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Abstract: Accurate localization is a critical task in underwater navigation. Typical localization
methods use a set of acoustic sensors and beacons to estimate relative position, whose geometric
configuration has a significant impact on the localization accuracy. Although there is much effort in
the literature to define optimal 2D or 3D sensor placement, the optimal sensor placement in irregular
and constrained 3D surfaces, such as autonomous underwater vehicles (AUVs) or other structures,
is not exploited for improving localization. Additionally, most applications using AUVs employ
commercial acoustic modems or compact arrays, therefore the optimization of the placement of
spatially independent sensors is not a considered issue. This article tackles acoustic sensor placement
optimization in irregular and constrained 3D surfaces, for inverted ultra-short baseline (USBL)
approaches, to improve localization accuracy. The implemented multi-objective memetic algorithm
combines an evaluation of the geometric sensor’s configuration, using the Cramer-Rao Lower Bound
(CRLB), with the incidence angle of the received signal. A case study is presented over a simulated
homing and docking scenario to demonstrate the proposed optimization algorithm.

Keywords: 3D sensor placement; underwater acoustic localization; multi-objective optimization;
memetic algorithm; ultra-short baseline; Fisher information matrix; Cramer-Rao Lower Bound;
incidence angle

1. Introduction

Underwater localization is a challenging task due to the varying environment characteris-
tics and technological restrictions. As electromagnetic signals are highly absorbed underwater,
a global navigation system is not available and localization techniques are commonly cho-
sen depending on the expected range of operation, to improve the estimation performance.
Typical short range localization approaches, up to a few meters, can use optical or radio
frequency signals, which are not suitable for transmission over long distances [1]. While
optical wave propagation is highly dependent on the water turbidity and light conditions,
with a typically effective transmission range to some tens of meters, radio frequency signals
are very attenuated, especially in salty water, and can also be affected by surrounding elec-
tromagnetic fields [2,3]. Therefore, most localization techniques rely on the transmission of
acoustic signals, which are capable of traveling distances of a few kilometers and are insensible
to water visibility conditions. However, these are also affected by the underwater acoustic
channel, causing time-varying and frequency distortion, multipath loss and fading [4]. These
phenomena cause interference in the acoustic signals that affects the integrity of the signal
and compromises detectability.

Due to the varying environment conditions and implementation limitations, many
localization applications rely on range-based methods [5]. The most popular approaches
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resort to acoustic transmitters and receivers to estimate time delay, such as time of ar-
rival (TOA) and time difference of arrival (TDOA), and compute range, relative position
or localization based on these measurements. Positioning approaches are usually catego-
rized according to the baseline distance between sensors, and can be divided into long
baseline (LBL), short baseline (SBL) and ultra-short baseline (USBL). The latter implies
typical baselines of tens of centimeters and is commonly used when deploying sensors
in constrained surfaces or structures, such as autonomous underwater vehicles (AUVs).
Although USBL is more prone to uncertainty introduced by environment measurements
and installation errors, it requires a lower setup effort and, by employing compensation
mechanisms and calibration routines, it is possible to considerably improve its localization
performance [6].

The relative geometric position between sensors is a critical aspect to minimize local-
ization error in positioning and localization approaches. One of the most commonly used
metrics to evaluate localization uncertainty of sensor configurations is the Cramer-Rao
Lower Bound (CRLB) [7], defined as the inverse Fisher information matrix (FIM). For a
specific sensor configuration, the CRLB characterizes the spatial variance distribution of
the estimates, for any efficient and unbiased estimator, by quantifying the information
that the configuration can perceive about an unknown variable. This technique has been
used for underwater sensor positioning optimization [8–13], usually in LBL approaches.
However while optimality of sensor placement in a 2D surface or 3D volume is commonly
addressed in the literature, the considered distances between sensors are incompatible with
the deployment in 3D constrained bodies, such as AUVs or other structures, which show
challenges that hamper the creation of benchmarks for optimality. Firstly, as underwater
vehicles can have a complex morphology, such as asymmetric or bio-mimetic shapes [14],
sensor placement in these structures is restrained and there is a high chance of occlusion
between the receiving sensors and an acoustic emitter [15]. Additionally, underwater
applications usually use compact arrays and acoustic modems [16–18], which limit the
customisation of relative geometry between sensors. Although there are studies on the opti-
mal geometric relation between individual receiving sensors of a constrained array [19,20],
the optimal placement of spatially independent sensors in an AUV or structure, to improve
the localization performance, is not a considered issue in literature to the best of the authors’
knowledge. We argue that the work presented herein is the first to propose a methodology
for optimized receiver placement on an irregular 3D surface of a vehicle.

