reach the receiver; the purpose of this
experiment was to evaluate the system’s ability to detect people in the presence of obstacles.
In the additional Experiment B2, a person moved randomly back and forth between the
transmitter and receiver, occasionally stopping in between, to test whether the system could
detect stationary individuals within its detection range. The results of the linear regression
analysis in Experiment B are summarized in Table 8. The F1-score in Table 9 is the result
of applying the parameters obtained in the setup phase to the verification phase data of
Experiment B1. The time–state graph of the verification phase is shown in Figure 12.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 22 
 

 
Figure 10. Time–state graphs of the verification phase of Experiment A: (top) variance analysis algorithm; 
(bottom) mean analysis algorithm. 

5.2. Experiment B: Experiment with Two Walls 
Experiment B was performed under identical conditions to Experiment A, except for 

the relocation of the receiver. The location for Experiment B involved placing the transmitter 
and receiver in separate rooms with a corridor in between, as depicted in Figure 11. The 
signal had to pass through two 5 cm steel doors to reach the receiver; the purpose of this 
experiment was to evaluate the system’s ability to detect people in the presence of obstacles. 
In the additional Experiment B2, a person moved randomly back and forth between the 
transmitter and receiver, occasionally stopping in between, to test whether the system could 
detect stationary individuals within its detection range. The results of the linear regression 
analysis in Experiment B are summarized in Table 8. The F1-score in Table 9 is the result of 
applying the parameters obtained in the setup phase to the verification phase data of Exper-
iment B1. The time–state graph of the verification phase is shown in Figure 12. 

 
Figure 11. Diagram of the transmitter–receiver placement, and the path of travel for Experiment B. 

Table 8. Linear regression analysis results—Boards 3, 4, and 6. 

 Slope (𝒎) y-Intercept (𝐜) 
Board 3 −1.000 −70.000 
Board 4 −1.000 −68.000 
Board 6 −1.000 −65.000 

Table 9. Experiment B1 verification phase results. 

 F1-Score (Variance) F1-Score (Mean) 
Board 3 1.000 1.000 
Board 4 1.000 0.930 
Board 6 1.000 0.924 

Figure 11. Diagram of the transmitter–receiver placement, and the path of travel for Experiment B.



Sensors 2023, 23, 6280 16 of 23

Table 8. Linear regression analysis results—Boards 3, 4, and 6.

Slope (m) y-Intercept (c)

Board 3 −1.000 −70.000
Board 4 −1.000 −68.000
Board 6 −1.000 −65.000

Table 9. Experiment B1 verification phase results.

F1-Score (Variance) F1-Score (Mean)

Board 3 1.000 1.000
Board 4 1.000 0.930
Board 6 1.000 0.924
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The peculiarity is that the mean analysis algorithm on Boards 4 and 6 falsely detected
or failed to detect some events due to noise. As there were differences and errors in the
performance of each board, including hardware malfunctions, three boards were selected
as receivers and analyzed using both the mean and variance analysis algorithms. The
results from the three analyzed boards were then combined to determine the final state
by selecting the state that had two or more boards with the same state value at each time
point. Experiment B2 was conducted to confirm whether people who were standing within
the detection range could be detected. This experiment was carried out under the same
conditions as B1; the experimenter moved randomly, and occasionally paused. The F1-
scores in Table 10 are the result of applying the parameters obtained in the setup phase
to the verification phase data of Experiment B1. The time–state graph of the verification
phase is shown in Figure 13.

Table 10. Experiment B2 verification phase results.

F1-Score (Variance) F1-Score (Mean)

Board 3 0.670 1.000
Board 4 0.648 0.982
Board 6 0.556 0.770
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The anomaly observed in Experiment B2 is that the mean analysis algorithm was
able to detect people standing still in the 140–160 s and the 260–290 s intervals, while the
variance analysis algorithm failed to detect them. This is because the variance analysis
algorithm relies on changes in the variance value to detect the presence of a person, which
occurs when a person is moving. However, when a person is stationary, the variance value
remains constant, and therefore, the algorithm fails to detect them. On the other hand,
the mean analysis algorithm uses mean values to detect the presence of a person. Even
when a person is stationary, the mean value is lower than when there is no person present,
allowing the algorithm to detect stationary individuals. However, as an exception, Board 6
failed to detect stationary individuals even with the mean analysis algorithm. Figure 14
presents the dataset of Board 6 in Experiment B2, where the average RSSI when no person
is present and the RSSI values during the intervals when a person is stationary are identical,
resulting in an RSSI attenuation of 0 and causing the algorithm to fail in detection.
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5.3. Experiment C: External Walls and Internal Obstacles within the Building

