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Abstract: Food quality assurance is an important field that directly affects public health. The
organoleptic aroma of food is of crucial significance to evaluate and confirm food quality and origin.
The volatile organic compound (VOC) emissions (detectable aroma) from foods are unique and
provide a basis to predict and evaluate food quality. Soybean and corn oils were added to sesame
oil (to simulate adulteration) at four different mixture percentages (25–100%) and then chemically
analyzed using an experimental 9-sensor metal oxide semiconducting (MOS) electronic nose (e-nose)
and gas chromatography–mass spectroscopy (GC-MS) for comparisons in detecting unadulterated
sesame oil controls. GC-MS analysis revealed eleven major VOC components identified within
82–91% of oil samples. Principle component analysis (PCA) and linear detection analysis (LDA)
were employed to visualize different levels of adulteration detected by the e-nose. Artificial neural
networks (ANNs) and support vector machines (SVMs) were also used for statistical modeling. The
sensitivity and specificity obtained for SVM were 0.987 and 0.977, respectively, while these values for
the ANN method were 0.949 and 0.953, respectively. E-nose-based technology is a quick and effective
method for the detection of sesame oil adulteration due to its simplicity (ease of application), rapid
analysis, and accuracy. GC-MS data provided corroborative chemical evidence to show differences in
volatile emissions from virgin and adulterated sesame oil samples and the precise VOCs explaining
differences in e-nose signature patterns derived from each sample type.

Keywords: oil adulteration detection; edible oils; chemometrics; gas sensors; machine learning; mass
spectroscopy; electronic nose; volatile organic compounds (VOCs)

1. Introduction

Adulteration and fraud are important issues that have affected the commercial pro-
duction and marketing of plant-based oils (e.g., olive, avocado, and other high-valued
vegetable oils), and they have gained significant attention in the sesame oil industry in
recent years [1,2]. Sesame oil (SEO) is an edible oil with high economic and nutritional
values and has been extensively employed as a food flavoring with a unique taste [3,4].
The phytochemicals of SEO are considered protective of human health in that they act
synergistically as antioxidants, anti-hypertension, anti-mutation, anti-inflammatory, and
anti-thrombotic agents, as well as promotors of heart (cardiac) health [5,6].
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Food quality reports worldwide have had a major focus on issues relating to the quality
and adulteration of edible oils, accounting for 24% (the highest contribution) among the
important issues discussed within such reports [7]. Valuable edible oils are, unfortunately,
major targets for frequent fraudulent adulteration with cheaper oils due to economic
motivations [8,9]. Adulteration is a serious problem, particularly for expensive oils, such as
sesame and olive oil. Sesame oil is extensively mixed and diluted with lower-cost oils such
as canola oil [10]. Regardless of preventative regulations, some unauthorized producers
add low-cost vegetable oils to sesame oil or directly add chemically synthesized sesame
essential oil to low-cost oils [11]. Therefore, the quality of sesame oil must be guaranteed in
terms of economic market value of the product and health considerations for the benefit of
consumers. However, the detection and identification of vegetable oil adulterations are not
easy tasks because some of the volatile organic compound (VOC) emission components
from low-quality oils are often similar to those of high-quality oils [12].

The detection of sesame oil fraud and adulteration involves the identification and
quantification of adulterants, contaminants, or additives that compromise the quality
and authenticity of the product. Various analytical techniques and methods have been
developed to address this challenge. These methods aim to accurately determine the
composition and origin of sesame oil, distinguishing it from adulterated or counterfeit
products [1]. One commonly used approach for sesame oil authentication is based on
the analysis of fatty acid profiles [13]. Sesame oil has a distinctive fatty acid composition,
characterized by the presence of specific fatty acids, such as oleic acid, linoleic acid, and
palmitic acid [14]. Gas chromatography (GC) and high-performance liquid chromatography
(HPLC) are widely employed to separate and identify fatty acids in oil samples [15,16].
By comparing the fatty acid profiles of suspected samples with known authentic sesame
oil profiles, it is possible to identify adulteration or oil substitutions [17]. In addition to
fatty acid profiling, advanced techniques, such as nuclear magnetic resonance spectroscopy
(NMR), near-infrared spectroscopy (NIRS), and mass spectrometry (MS), have been utilized
to enhance the accuracy and reliability of sesame oil authentication [18]. These methods
provide detailed information about the chemical composition, molecular structure, and
isotopic characteristics of the oil, enabling a more comprehensive analysis of potential
fraud due to mixing with lower-quality vegetable oils [19].

Using analytical techniques with chemical sensors for the detection and determination
of VOCs is an excellent approach to evaluate the quality of oil samples and to distinguish
original high-quality vegetable oils from adulterated, corrupted, or externally spoiled
oils [20]. The concentration of VOC emissions from vegetable oils is not necessarily directly
related to their impact on the oil aroma and flavor, as it depends on the aroma threshold of
each volatile compound, which can vary from 0.017 to 40,000 µg/kg [21]. Various analytical
methods have been proposed using high-pressure liquid chromatography (HPLC), gas
chromatography (GC), and gas chromatograph–mass spectrometry (GC-MS) to determine
the major and minor VOC components of oils [14,22]. The use of expert human sensory
panels for analysis is costly and time-consuming. Moreover, the results from human panels
cannot be quantified for precise evaluations. There is an important need to develop systems
that can detect and quantify the adulteration of low-cost oils in sesame oil samples. Im-
proved detection systems should be portable, low-cost, rapid, non-destructive, and utilize
effective chemical sensors to quickly assess adulteration and fraud associated with com-
mercial vegetable oils [10]. Electronic nose (e-nose) devices are particularly well suited for
detecting differences in VOC emissions from plant products but are not normally designed
to identify individual VOCs present in sample analytes. Metal oxide semiconducting (MOS)
gas sensors are the most common type of e-nose sensors used for analyzing VOC emissions
from commercial plant products. MOS sensors undergo changes in electrical conductivity
when VOCs adsorb to sensor surfaces, which can be measured and correlated with the
types and relative amounts of different VOCs present [23]. An electronic nose system
typically consists of an array of electronic chemical sensors with VOC-detection specificity
and often utilizes a suitable sensor-response pattern recognition system. It is capable of
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recognizing simple or complex odors [24]. E-nose technologies offer a simple and effective
approach for the detection and identification of adulterated vegetable oils. By leveraging
the capability of e-noses to analyze VOC emissions associated with product aroma, these
gas detection devices can distinguish between authentic and adulterated products [25,26].
Continued research and advancements in this field will contribute to more robust and
reliable methods for combating fraud in the sesame oil industry, ensuring consumer trust
and product integrity. However, it is important to note that while e-nose technologies show
promise, there are still significant challenges because this is still an emerging field with
ongoing research and development [16]. Further studies are needed to optimize e-nose
sensor arrays, improve detection limits, and enhance the specificity and selectivity of the
electronic nose for sesame oil fraud detection.