Several optimization and search methods have been exploited throughout the years
for sensor placement, as previously mentioned, including single and multi-objective opti-
mization as well as non-traditional algorithms. Since this problem typically has a solution
domain with a provable NP-hard property [21–23], as it scales with the number of parame-
ters and admissible area, heuristic methods have been exploited to solve it. In the present
work, it was observed that an exhaustive optimization search would take around 10 h to
find the global optimal solution for a very simple data set of 100 points, corresponding to
approximately 4 million possible solutions, with a fully dedicated Intel Core I5-11600. How-
ever, the expected data sets are usually thousands of times larger making it not a suitable
strategy for this work. When exhaustive search is not viable, heuristic search methods may
be a trade-off for reaching good, although sub-optimal, solutions in acceptable running
times. Therefore, we will focus on evolutionary algorithms, a group of heuristic search
methods inspired by Darwin’s natural selection [24]. Typically, these algorithms consider a
population of solutions that are propagated and improved throughout generations, leading
to the survival of the fittest ones, according to an optimization function. Evolutionary algo-
rithms have been applied in the field of underwater sensor placement as a way to optimize
solutions and improve computational performance, among others. Examples are particle
swarm optimization (PSO) algorithms, proposed in [25,26], that select the optimal value
from the swarm as the goal for the next generation and are usually suitable for continuous
domains. Alternatively, genetic algorithms as presented in [9,21,23], which are suited to
discrete domains, implementing evolutionary processes inspired by biological species, that
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ensure a level of randomness in the process and variability in the population. memetic
algorithms (MAs) [27] are a variation of genetic algorithms, that combine evolutionary
processes to refine the search and optimization. MAs employ the general procedures of
genetic algorithms, allowing solution handling parallelization and diversification, that are
interleaved with local search (LS) strategies, which allow us to inject intensification search
phases and increase randomness in the process. This hybrid method has proven to improve
the results of pure genetic algorithms [11,22].

This paper tackles the optimization of the placement of a set of underwater acoustic
sensors along an irregular and constrained 3D surface, to improve the localization of an
acoustic beacon. The multi-objective optimization aims to determine the sensor configu-
ration that minimizes, or bounds, localization uncertainty, depending on the range and
number of reference relative positions, while aiming for a reduced incidence angle of acous-
tic signals received at each sensor. This method is built on previous work [28] that exploits
optimization of sensor placement for a single reference position. In order to illustrate the
relevancy of this method, a case study is presented for a homing and docking scenario of
an AUV, with an installed set of acoustic sensors following an inverted USBL approach.
The main contributions of the present work are:

(a) A novel methodology for the sensor placement problem in an irregular and con-
strained 3D surface, that aims to improve localization by combining the quality
of the measurements, dependent on the incidence angle of acoustic signals at the
receivers, and the information obtained from the measurements, given by the local-
ization uncertainty achieved by each sensor configuration;

(b) A multi-objective memetic optimization algorithm that selects the sensor configura-
tion to be placed in an irregular and constrained 3D surface, that reduces incidence
angle while: (1) Minimizing localization uncertainty for a single reference beacon
position; (2) combining uncertainty minimization and bounding, based on the range
of the reference beacon position;

(c) The application of the proposed algorithm to select optimized configurations for an
AUV, following an inverted USBL approach, in homing and docking scenarios.

Additionally, in order to achieve the main contributions of this work, a framework
was developed to formulate 3D surfaces and map the incidence angles of an acoustic signal
received from a fixed beacon.

The present paper is organized as follows: Section 2 defines the problem, details the
developed framework for generating irregular 3D surfaces and describes the methods used
to evaluate single sensors and sensor configurations. Section 3 describes the implemented
memetic algorithm. Section 4 presents a case study supported by simulations and detailed
the results. Lastly, Section 5 states the main conclusions and future work.