The receiver’s placement was altered in Experiment C while maintaining the same
conditions as Experiment B. The final experiment, Experiment C, involved placing the
transmitter–receiver outside the building’s two exterior walls, as depicted in Figure 15.
Between the transmitter and receiver, there were three gypsum walls with a thickness of
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20 cm and one concrete pillar with a thickness of 100 cm as interior walls. Additionally,
there were two concrete pillars with a thickness of 100 cm and windows with a thickness
of 5 cm on either side of the pillars as exterior walls. Figure 16 presents a photo depicting
the equipment setup for better understanding. The straight path from the receiver to the
transmitter follows the order A, B, C, as shown in Figure 16; the distance between the
transmitter and receiver is 20 m. Figure 16A represents the receiver outside the concrete
pillar, and Figure 16B represents the corridor inside the window of Figure 16A, where the
laser transmitter–receiver is installed. After passing through a large room with four inner
walls, Figure 16C represents the transmitter installed outside the concrete pillar on the
opposite outer wall.
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The experimenter moved randomly up and down the path between the transmitters
and receivers, performing Experiments C1 and C2, and then added a stationary situation
similar to Experiment B2 for Experiment C2. The results of the linear regression analysis in
Experiment B are summarized in Table 11.

Table 11. Linear regression analysis results—Boards 7, 8, and 9.

Slope (m) y-Intercept (c)

Board 7 −1.000 −83.000
Board 8 −1.000 −87.000
Board 9 −1.000 −87.000

The F1-scores in Table 12 are the results of Experiment C1; the time–state graph of the
verification phase is shown in Figure 17.
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Table 12. Experiment C1 verification phase results.

F1-Score (Variance) F1-Score (Mean)

Board 7 1.000 1.000
Board 8 1.000 1.000
Board 9 1.000 1.000
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The last experiment, Experiment C2, was the same as Experiment B2, where the
experimenter moves randomly and sometimes stops, and the remaining conditions are the
same as C1. The F1-scores in Table 13 are the results of Experiment C1; the time–state graph
of the verification phase is shown in Figure 18.

Table 13. Experiment C2 verification phase results.

F1-Score (Variance) F1-Score (Mean)

Board 7 0.753 0.967
Board 8 0.643 1.000
Board 9 0.795 0.971

As depicted in Figure 19, the RSSI data obtained from indoor Experiments A and B, as
well as the data from outdoor Experiment C, exhibit slightly different characteristics. The
experimental results indicate that even a small change in RSSI can be effective in detecting
a human presence in Experiment B (Figure 19a). However, in Experiment C (Figure 19b),
where multiple walls were present, the RSSI values often fluctuated even in the absence of
people. Nevertheless, when there was attenuation amidst these fluctuations caused by a
person passing by, the system can successfully detect the presence of a person.
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The mean analysis algorithm usage results in Experiments A to C are mostly 0.9 or
higher. This suggests that the mean analysis algorithm is effective in detecting the presence
of people in an area. Table 14 summarizes the F1-score of the variance and mean analysis
algorithms in each validation phase of Experiments A to C, combining the three boards.
This information may be useful for evaluating the performance of these algorithms and for
comparing their effectiveness in different experimental settings.

Table 14. Experiment A~C verification phase maximum F1-scores.

F1-Score (Variance) F1-Score (Mean)

Ex_A 1.000 1.000
Ex_B1 1.000 0.930
Ex_B2 0.648 0.982
Ex_C1 1.000 1.000
Ex_C2 0.753 0.971

Average 0.880 0.977

When averaging across the items in Experiments A through C, the mean F1-score
for the variance analysis algorithm is 0.880 and the mean F1-score for the mean analysis
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algorithm is 0.977. This suggests that, on average, the mean analysis algorithm performs
better than the variance analysis algorithm and the mean analysis algorithm has a very
high level of accuracy, with its F1-score being almost comparable to 100%. These findings
may be useful for evaluating the effectiveness of these algorithms in detecting the presence
of people in different experimental settings.