The objectives of this research were to (1) evaluate the capabilities of electronic nose
technology as a rapid, low-cost, practical tool for the detection and discrimination of pure
sesame oil from adulterated versions containing soybean and corn oils at different mixture
percentages, and (2) to compare e-nose output data with GC-MS analytical data showing
chemical differences in vegetable oil sample types. This study aimed to investigate the
physical and chemical characteristics of pure sesame oil compared to adulterated mixtures
for human health considerations and to preserve the high-cost value of sesame oil by
improving quality assurance methods. By employing the electronic nose, the research seeks
to enhance capabilities to accurately detect differences between genuine sesame oil and
mixed or adulterated oils, ultimately contributing to the prevention of adulteration fraud
in the sesame oil industry.

2. Materials and Methods
2.1. Sample Preparation

Iranian sesame seeds (Sesamum indicum), also called benne, of cultivar ‘Yekta’ were
used for oil extraction. Yekta is a new sesame cultivar derived from a genetic cross
(B5 × M7). The ‘Yekta’ cultivar matures early and is recommended for northern parts
of Iran at altitudes >1000 m above sea level. Iranian sesame is considered a good source
of natural antioxidants for medicinal and commercial uses. After preparing the sesame
seeds, oil was rendered from the seeds using a mechanical pressure device, a BD 65 Oil
Cold Press Machine (Bekrdaneh company, Esfahan, Iran), followed by several steps of seed
oil filtration, performed to remove solid impurities and contaminants. Samples of pure,
genuine sesame oil and mixed adulterated sesame oil (containing different percentages of
soybean and corn oil additives) were evaluated in this research. Four adulteration levels
(25%, 50%, 75%, and 100% or pure adulterant oil) were analyzed and evaluated for each
of the two types of added adulterant oil, resulting in a total of 9 separate treatments (oil
sample types) with 15 replications of each sample type prepared for each treatment. Fifteen
separate glass vials containing 100 mL of each oil sample type, consisting of pure sesame
oil and the four adulterated versions, were prepared as replications for e-nose analysis.
Nine additional vials containing 100 mL of each oil sample type were prepared and used
for GC-MS testing.

2.2. Olfactory Machine (Electronic Nose)

The olfactory machine system used in this research was developed and constructed
by Karami, Rasekh, and Mirzaee-Ghaleh, as described previously [9]. The names of
individual metal oxide semiconductor (MOS) sensors within the 9-sensor array are (in
order, with the primary VOCs and gases detected) as follows: MQ3 (alcohols), TGS822
(organic solvents), MQ136 (sulfur dioxide), MQ9 (carbon monoxide and combustible
gases), TGS813 (aliphatic alkanes), MQ135 (ammonia, benzene, sulfides), MQ8 (hydrogen),
TGS2620 (alcohols, organic solvents), and MQ4 (methane, natural gas). This analytical
system is divided into two working components: (1) hardware consisting of a MOS e-nose
device with associated components, and (2) software required to operate the machine
and for data analysis. The hardware components include a data collection card, active
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carbon air filter, array of nine MOS sensors, computer, power supply, sampling chamber,
diaphragm air pump (model R385 with a flow rate of 1.5 L/Min), three electronic two-way
diaphragm valves, accessories, and air tube connections (Figure 1). Oil samples for analysis
were placed into the sample chamber and left to build VOC headspace for 15 min prior
to sample analysis. Clean, filtered room air was passed over the sensors for 150 s to clean
the sensors and sensor chamber before sampling and to give time for the sensors to reach
baseline response levels for each sensor. The headspace VOCs were injected into the sensor
chamber at a gas air flow rate of 200 mL/min via a pump. The output voltage of each sensor
changed in response to VOC adsorption to sensor surfaces (the basis of VOC detection),
depending on sensor sensitivity to individual VOC components of the headspace. The
voltage response of the sensors was recorded using the data card at 1 s intervals. The
final step, following sample analysis runs, involved air passing again over the sensors for
200 s to purge the previous sample, clean the sensor surfaces, and to allow the analyzed
sample inside the sample chamber to be discharged through a pump. The device was
then prepared for the next sample. After sampling, the nine-sensor output responses were
preprocessed in different ways to optimize the output signals from the sensor array and
to increase the efficiency of the available information. The extraction data obtained from
sensor-response output signals were obtained relative to sensor baseline values, based on
the sensor output readings at the air-injection point [27].
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Figure 1. Schematic air flow diagram of the e-nose aroma system, including the following hardware
components: (a) activated carbon filter, (b) sample, (c) valve, (d) pump, (e) sensor array, (f) data card,
(g) computer, and (h) air outlet (red arrow).