2. Problem Formulation

The present problem addresses the placement of acoustic sensors on an irregular and
constrained 3D surface, referred to as the deployment body, to improve relative localization
of an acoustic beacon. It is assumed that an approximated receiver-emitter topology
is known for the intended application, meaning that the general expected orientation
between the deployment body and the beacon is known. For example, during AUV deep
surveys, typical operations use a support vessel acting as an anchor reference point, where
the relative position can be assumed to be approximately constant. Another example
is a docking operation, during which an AUV has to face the structure to be able to
dock. This method is intended to evaluate the sensor configuration previously to the
sensor placement, and it is useful, for instance, to install sensors in AUVs following an
inverted USBL configuration, to improve the relative localization of an acoustic beacon in
planned missions.



Sensors 2023, 23, 6316 4 of 24

Acoustic sensors, particularly hydrophones, are typically characterized by a beam
pattern that can either be omnidirectional, which allows signals to be received with any
incidence angle with approximately the same attenuation, or direction, which has a varying
attenuation based on the incidence angle of a received signal. In this method, since the
sensors are placed on the non-planar surface of a 3D body, or even partially buried in
the structure wall, it is considered that only approximately 180 ◦ is accessible for signal
reception. Additionally, the surface adjacent to the sensors adds interference to the received
signals, due to reflection, scattering and vibration. Therefore, as an effort to reduce interfer-
ence, a directional beam pattern was conceptualized to translate the sensors’ sensitivity
response as a function of the incidence angle. However, it is difficult to generalize the
accurate sensor response as a function of the incidence angle and it depends on the specific
sensor. Thus, we consider that the incidence angle may be translated into a measurement
error of the TOA of signals arriving at the acoustic sensors. Since the TOA measurements
are used to compute relative distances, the introduced errors negatively affect the relative
localization between the deployment body and the acoustic beacon. In order to quantify
these errors, a penalization system was created based on the attenuation that the sensor is
expected to experience for varying incidence angle. This penalization will be used in the
optimization function and allows to evaluate each individual candidate sensor position
on the 3D deployment body based on the incidence angle, without loss of generalization
as the optimization process can be applied with alternative and more complex sensor
sensitivity functions.

Regarding the multi-objective optimization, two main criteria are used:

1. Single sensor evaluation: as acoustic signals are used to estimate localization, it is
considered that the quality of the measurements depends on the integrity of the signal
arriving at each receiver. Since the acoustic sensors are placed in a surface, the inci-
dence angle of arriving acoustic signals influences the quality of the measurements.
Therefore, in this work this is quantified by the incidence angle between a known
acoustic beacon position, that transmits acoustic signals, and each sensor placed in
the 3D surface [29]. Sensor positions that lead to lower incidence angles are favoured;

2. Sensor configuration evaluation: it is assumed that the information extracted from
the measurements is quantified by the localization uncertainty obtained from each
configuration of sensors. Configurations that lead to lower localization uncertainty
are favoured.

It should be noted that this method does not intend to tackle common underwater
acoustic channel phenomena that affects the acoustic signal propagation, such as multipath
originated from reflection on obstacles in the environment, Doppler effect, fading or
variable sound speed. The single sensor evaluation only contemplates interference added
to the acoustic signals arriving at each sensor by multipath and reverberation phenomena
originated from the physical characteristics of the surface where it is located.

In order to apply the proposed methodology, it is necessary to formulate a 3D model
of the deployment body, which can be a vehicle or structure. The 3D model must be
representable by discrete positions that serve as candidate positions for sensor deployment
during the optimization stage, and must allow deduction of the slope of the surface; thus,
the directivity of the candidate positions in relation to a reference position, in order to
obtain incidence angles.