During Experiment C, it was observed that despite the existence of multiple reliable
human detection systems [8,16], the RF frequencies employed by these systems demon-
strated limited capability in penetrating the building. The high loss experienced by the
RF signals rendered it unsuitable for implementing similar techniques in the depicted
environment, as shown in Figure 15.

6. Conclusions

This paper presents a novel human detection system that utilizes a 433 MHz frequency
signal outside a building to detect human presence inside. Using a low-power, long-
distance communication signal at 433 MHz, the system overcomes attenuation issues faced
by existing RF devices, enabling detection from outside the walls. The paper proposes two
data analysis methods, variance and mean analysis algorithms, for processing the collected
data. The mean analysis algorithm achieves higher accuracy and can detect stationary
individuals. In the validation phase, the variance analysis algorithm achieved an average
F1-score of 0.880, while the mean analysis algorithm achieved an average F1-score of 0.977.
A drawback of the system is the requirement for a new setup phase for all boards when
performing detecting in a new location, resulting in repetitive setup. The objective was
to simplify or eliminate the setup and configuration process across multiple locations,
enhancing user-friendliness and system efficiency.

If a proposed system can be used immediately after installation, it is expected to
be useful for detecting people in disaster situations, such as fire scenarios, where it is
difficult to install the device in advance and obtain building parameters. Overall, this paper
proposes a novel approach to human detection inside the building using a low-power,
long-distance communication signal; the results demonstrate the potential effectiveness of
the proposed system.

Author Contributions: S.J. contributed to the conceptualization, implementation, experimentation,
and validation of the proposed approach; S.P. contributed to the conceptualization and establishment
of the proposed approaches and methodologies; and G.-I.K. contributed to reviewing the content
with comments for improvement. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by INHA University. This research was supported by the Basic
Science Research Program through the National Research Foundation of Korea (NRF), funded by the
Ministry of Education (2021R1F1A1055052).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sabatier, J.M.; Ekimov, A.E. Ultrasonic Methods for Human Motion Detection; Technical Report for The University of Mississippi,

National Center for Physical Acoustics: University, MS, USA, 2006.
2. Moghavvemi, M.; Seng, L.C. Pyroelectric infrared sensor for intruder detection. In Proceedings of the 2004 IEEE Region 10

Conference TENCON 2004, Chiang Mai, Thailand, 24 November 2004. [CrossRef]
3. Trofimova, A.A.; Masciadri, A.; Veronese, F.; Salice, F. Indoor Human Detection Based on Thermal Array Sensor Data and

Adaptive Background Estimation. J. Comput. Commun. 2017, 5, 16–28. [CrossRef]
4. Fotiadis, E.P.; Garzón, M.; Barrientos, A. Human Detection from a Mobile Robot Using Fusion of Laser and Vision Information.

Sensors 2013, 13, 11603–11635. [CrossRef] [PubMed]

https://doi.org/10.1109/tencon.2004.1415018
https://doi.org/10.4236/jcc.2017.54002
https://doi.org/10.3390/s130911603
https://www.ncbi.nlm.nih.gov/pubmed/24008280


Sensors 2023, 23, 6280 22 of 23

5. Asadullah, M.; Raza, A. An overview of home automation systems. In Proceedings of the 2016 2nd International Conference on
Robotics and Artificial Intelligence (ICRAI), Rawalpindi, Pakistan, 1–2 November 2016; pp. 27–31. [CrossRef]

6. Tsirmpas, C.; Rompas, A.; Fokou, O.; Koutsouris, D. An indoor navigation system for visually impaired and elderly people based
on Radio Frequency Identification (RFID). Inf. Sci. 2015, 320, 288–305. [CrossRef]

7. Agel, M.M.; Habaebi, M.H.; Islam, R. Mitigation of multipath fading in indoor radiometric fingerprinting systems. Comput. Electr.
Eng. 2018, 73, 46–57. [CrossRef]

8. Dhekne, A.; Chakraborty, A.; Sundaresan, K.; Rangarajan, S. TrackIO: Tracking first responders inside-out. In Proceedings of the
16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), Boston, MA, USA, 26–28 February
2019; pp. 751–764.