2.3. Data Preprocessing Prior to Feature Extraction

Data preprocessing was required before extraction of data features to reveal the relative
responses of sensors and to increase their accuracy in the pattern detection analysis [28].
The data obtained from gas sensors usually have fluctuations or noise. Preprocessing
prepares sensor responses for subsequent statistical analysis, including the extraction
of signal features, by improving and optimizing sensor data [29]. Data cleaning, data
integration, data reduction, and data transformation are the most important activities in
the data preprocessing section. The processing of sensor signals involves three general
stages, including compression, baseline correction, and normalization. Baseline correction
is conducted to compensate for noise and drift and to increase the response quality of
the sensors. Conventional methods of preprocessing gas sensor data include relative,
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differential, or fractional methods. A fractional method was utilized in this study for
preprocessing (normalizing) sensor output signals based on application of the normalized
signal equation (Equation (1)):

Ys(t) =
Xs(t)− Xs(0)

Xs(0)
(1)

in which Ys(t) is the normalized signal, Xs(t) denotes the output signal of the sensor due
the presence of volatile substances (VOC), and Xs(0) shows the base signal of the sensors or
baseline [9].

2.4. Data Analysis Method

Chemometrics is a branch of chemistry which utilizes mathematics, statistics, and logic
to obtain further information on the chemical systems, design, and selection of optimal
empirical processes and provide optimal chemical data [30]. Chemometrics can be utilized
in process controls, pattern detection analysis, optimization, and symptom processing.
Principal component analysis (PCA), linear differential analysis (LDA), support vector
machine (SVM), and artificial neural network (ANN) were employed for data modeling
and statistical analysis in this study.

PCA is an unsupervised multi-variable statistical analysis method for linear data
compression, decreasing the data dimension, and feature extraction. PCA provides the
possibility to detect outliers, pattern recognition in the sample distribution, and inter-
variable relationships and classes [31]. This method has been extensively utilized for
displaying the response of an olfactory machine to simple and complex aromas to offer
qualitative information for pattern recognition [32]. LDA is a supervised classification
approach, which provides linear conversion of n-dimensional vectors (number of samples)
to an m-dimensional space (number of variables, m < n) [33]. Support vector machines
(SVMs) are a popular effective supervised classifier in data mining and pattern recognition.
SVMs are useful for handling both linear and nonlinear data. This method transforms input
data into a higher-dimensional feature space using kernel functions. In this transformed
space, SVMs seek to find the optimal hyperplane that maximally separates the different
classes, thus enabling accurate classification [34].

ANN is a method classified in the artificial intelligence class of computer science with
fundamental differences from other computational methods. Multi-layer perceptron neural
network is a feed-forward network, which can be utilized in chemometrics analysis to
solve pattern recognition and prediction problems using either supervised or unsupervised
methods [35,36].

2.5. Chemical Analysis of Oil Samples

A gas chromatograph used in tandem with a mass spectrometer (GC-MS) with a 30 m
long HP-5 column, having an internal diameter of 0.250 mm, was utilized to identify the
VOC chemical parameters of the vegetable oils. This device was set up for injecting liquid
samples with split/splitless inlet dilution. Mass spectrometer detector (MSD) analysis was
employed for both qualitative and quantitative determinations. The detector was equipped
with an EI-type ionization system with a single quadrupole MS analyzer. An EMP triple-
axis detector with very low noise and drift was employed to achieve high sensitivity.

All oil samples were prepared as methyl ester derivatives of fatty acids using the
Savage and McNeil (1998) method [37], slightly modified by placing 10 mg of oil dissolved
in 0.5 mL of hexane in a test tube, followed by adding 2 mL of 0.01% (w/v) NaOH, prepared
in dry methanol. The test tube was kept in a water bath for 10 min. A 3 mL aliquot of BF3
reagent was added to the mixture kept in the warm-water bath at 60 ◦C for an additional
10 min. After the reaction, the test tube was placed in a cold-water bath at 1 ◦C, and 2 mL of
20% NaCl with 1 mL of hexane were added and stirred to a uniform mixture. The resulting
mixture was centrifuged at 4000 rpm for 10 min, and the hexane layer containing methyl
ester of fatty acids was separated for subsequent GC-MS analysis [1].
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2.6. Model Evaluation Metrics

Five evaluation criteria (Accuracy, Precision, Recall, Specificity, AUC) were used to
assess the performance of the statistical models. AUC is the area under the ROC curve that
represents the tradeoff between Recall and Specificity. Four parameters of true positive
(TP), false positive (FP), true negative (TN), and false negative (FN) were used to calculate
the evaluation criteria. Accuracy was determined based on the ratio of correctly classified
samples (TP and TN samples) to the total number of samples. Sensitivity was indicated
by the ratio of TP samples to the total number of positive samples (TP and FN samples).
Precision was determined by the ratio of TP samples to the total number of positive
predictions (TP and FP samples). F1 score was determined as the harmonic mean of
precision and sensitivity [38].

3. Results
3.1. GC-MS Results

The GC-MS analyses of sesame oil (with and without adulterations with lower-cost
oils) were compared to published information on the major fatty acid composition of these
individual vegetable oils as follows. Sesame oil primarily contains linoleic acid (C18:2,ω-6)
and oleic acid (C18:1, ω-9), accounting for 80% of the total fatty acids present [4]. Corn
oil contains 65.5% linoleic acid as well as other bioactive compounds, including sterols (β-
sitosterol, campesterol and stigmasterol), phenolic acids, and flavonoids [39]. Soybean oil
contains 51% linoleic acid (polyunsaturated), 7–10% alpha-linoleic acid (polyunsaturated),
23% oleic acid (monounsaturated), 4% stearic acid (saturated), and 10% palmitic acid
(saturated). The high linoleic acid content in soybean oil makes it unsuitable as a frying
oil [40].