Depending on the application or mission, the acceptable localization uncertainty
provided by the sensor configuration may vary, therefore absolute optimization may not
be required and different constraints can be applied depending on the range between
the deployment body and the beacon. In short range localization, in the range of a few
meters, it can be critical to achieve minimum uncertainty of the relative position, as in
scenarios of docking or navigation in a structured or confined environment [30]. Conversely,
in medium/long range navigation, it can be reasonable to only seek a bounded localization
error, which is enough to navigate towards a target, for example in a search, black box
recovery or homing missions [31]. In applications that include both short to long range
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scenarios, sensor placement can be optimized for the expected relative positions along the
mission. By adopting an optimization function that combines different constraints based
on range, it is possible to achieve a higher adaptation of the sensor deployment to the
localization requirements during a mission.

Therefore, assuming that the deployment body may have the ability to move and a
single beacon is installed in the environment, several relative positions between the beacon
and the deployment body can be considered for the sensor placement optimization problem.
Considering a reference frame fixed in the deployment body, the relative beacon positions
are represented as ηb = [xb yb zb]

T and, based on the intended application, the optimization
algorithm falls into one of the following approaches:

1. Single improvement: suitable for scenarios in which it is relevant to select a sensor
configuration that improves localization for a single fixed relative position between the
deployment body and a beacon. Therefore, the goal is to select a sensor configuration
that minimizes localization uncertainty for a single reference beacon position ηb,
disregarding the range.
Figure 1 illustrates a single improvement scenario, in which it is relevant to minimize
localization uncertainty for a single relative position between the beacon and the de-
ployment body A. Therefore, the selected sensor configuration minimizes localization
uncertainty, represented by the narrow green region around the beacon, for the se-
lected relative position. This approach is relevant for applications such as cooperative
navigation, target tracking and docking, where it can be essential to improve localiza-
tion for an approximately constant relative position between an acoustic transmitter
and receiver.

Figure 1. Single improvement: an illustrative deployment body A carries an optimized sensor configu-
ration that provides minimized localization uncertainty around the acoustic beacon (green region).

2. Double improvement: assumes a scenario in which it is relevant to select a sensor
configuration that simultaneously improves localization for two fixed relative posi-
tions between the deployment body and a beacon, covering both short and long range.
In this case, the objective is to minimize localization uncertainty for a short range
position while bounding uncertainty for a medium/long range position.
Figure 2 illustrates a double improvement scenario, in which a deployment body B
follows a mission in proximity to a beacon. The mission requires low localization
uncertainty for a short range position, represented by the green body, and has more re-
laxed localization needs for a medium/long range position, represented by the orange
body. Therefore, the selected sensor configuration minimizes localization uncertainty
for the short range position, represented by the narrow green region around the bea-
con, while bounding uncertainty for the long range position, represented by the larger
orange region around the beacon. This scenario can be observed in applications such
as homing and docking, and search and recovery missions, where distinct localization
requirements may be expected depending on the relative range between an acoustic
transmitter and receiver.
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Figure 2. Double improvement: an illustrative deployment body B carries an optimized sensor
configuration that simultaneously minimizes localization uncertainty for a short range position
(green region) while ensuring bounded localization uncertainty for a medium/long range position
(orange region).

2.1. Surface Model

The 3D deployment surface represents the structure or vehicle where the sensors will be
placed, which may have diverse shape complexity. Therefore, a framework was developed to
create generalized representations of surfaces as 3D point clouds with defined granularity,
composed by basic discretized shapes (e.g., parabolic volumes, cones, cylinders, etc.), preserv-
ing the relevant features of the real structures or vehicles. It also introduces the possibility
to define forbidden areas for sensor placement, avoiding placing sensors near noise sources,
such as thrusters, or in fragile zones, such as wings, and allows areas to be indicated where
other sensors are already placed, such as cameras or sonar.

The volumetric 3D body, grounded on the xy plane on a body-fixed reference frame,
is formed by revolution around the positive z axis of a discrete 2D function defined in
the positive space of the yz plane. Shapes that cannot be generated by revolution are also
admissible in the context of this work; however, with a more complex creation process.