9. Ma, Y.; Selby, N.; Adib, F. Drone Relays for Battery-Free Networks. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, Los Angeles, CA, USA, 21–25 August 2017; pp. 335–347. [CrossRef]

10. Zhu, H.; Xiao, F.; Sun, L.; Wang, R.; Yang, P. R-TTWD: Robust Device-Free through-the-Wall Detection of Moving Human with
WiFi. IEEE J. Sel. Areas Commun. 2017, 35, 1090–1103. [CrossRef]

11. Liu, J.B.; Huang, B.C.; Zhang, B.; Li, L.L.; Yang, F.; Zhang, Z.B.; Li, Z.; Tong, P.F. AOA estimation based on channel state
information extracted from WiFi with double antenna. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 2167–2172. [CrossRef]

12. Wu, Z.; Jiang, L.; Jiang, Z.; Chen, B.; Liu, K.; Xuan, Q.; Xiang, Y. Accurate Indoor Localization Based on CSI and Visibility Graph.
Sensors 2018, 18, 2549. [CrossRef]

13. Sigg, S.; Shi, S.; Ji, Y. RF-Based device-free recognition of simultaneously conducted activities. In Proceedings of the 2013 ACM
Conference on Pervasive and Ubiquitous Computing Adjunct Publication-UbiComp ’13 Adjunct, Zurich, Switzerland, 8–12
September 2013. [CrossRef]

14. Abdelnasser, H.; Youssef, M.; Harras, K.A. WiGest: A ubiquitous WiFi-based gesture recognition system. In Proceedings of the
2015 IEEE Conference on Computer Communications (INFOCOM), Kowloon, Hong Kong, 26 April–1 May 2015; pp. 1472–1480.
[CrossRef]

15. Chen, Z.; Zhang, L.; Jiang, C.; Cao, Z.; Cui, W. WiFi CSI Based Passive Human Activity Recognition Using Attention Based
BLSTM. IEEE Trans. Mob. Comput. 2018, 18, 2714–2724. [CrossRef]

16. Xiao, F.; Guo, Z.; Zhu, H.; Xie, X.; Wang, R. AmpN: Real-time LOS/NLOS identification with WiFi. In Proceedings of the 2017
IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7. [CrossRef]

17. Tan, S.; Yang, J. WiFinger: Leveraging commodity WiFi for fine-grained finger gesture recognition. In Proceedings of the 17th
ACM International Symposium on Mobile Ad Hoc Networking and Computing-MobiHoc ’16, Paderborn, Germany, 5–8 July 2016.
[CrossRef]

18. Li, X.; Zhang, D.; Lv, Q.; Xiong, J.; Li, S.; Zhang, Y.; Mei, H. IndoTrack. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017,
1, 1–22. [CrossRef]

19. Wang, Y.; Wu, K.; Ni, L.M. WiFall: Device-Free Fall Detection by Wireless Networks. IEEE Trans. Mob. Comput. 2016, 16, 581–594.
[CrossRef]

20. Wang, H.; Zhang, D.; Wang, Y.; Ma, J.; Wang, Y.; Li, S. RT-Fall: A Real-Time and Contactless Fall Detection System with
Commodity WiFi Devices. IEEE Trans. Mob. Comput. 2016, 16, 511–526. [CrossRef]

21. Ma, Y.; Zhou, G.; Wang, S.; Zhao, H.; Jung, W. SignFi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–21.
[CrossRef]

22. Wu, X.; Chu, Z.; Yang, P.; Xiang, C.; Zheng, X.; Huang, W. TW-See: Human Activity Recognition Through the Wall With
Commodity Wi-Fi Devices. IEEE Trans. Veh. Technol. 2018, 68, 306–319. [CrossRef]

23. Brockmann, F.; Figura, R.; Handte, M.; Marrón, P.J. RSSI Based Passive Detection of Persons for Waiting Lines Using Bluetooth
Low Energy. In Proceedings of the 2018 International Conference on Embedded Wireless Systems and Networks, Madrid, Spain,
14–16 February 2018; pp. 102–113.

24. Münch, M.; Huffstadt, K.; Schleif, F. Towards a device-free passive presence detection system with Bluetooth Low Energy beacons.
In Proceedings of the 27th European Symposium on Artificial Neural Networks, ESANN 2019, Bruges, Belgium, 24–26 April 2019.

25. Naghdi, S.; O’keefe, K. Detecting and Correcting for Human Obstacles in BLE Trilateration Using Artificial Intelligence. Sensors
2020, 20, 1350. [CrossRef]
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