GC-MS analysis revealed eleven major compounds representing about 82–91% of the
oil, as listed in Table 1. The main components of sesame oil, distinguishing it from corn
and soybean oils, include linoleic acid (63.241%), palmitic acid (17.918%), and stearic acid
(5.516%). Stearic acid (53.474%) and palmitic acid (26.805%) are the two main components
of soybean oil and, similarly, corn oil contains stearic acid (56.412%) and palmitic acid
(23.454%) as the two main constituents. Because these major compounds are present in
all three oils, these VOCs are not suitable chemical targets for detecting adulteration in
sesame oil. Consequently, we found some unique VOCs to distinguish between volatile
emissions from each oil type using the electronic nose. Capric acid (0.007%) was the first
compound we discovered that specifically indicated adulteration of sesame oil by soybean
oil because sesame oil contains no capric acid. Therefore, any level of this compound in
sesame oil indicates adulteration. The amount of this compound reached 0.002% in SB3
oil. For corn oil, this detection of adulteration of sesame oil was more difficult based on
chemical compositions because both oils have a similar composition, although corn oil does
not contain gondoic acid and oleic acid. Thus, the small amount of these two compounds
in sesame oil (approximately 1%) is diluted to lower levels when mixed with other oils,
but this minor difference makes it difficult to detect adulteration based on these minor
components alone [41].

Cluster analysis was conducted using GC-MS fatty acid data to classify and detect
adulteration in sesame oil. The results were plotted in a heat map (Figure 2). The heat map
provides an alternative visual representation of differences between high-dimensional data
by using Euclidean distances to indicate statistical differences between fatty acid VOCs
(chemical-based composition) of cluster groups. The cluster lines on the left side of Figure 2
represent clusters of VOCs. Volatile compounds were grouped into two main clusters.
Stearic acid had the highest level in all three vegetable oil sample types and was placed in
the first cluster. The second cluster was divided into three sub-branches; palmitic acid and
linoleic acid were placed in the first two groups, while other volatile fatty acid compounds
were placed in the third group with the lowest content. The clustered lines at the top of
Figure 2 represent different oil groups. The three different groups of oils were divided into
two main clusters. Pure sesame oil was placed in the first cluster on the left side of Figure 2,
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while the other two oil groups were placed in the second cluster. Using this heat map, pure
sesame oil could be easily distinguished from the other oil groups.

Table 1. Fatty acid chemical composition (%) of vegetable oil VOCs based on GC-MS analysis.

Fatty Acids Common Name RT
(min)

Vegetable Oil Type *

S 1 SB SB1 SB2 SB3 C C1 C2 C3

Decanoic acid Capric acid (C10:0) 17.5 0 0.007 0.007 0.009 0.002 0 0 0 0
Dodecanoic acid Lauric acid (C12:0) 24 0.006 0.202 0.189 0.138 0.056 0.002 0.002 0.011 0.005

Tetradecanoic acid Myristic acid (C14:0) 29 0.074 1.188 1.076 0.83 0.394 0.239 0.28 0.127 0.192
Hexadecanoic acid Palmitic acid (C16:0) 33.5 17.918 26.805 26.298 24.028 21.112 23.454 21.364 19.872 18.882

8,11-Octadecadienoic acid Linoleic acid (C18:2) 36.5 63.241 2.407 3.058 3.133 3.35 3.156 3.184 3.759 3.69
9-Octadecenoic acid Oleic acid (C18:1) 36.9 1.02 1.02 1.274 1.023 0.936 0 0 0 0
Octadecanoic acid Stearic acid (C18:0) 38.2 5.516 53.474 53.218 53.12 52.146 56.412 54.458 53.372 52.757
11-Eicosenoic acid Gondoic acid (C20:1) 39.5 1.035 0 0 0 0 0 0 0 0

Eicosanoic acid Arachudic
acid (C20:0) 40 2.045 1.185 1.136 1.244 1.349 1.719 1.525 1.817 2.009

Docosanoic acid Erucic acid (C22:0) 42.5 0.588 2.815 2.331 2.07 1.313 1.271 1.411 0.992 1.184

Tetracosanoic acid, Lignoceric
acid (C24:0) 44.8 0.359 1.049 0.889 0.848 0.623 1.081 1.238 0.886 0.802

Total% 91.802 91.721 91.106 88.361 83.745 89.497 86.128 83.134 82.526
Other compounds 7.198 8.279 8.894 11.639 16.255 10.503 13.872 16.866 17.474

* Vegetable oil type abbreviations: Pure sesame Oil (S), Soybean oil 100% (SB), 75% Soybean + 25% Sesame (SB1),
50% Soybean + 50% Sesame (SB2), 25% Soybean + 75% Sesame (SB3), Corn oil 100% (C), 75% Corn + 25% Sesame
(C1), 50% Corn + 50% Sesame (C2), and 25% Corn + 75% Sesame (C3). 1 Major VOC-components of pure sesame
oil (S) most useful in distinguishing this virgin oil from other oils and adulterated mixtures (indicated by values
in bold).
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Sesame (SB1), 50% Soybean + 50% Sesame (SB2), 25% Soybean + 75% Sesame (SB3), Corn oil 100%
(C), 75% Corn + 25% Sesame (C1), 50% Corn + 50% Sesame (C2), and 25% Corn + 75% Sesame (C3).