Assuming that the acoustic sensors are placed on the surface of the 3D body, it is
important to know the spatial orientation of the locations on the body surface where
the sensors can be placed. Since the 3D point cloud does not provide direct information
regarding the slope of the surface along the body, it is necessary to generate a surface that
allows incidence angles of the acoustic wave reaching the deployment body to be obtained.
Therefore, a continuous surface is generated from the 3D point cloud by applying Delaunay
triangulation [32]. This allows to create non-overlapping triangles between each group
of three points, that is followed by constraining the triangulation for non-convex domains.
Each triangle can be interpreted as a plane with a centroid and a normal vector~n, allowing
information regarding the incidence angle of the acoustic wave reaching the 3D body to be
deduced. The resulting continuous surface has a level of detail determined by the number
of generated triangles and the triangle centroids represent all possible positions for sensor
placement, as illustrated in Figure 3. These are defined as ηpk = [xpk ypk zpk ]

T, with k = 1, . . . , K,
where K is the number of points in the point cloud P . For each candidate configuration,
composed by S sensors, the positions of the sensors are expressed as ηsi = [xsi ysi zsi ]

T, where
i = 1, . . . , S and ηsi ∈ P . Throughout this paper, the acoustic sensors are represented by points
and considerations about the dimension of the sensors will be taken into account further on.

Figure 3. Example of a continuous surface generated from Delaunay triangulation, where the
centroids of each triangle represent possible positions for sensor placement.
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2.2. Single Sensor Evaluation

When evaluating a sensor configuration, it is relevant to consider the relative ori-
entation between the acoustic sensors and the transmission beacon. We assume that the
sensors are deployed on the surface of the deployment body and are parallel to the surface,
as illustrated in Figure 4. Therefore, we consider that the individual sensors have a sensi-
tivity response that is a function of the incidence angle, as it is relevant that each sensor
receives the acoustic signal with sufficiently low added noise and interference to allow
extracting accurate information. In this regard, the proposed method uses the incidence
angle of a signal emitted from a known acoustic beacon position to quantify the quality of
the received signal in each candidate position of the deployment body [29].

Figure 4. Illustration of the acoustic sensors placed on the non-planar 3D surface of an AUV.
The sensor’s acoustic sensitivity response is represented by a beam pattern, where the arrows describe
different incidence angles of the received signal and their size corresponds to the attenuation.

Given the point cloud P that describes the deployment surface, the incidence angle is
computed for all possible sensor positions ηpk , considering a reference beacon position ηb.
Defining ~vbpk

as the unit vector that connects the beacon position ηb and point ηpk ∈ P , it
can expressed as

~vbpk
=

ηb − ηpk

||ηb − ηpk ||
. (1)

Recalling that each triangle can be interpreted as a plane with a normal vector ~n,
the incidence angle is defined as the angle between ~vbpk

and~n, placed in a triangle centroid
ηpk , as illustrated in Figure 5. The incidence angle for each ηpk is denoted as φk and it is
calculated as follows

tan(φk) =
||~n×~vbpk

||
~n ·~vbpk

. (2)

In this formulation, the ideal incidence angle of a signal coming from the acoustic
beacon to the centroid of the triangle is equal to 0 ◦, hence coincident with the orientation
of~n.

As previously mentioned, an acoustic beam pattern was formulated to describe the
sensitivity response of the acoustic sensors as a function of the incidence angle of the
acoustic wave arriving at the deployment body. The designed beam pattern is symmetrical
with respect to 0 ◦ and has an attenuation, corresponding to the penalization level, ρk, that
does not vary linearly with the incidence angle. The used model for the beam pattern is
described by a sigmoid function (Equation (3)), with an inflection point φip and hill slope h
as illustrated in Figure 6. These parameters should be adapted to meet the actual sensor
beam pattern.
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Figure 5. Example of a parabolic shape formed by Delaunay triangulation and representation of the
incidence angle φk between~n and ~vbpk

for an arbitrary candidate position for sensor placement, ηpk .

Figure 6. Model of the acoustic sensors’ beam pattern as a sigmoid function that describes the
penalization level ρk according to the incidence angle φk of acoustic waves arriving at the sensor.
The used inflexion point value for this representation is φip = 45◦.

ρk(φk) =
100

1 + e h(φip−φk)
(3)

The penalization function was used to evaluate each sensor position individually.
To each ηpk is attributed a penalization level, ρk ∈ [0, 100]. ρk weights on the objective
function of the optimization algorithm and it penalizes candidate positions with φk that
are more deviated from the ideal incidence angle and more prone to interference, such as
positions without line-of-sight (LOS) to the beacon or too close to the surface around.