Euclidean distance (ED) measures showed the level of chemical relatedness of VOC
emission components (quantitative VOC content) from each oil sample type (based on
the presence of individual fatty acid VOCs), providing indications of chemical differences
between oil samples based on specific volatile fatty oils detected using GC-MS analysis.
Notice that pure sesame oil contained very little stearic acid (major fatty acid component)
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and also low levels of the other eight minor fatty acid components (gondoic acid–erucic
acid) at the bottom of the heat map (ED values < 8.0, indicated by cyan blue color in heat
map) compared to all other pure oil types and sesame mixtures containing added soybean
or corn adulterants that did contain the stearic acid as a major VOC component (ED value
range 40–55, indicated in dark red). However, pure sesame oil did share the presence
of high levels of palmitic acid with all other pure oil types and adulterated sesame oil
mixture types (ED value range 22–30, indicated in dark gray). Pure sesame oil was the
only oil sample type that contained high levels of linoleic acid (ED value > 60, indicated in
bright red).

3.2. E-Nose Analysis Combined with PCA and LDA

The unique aroma signatures, based on the maximum sensor outputs recorded during
an e-nose analytical run (also known as smellprint or aroma signature patterns) derived
from the nine-sensor MOS gas sensor array, are presented in Figure 3. These smellprint
patterns represent the total multisensory-array output response to individual volatile
organic compound (VOC) emissions from the oil samples. These sensor response patterns
are visual representations of the distinctive sensor array responses to different aroma VOCs
emitted by each distinct oil sample type. Data from the aroma injection phase of the e-nose
analysis runs were used for sample analyses.
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Figure 3. Aroma signatures resulting from 9 gas sensor-output responses of the e-nose system to
aroma VOC emissions of oil samples.

Radar plots, displaying individual sensor output responses (composing the smellprint
patterns) from the e-nose sensor array, provided indications of relative differences in
sensor intensities to different vegetable oil VOC components (Figure 4). Mean sensor
e-nose output data from each oil class resulted in different patterns of sensor responses
that reflected chemical differences in fatty acid and other VOC components present in
the volatile emissions from sesame oil adulterated with different lower-valued oils. The
highest sensor response in all oil groups was obtained from e-nose sensors MQ136 and
MQ8. Sensors TGS822 and TGS2620 exhibited the highest response in oil samples of sesame
alone, with the highest sensor response obtained from sensor MQ3. The rest of the sensors
responded to the sample aroma at lower intensities. Therefore, differences in the aroma
characteristics of each sample were indicated by different sensor output intensity response
patterns from the e-nose sensor array.
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Figure 4. Radar plot of sensor responses to adulterated mixtures of vegetable oil VOCs. (a) Sensor
response plot for sesame oil mixed with soybean oil, and (b) Sensor response plot for sesame oil
mixed with corn oil. Oil-type abbreviations: Pure sesame Oil (S), Soybean oil 100% (SB), 75% Soybean
+ 25% Sesame (SB1), 50% Soybean + 50% Sesame (SB2), 25% Soybean + 75% Sesame (SB3), Corn
oil 100% (C), 75% Corn + 25% Sesame (C1), 50% Corn + 50% Sesame (C2), and 25% Corn + 75%
Sesame (C3).

PCA indicated differences between oil sample types based on the recognition of
pattern differences in e-nose sensor output data responses, in which the higher the PCA
total variance, the greater the discrimination between sample types (Figure 5). The values
of stable sensor response to different oil samples were utilized for PCA analysis after
normalization. Figure 4a shows the contribution of PC1 and PC2, accounting for 65% and
20%, respectively, of the total variance (85%) from these two principal components. As seen,
the pure sesame oil (S) was completely differentiated, as appeared in the fourth quarter of
PCA of other oil groups. The soybean (SB) and corn (C) oils were also placed on the left
and right sides of the diagram, respectively.
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Figure 5. E-nose data plots for sesame oil sample types, based on statistical models, including: (a) PCA
results, and (b) LDA results for different levels of sesame oil adulteration. Oil-type abbreviations:
Pure sesame Oil (S), Soybean oil 100% (SB), 75% Soybean + 25% Sesame (SB1), 50% Soybean + 50%
Sesame (SB2), 25% Soybean + 75% Sesame (SB3), Corn oil 100% (C), 75% Corn + 25% Sesame (C1),
50% Corn + 50% Sesame (C2), and 25% Corn + 75% Sesame (C3).

The LDA method was utilized to reduce the classification differences and enhance
discrimination between different oil groups based on e-nose sensor responses. The variance
in the total samples for the LDA method was 94.81 according to the LDA results presented
in Figure 4b. For the PCA method, the pure sesame oil (S) sample was completely differ-
entiated from the other oils. Some overlaps can be detected between the other oil groups,
such that one SB oil sample was mistakenly related to the SB1 group. Three oil groups (C,
C1, C2) overlapped considerably in the data plots.

3.3. Machine Learning Classification

Pattern recognition methods are a valuable alternative for data cluster separation, but
this task becomes more difficult in systems with large amounts of data and overlapping data
plot regions. Therefore, machine learning algorithms are more effective for independent
sample classification to optimize and automate data processing, reduce subjectivity, and
increase efficiency in predicting results and method robustness [9,21]. SVM and ANN
classifiers were used in this analysis. The outputs of nine sensors were regarded as inputs
of the model, while the number of oil groups (9 groups) was taken as the model output. Of
the total data, 70, 15, and 15% were used for training, validation, and testing, respectively.

SVM was used as a supervised pattern recognition method to detect adulteration in
pure sesame (S) oil from SB- and C-type oil-adulterated samples. Two types of statistical
models, based on SVM methods (C-SVM and Nu-SVM), were used. Nu, C, and γ param-
eters were validated by trial and error and through error minimization. Four types of
linear, polynomial, radial base, and sigmoid kernels were applied to classify pure S-type
oil from SB- and C-type oil mixtures. The performance of SVM models was evaluated
based on classification accuracy (Table 2). The highest accuracy was observed in the C-SVM
method with a linear kernel function. The classification accuracy for training and validation
was 97.18 and 93.33%, respectively, exhibiting the highest accuracy in the classification of
different oil sample types.
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Table 2. Results and comparison of Nu-SVM and C-SVM models subjected to kernel functions.

Kernel Function
C-SVM Nu-SVM

C γ Training Validation nu γ Training Validation

Linear ** 100 1 97.18 93.33 0.5 1 96.78 93.07
Polynomial 10 1 80.74 77.04 0.5 1 88.15 83.70
Radial basis

function 100 0.1 96.48 92.07 0.5 0.01 94.78 92.33

sigmoid 100 0.1 95.55 88.15 0.745 0.01 92.59 91.11

** The values in bold indicate that the C-SVM model (a linear kernel function) showed the best performance in
detecting sesame oil adulteration.

ANN results are also depicted in Table 3. The models were evaluated in terms of the
percentage of correct diagnosis (CCR) and root mean square error (RMSE). According to the
results obtained for nine different oil groups (sample types), 9-10-9 topology exhibited the
best results, with respective R2 values of 0.956 and 0.936 for training and test analyses. The
RMSE values were 0.001 and 0.018 for training and validation tests, respectively. The model
had a total recognition accuracy of 95.6%. Regarding the lower performance value for the
training phase (compared to the testing phase), there were no signs of under- or overfitting.

Table 3. Artificial neural network results.

Topology *
Training Test

CCR (%) **
RMSE R2 RMSE R2

9-5-9 0.074 0.844 0.088 0.823 84.4
9-6-9 0.046 0.899 0.059 0.849 88.3
9-7-9 0.054 0.901 0.065 0.878 89.5
9-8-9 0.035 0.930 0.039 0.901 91.7
9-9-9 0.027 0.928 0.042 0.911 92.6
9-10-9 0.001 0.956 0.018 0.930 95.6
9-11-9 0.038 0.925 0.423 0.915 92

* Topology: A network topology notation refers to the arrangement of a network with its nodes and connecting
lines. ** The value of the statistical index of the correct classification rate (CCR) obtained from the confusion matrix.

The disturbance matrix and functional parameters of the ANN and C-SVM models
are compared in Figure 6. The results obtained from an average of 135 data points from
the analyzed oil samples indicated that only three samples were misclassified by the SVM
method, while the ANN method misclassified six samples. Sensitivity and specificity
parameters are another method to evaluate the ability of the electronic nose to distinguish
between purse sesame oil (S) from SB and C adulterated oil mixture types. Sensitivity
is the number of true-positive samples, while specificity implies the rate of correctly
identified true negatives. The sensitivity and specificity of SVM and ANN methods were
0.978, 0.956, 0.949, and 0.960, respectively. Performance parameters of SVM and ANN
methods are compared using bar graphs in Figure 5. The C-SVM method, a linear model
function, provided better classification and discrimination between oil sample types than
the ANN method.



Sensors 2023, 23, 6294 12 of 17

Sensors 2023, 23, x FOR PEER REVIEW 13 of 19 
 

 

parameters are another method to evaluate the ability of the electronic nose to distinguish 
between purse sesame oil (S) from SB and C adulterated oil mixture types. Sensitivity is 
the number of true-positive samples, while specificity implies the rate of correctly identi-
fied true negatives. The sensitivity and specificity of SVM and ANN methods were 0.978, 
0.956, 0.949, and 0.960, respectively. Performance parameters of SVM and ANN methods 
are compared using bar graphs in Figure 5. The C-SVM method, a linear model function, 
provided better classification and discrimination between oil sample types than the ANN 
method. 

 
Figure 6. Performance parameters of ANN and SVM statistical models in the detection of adultera-
tion in sesame oil. 

4. Discussion 
E-nose fatty acid VOC analysis data, derived from sensor responses to oil sample 

headspace volatiles, combined with statistical methods for data analysis, yielded an effec-
tive means of distinguishing between pure sesame oil and two other different vegetable 
oil types (soybean and corn) in various adulterated mixtures with sesame oils in the cur-
rent study. A comparison of e-nose data analysis results, using four separate statistical 
models to determine their effectiveness in discriminating between pure sesame oil and 
other adulterated mixtures of this oil, was based on e-nose analysis of VOC emissions that 
consisted primarily of volatile fatty acids present in the headspace of each oil sample type. 
GC-MS data provided the analytical chemical support data to show the basis for chemical 
differences in VOC emissions (from different oil sample types), which backed up and con-
firmed related differences revealed from e-nose analysis of the different sample types re-
vealed from unique e-nose smellprint signatures recorded for pure vs. adulterated sesame 
oil samples from the sensor array.  

Combining e-nose and statistical models for comparisons of volatile compound emis-
sions from oil samples provided a qualitative means for assessing oil quality through the 
detection of adulteration, oil product spoilage, or deterioration by oxidation and other 
external factors, necessary for confirming the authentication of oil purity and quality to 
avoid product fraud. GC-MS data indicated that it was often difficult to detect the adul-
teration of sesame oil with both soybean and corn oil because the fatty acid composition 
of these oils is very similar with high amounts of palmitic acid (major VOC components), 
but pure sesame oil is very low in stearic acid content. However, the presence of much 
higher levels of linoleic in pure sesame oil than in the other, lower-quality soybean and 
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in sesame oil.