Figure 7 illustrates three beam patterns in polar coordinates, where the angle repre-
sents the incidence angle and the inverse of the radius corresponds to the penalization ρk.
B1 is a generic omnidirectional beam pattern, B2 is the expected pattern for omnidirectional
sensors that are placed on a surface and B3 represents the conceptualized beam pattern
for the sensors in this work. In this case, the inflexion point in B3 is set to φip = 45◦, as we
intend to greatly penalize incidence angles in the range [45, 90]◦. However, it should be
noted that this parameter is reconfigurable and depends on the adopted sensor model,
therefore it does not compromise the generalization of the proposed method.
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Figure 7. Illustrative beam patterns of acoustic sensors, where the angle represents the incidence angle,
φk, and the radius corresponds to the penalization level, ρk. B1 corresponds to an omnidirectional
beam pattern, B2 is the beam pattern for an omnidirectional sensor placed on a surface and B3
represents the directional beam pattern of the sensors in the proposed methodology.

2.3. Sensor Configuration Evaluation

The geometric relationship between sensors in a configuration have a direct impact on
the localization uncertainty. Therefore, the 3D sensor configuration is evaluated using the
classic CRLB method, following a TOA based localization approach [7].

Assuming a time of emission t0, the relative positions between sensor i and the beacon
are given by η̂i = ηsi − ηb, and the TOA to each sensor i is given as

ti = t0 +

√
η̂i

T η̂i

cs
, (4)

where the underwater sound speed, cs, is assumed to be constant and equal to 1500 ms−1.
Assuming Gaussian measurement errors [13], the FIM I(ηb) ∈ R3x3 is defined as

I(ηb) = J (ηb)
TΣ−1J (ηb), (5)

where Σ = diag(σ2
i ) is a covariance matrix with constant values of variance, σ2

i . J (ηb) is
the Jacobian of the measurement vector with respect to ηb defined as

J (ηb) =
1
cs

[
η̂1

T

||η̂1||2
. . .

η̂i
T

||η̂i||2

]T

. (6)

With some algebraic manipulation, I(ηb) can be expressed as

I(ηb) =
1
c2

s

[
S

∑
i=1

η̂iη̂i
T

σ2
i ||η̂i||2

]
. (7)

The FIM provides the amount of information that a sensor configuration can provide
about the acoustic beacon position ηb. Therefore, we are interested in quantifying the lower
bound localization uncertainty that a configuration is capable of obtaining. This is given by
the CRLB, that allows to analyse the spatial variance distribution of a configuration charac-
terized by an uncertainty ellipsoid C(ηb), assuming an efficient and unbiased estimator [7].
By defining the uncertainty ellipsoid as
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C(ηb) = I(ηb)
−1 (8)

and referring to its eigenvalues as λl for l = 1, . . . , 3, then the length of the l-th axis of the
ellipsoid is represented by

√
λl and its direction is given by the corresponding eigenvector.

Based on these definitions, several optimality criteria are commonly contemplated
to evaluate sensor configuration in localization problems [10,12,33,34]. In this work, the
E-optimality criterion was selected as it evaluates quantitatively each sensor configuration
by the largest uncertainty ellipsoid axis, Λ, that it generates for a defined ηb, denoted as

Λ = arg max
l

√
λl . (9)

These were computed using the power iteration method for computational purposes [35].
The sensor configuration optimization will then aim to select the configuration that mini-
mizes Λ, further explained in Section 3.1.

3. Multi-Objective Memetic Algorithm

The addressed problem in this paper is the placement optimization of a set of acoustic
receivers in an irregular and constrained 3D surface, according to the position of a beacon
installed in the environment. This problem has a solution space with provable NP-hard
property [21,22], as it escalates with the number of sensors, surface area complexity and
granularity of the discretized surface. Since exhaustive search strategies are not suitable
for these problems, heuristic methods are commonly employed since they are capable
of achieving optimized solutions in a timely manner. memetic algorithms (MAs) are a
variation of genetic algorithms that add periodic stages of local search (LS) to improve
the quality of the solutions and speedup the convergence process [27]. Although the
general process performed is simple, they allow a high level of customization regarding
the formulation of the objective function, representation of solutions and all the processes
involved in the evolution and selection of new solutions.