4. Discussion

E-nose fatty acid VOC analysis data, derived from sensor responses to oil sample
headspace volatiles, combined with statistical methods for data analysis, yielded an effec-
tive means of distinguishing between pure sesame oil and two other different vegetable
oil types (soybean and corn) in various adulterated mixtures with sesame oils in the cur-
rent study. A comparison of e-nose data analysis results, using four separate statistical
models to determine their effectiveness in discriminating between pure sesame oil and
other adulterated mixtures of this oil, was based on e-nose analysis of VOC emissions
that consisted primarily of volatile fatty acids present in the headspace of each oil sample
type. GC-MS data provided the analytical chemical support data to show the basis for
chemical differences in VOC emissions (from different oil sample types), which backed up
and confirmed related differences revealed from e-nose analysis of the different sample
types revealed from unique e-nose smellprint signatures recorded for pure vs. adulterated
sesame oil samples from the sensor array.

Combining e-nose and statistical models for comparisons of volatile compound emis-
sions from oil samples provided a qualitative means for assessing oil quality through the
detection of adulteration, oil product spoilage, or deterioration by oxidation and other
external factors, necessary for confirming the authentication of oil purity and quality to
avoid product fraud. GC-MS data indicated that it was often difficult to detect the adul-
teration of sesame oil with both soybean and corn oil because the fatty acid composition
of these oils is very similar with high amounts of palmitic acid (major VOC components),
but pure sesame oil is very low in stearic acid content. However, the presence of much
higher levels of linoleic in pure sesame oil than in the other, lower-quality soybean and
corn oil types provided another major discovered difference in VOC emissions. These two
major VOC emission differences between pure sesame oil and other oil types and mixtures
made it possible to effectively detect these VOC differences in e-nose sensor-array response
patterns, indicative of adulteration obtained through statistical analysis of sensory data
derived from the MOS electronic nose. The combination approach of using an MOS e-nose
with appropriate statistical modeling provided results indicating that this is a promising ap-
proach for detecting fraudulent adulterations of sesame oil. PCA explained 96% of the total
variance (with two principal components) in e-nose data when comparing pure sesame oil
with other oils and sesame oil mixtures. However, the SVM linear model method, along
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with the Nu-SVM method, showed the highest classification accuracies. Based on LDA and
QDA statistical methods, the oil classification accuracy was 94.07 and 100%, respectively.
The best discrimination occurred while using 9-10-9 topology that yielded a 95.6% correct
classification rate for this neural network method.

Our results for sesame oil e-nose analyses and GC-MS are compared here with pub-
lished results in the following discussions, which describe other study results that have
used GC-MS and/or e-nose devices to analyze different types of vegetable oils for vari-
ous product quality and purity-certification applications. These studies showed how the
methods used in oil production are important in determining final product quality.

Zunin et al. [42] used a quadrupole GC-MS alone with PCA and SIMCA statistical
methods to distinguish and classify 105 types of extra virgin olive oil from various Mediter-
ranean regions. Their results showed that 93.4% of the olive oil samples were correctly
classified primarily based on differences in terpenoid hydrocarbons, with 90.5% correctly
evaluated using a mutual validation method and 80.0% of samples in external tests. They
found that oil extraction and production temperature of the headspace were important for
assuring product quality. For example, they found that high oil extraction temperatures
may accelerate oxidation and enhance decomposition, resulting in off flavors for Ligurian
and other Mediterranean olive oils.

Bougrini et al. [43] used an MOS e-nose system based on a tin-oxide five-sensor
array and an electronic tongue composed of seven voltametric electrodes to determine the
adulterant percentage of sunflower oil in argan oil. PCA results and data envelopment
analysis (DEA) showed acceptable results of e-nose data in distinguishing pure argan oil
from adulterated mixtures of this oil. Using the SVM method, accuracies of 91.67% and
83.34% were obtained for edible and cosmetic argan oil, respectively. They emphasized the
effectiveness of the e-nose in detecting adulteration in argan oil using different contents of
sunflower oil (10 to 70%).

Lerma-García et al. [44] also used an MOS electronic nose (Italian EOS 507, Sacmi Imola,
SC) with six sensors to classify original oil (with or without phenolic compounds) and to
determine the oxidation state that was well correlated with sensorial analyses. Xu et al. [45]
employed an e-nose to qualitatively analyze the oxidation of edible oil at accuracies of
98.9%, 95.8%, and 100% in tests differentiating oxidized oils from non-oxidized ones using
PCA, CA, and LDA statistical methods, respectively. The LDA results were slightly better
than PCA and CA methods. Both studies indicate that LDA and PCA methods show
promising accuracy in their respective applications, with LDA consistently achieving high
accuracy in both adulteration detection and oxidation analysis.

Cerrato Oliveros et al. [46] employed a 12-sensor FOX-3000 MOS e-nose using LDA,
QDA, and artificial intelligence network (ANN) statistical methods to effectively detect the
adulteration of extra virgin olive oil with cheaper sunflower oil. Feature methods were
selected for a set of desirable specific variables (among treatment types) before supervised
pattern recognition methods were applied. The best adulteration detection results were
achieved for olive oil (correctly predicting adulteration above 95 and 85% in separate tests)
using LDA and QDA, whereas the ANN prediction was slightly lower, and partial least
squares (PLS) yielded only 73% detection. The effectiveness of adulteration detection
decreased as the percentage of adulterant added decreased. They were also capable of
identifying the type of oil used in adulteration, indicating that the methods could be used
to classify samples as a function of adulteration percentage.

A relatively recent review article by Roy and Yadav [47] compared the results of
e-nose-based studies to detect adulteration in vegetable oils. Among the studies compared
in this review, PCA, LDA, and PLS methods for e-nose data were found to be the most
suitable for classification and pattern recognition to distinguish the adulteration in edible
vegetable oils. These studies collectively suggested the potential use of e-noses coupled
with multivariate analysis techniques for fraud detection in various edible plant oils, with
details indicated in the following discussions.



Sensors 2023, 23, 6294 14 of 17

Men et al. [48] analyzed soybean oil adulteration at nine different concentrations
using an eight-MOS sensor e-nose with PCA and PLS classification and pattern recognition
methods. PCA explained 87.2% of the data variance for e-nose classification of adulterated
soybean oil. The 50% adulteration level was well separated only by using the PCA method.
The PLS model differentiated old frying oil from soybean oil. A 0.843 correlation coefficient
and 12.1% error rate for e-nose data showed PLS as an effective model to predict the
adulteration in soybean oil. However, the fusion of data from an e-nose and e-tongue was
more effective using PCA and PLS methods for adulteration detection in soybeans.

Marina et al. [49] investigated the capability of a surface acoustic wave (SAW) sensor-
based e-nose for the classification and detection of virgin coconut oil adulterated using
PCA and PLS discrimination methods. They used adulteration blends (w/w) of 1–10% in
increments of 1% and in a range of 10–20% adulteration with 5% increments. Headspace
volatiles from oil samples were analyzed, and the best separation of adulterated samples
was achieved using PCA, especially when the level of adulteration increased, contributing
to 91% accuracy in the data. The PLS study results yielded a coefficient of determination
(R2) value of 0.91, indicating the potential utilization of the e-nose in the adulteration
detection of virgin coconut oil with palm kernel olein oil.

Hong et al. [50] analyzed GC-MS data using PCA (PC1 98.76% and PC2 0.57%), which
could discriminate the adulterated samples of palm olein oil by palm stearin oil in a range
of 10% to 90% proportions but was not effectively classified below 10% adulterated ratios,
although these lower adulteration levels could be well discriminated using DFA (DF1
0.997 and DF2 0.966). The chemical composition of VOC emissions from palm oil was
confirmed using a quadrupole mass spectrometer. Another similar study by Man et al. [51],
with palm olein oil adulterated with lard (mixing proportions as low as 1%), showed
that adulteration could be identified using an e-nose method with Pearson’s correlation
coefficient accuracy >0.90.

The adulteration of peony seed oil with corn oil, rapeseed oil, sunflower oil, and
soybean oil was investigated in a study by Wei et al. [52] using the PEN3 e-nose with a
selected array of a 10-MOS sensor array in combination with PCA and LDA chemometric
statistical methods. PCA analysis well differentiated peony seed oil from all four tested
adulterants at an accuracy of 96.7% from e-nose data. There was some partial overlapping
within the four adulterant oils and pattern recognition via LDA provided effective discrim-
ination of most oil adulteration types, except for a small overlap of corn oil and rapeseed
oil, providing a high level of discrimination of pure peony seed oil from adulteration with
cheaper-oil adulterants.

5. Conclusions

The electronic nose and GC-MS chemical analysis methods (used in combination)
were evaluated in this study for the capability of detecting the adulteration of sesame
oil due to amendments with soybean and corn oils, added and mixed at different ratios
and concentrations. We propose that the e-nose-based method alone is a simple and low-
cost approach to quickly detect adulteration in sesame oil. This method may be utilized
as a complementary technique to the quality control and assurance of sesame oil purity.
Additional investigations are needed to further optimize experimental parameters and
data collection to improve this technique and to fully validate the proposed method for
differentiating between pure sesame oil from adulterated mixtures with lower-quality oils
at different concentrations. Once e-nose analysis discriminations are confirmed using GC-
MS chemical analysis data, e-nose analysis can be accomplished alone without supporting
chemical analysis data. The advantages of using e-nose analysis are that it is much faster,
cheaper, easier, and more effective in the discrimination and identification of vegetable
oil sample types, compared to GC-MS analysis that requires considerably higher expense,
more laborious interpretation of chemical data, and much longer delays in obtaining
analysis results.
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Different methods used with various e-nose instruments described in the literature
for various applications related to oil quality control, including detecting adulteration,
determining regional origin, and evaluating the impact of production factors on the final
product, have demonstrated the versatility of e-nose technologies for oil quality assessments.
The choice of the specific e-nose method used depends on the desired objectives and the
characteristics of the oils being analyzed. The emergence of e-nose instruments as valuable
tools for oil quality analysis has revolutionized the detection of adulteration in vegetable
oils. By employing electronic chemical sensors and pattern recognition systems, e-noses
have the capability to analyze VOCs emitted by various oil samples. This technology
presents a rapid and non-destructive approach for evaluating the authenticity and quality
of oils, including the identification of adulteration. The application of an e-nose in the oil
industry has demonstrated promising outcomes in distinguishing between unadulterated
and adulterated oils. E-nose instruments can effectively detect subtle discrepancies in VOC
profiles, enabling the identification of unauthorized substances added to quality oils or the
presence of lower-quality oils mixed with higher-quality ones. Through the utilization of
statistical models and machine learning algorithms, the e-nose can offer the precise and
reliable classification of oil samples, guaranteeing consumer protection and preventing
fraudulent practices. E-nose methods are easier to use (simplicity of operation), provide
greater speed in terms of analytical results at lower costs, and have the capabilities to
handle intricate odor profiles. They serve as a complementary technique to traditional
analytical methods, such as GC-MS, by facilitating real-time and on-site monitoring, thereby
reducing the reliance on expensive and time-consuming laboratory testing. Moreover, the
e-nose contributes to the assessment of oil freshness, stability, and oxidation levels, all
of which are important factors in determining overall oil quality. The implementation of
e-nose technologies provides an effective solution to inadequate conventional methods
for the detection of oil adulteration and the assurance of product integrity. The capacity
of e-nose instruments to nondestructively analyze VOC emissions from oils makes them
effective and efficient tools for assuring post-harvest quality control in oil products to
combat adulteration fraud and safeguard consumer interests.
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