The proposed MA presents a solution space composed by all candidate sensor configura-
tions, that are formed by all combinations of S sensor positions ηpk ∈ P . The final solution is
given as a vector containing the S sensors positions ηsi that form the optimized configuration.
The algorithm receives as inputs the coordinates of the deployment surface point cloud P ,
the corresponding penalization levels ρk for each ηpk and one or two beacon position ηb,
depending on the selected single improvement or double improvement strategies.

Adopting genetic algorithm’s notation, the algorithm iterates throughout G genera-
tions evolving a population of solutions, denoted P. P is composed by N individuals that
constitute feasible solutions of the problem. Each individual represents a candidate sensor
configuration that is composed by the set of positions of S sensors, referred to as genes.
Each gene represents a candidate position for placing an independent sensor, and has
an associated ηpk (coordinates of the sensor position) and corresponding ρk (penalization
level). Based on the single sensor evaluation and sensor configuration evaluation previ-
ously presented in Sections 2.2 and 2.3, a fitness value is attributed to each individual that
quantifies how optimized a configuration is for the proposed objective. The multi-objective
fitness function is further detailed in Section 3.1.

Algorithm 1 presents the proposed MA. The population is initially created by forming
N individuals, each composed of S genes. Instead of simply generating a random initial
population, the individuals of the initial population are selected in order to ensure initial
high spatial coverage of the deployment surface, by constraining the spatial location of
the genes that form each individual in spaced out azimuth angles. Then during each
generation, the following steps are executed:
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1. Selection and Crossover
For a number of iterations corresponding to c% of the population, two individuals are
selected and crossover is performed between the individuals. The random selection
method starts by sorting the individuals by descending order of their fitness value
and partitioning the population into a fittest group of χ% of the individuals and
another group with the remaining. One individual is randomly selected from each
group, with equal probability, constituting the parents for the single-point crossover
operation [36]. The crossover consists in recombining half of the genes from each
parent to generate an offspring. The offspring is lastly introduced in the population by
replacing the least fit individual of the current population. By creating new offspring
that have intrinsically favourable and not so favourable genes, it is intended to
discover new combinations of genes that lead to an improved fitness.

2. Mutation
For a number of iterations corresponding to m% of the population, an individual
is randomly selected and mutated. The mutation consists of switching one of its
genes with another randomly selected from the solution space, introducing higher
gene variability to the population. The new mutated individual is introduced in the
population by replacing the least fit in the population.

3. Local Search
In each δ generations, the l% fittest individuals of the population are subjected to LS.
This step allows intensification of the search for an optimized solution in individuals
that have the most suitable fitness. The LS algorithm is detailed in Section 3.2.

Algorithm 1: Memetic Algorithm
Result: Global optimized sensor configuration

1 P = CreatePopulation()
2 for each iteration g until G do
3 for c% of P do
4 SelectIndividuals()
5 Crossover()
6 ReplaceLessFit()
7 end
8 for m% of P do
9 Mutation()

10 ReplaceLessFit()
11 end
12 if g is multiple of δ then
13 for l% of P do
14 LocalSearch()
15 end
16 end
17 end

Since randomness is used in various steps throughout the algorithm, the probability
of formulating solutions that are invalid in the domain of this problem increases. Therefore,
three cases of solution invalidity were identified:

• individuals that contain repeated genes;
• individuals that represent solutions that locate the sensors within a range of µ centime-

ters from each other, referred to as the guard area, in order to take into consideration
the physical size of the sensors;
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• configurations that lead to an FIM with singular matrix properties, avoiding using
invalid eigenvalues, which occurs, for instance, when the set of sensors are coplanar.

Whenever an algorithm’s routine generates one of the aforementioned cases, the invalid
individual is discarded and a new one is created following the same pseudo-random process.

The algorithm converges to an improved feasible solution, with a convergence speed
and behaviour that depends on the input parameters of the algorithm. However, as in
general heuristic search methods, optimality cannot be guaranteed.

3.1. Fitness Function

The multi-objective fitness function for this problem requires a trade-off between the
single sensor and the sensor configuration optimization objectives previously described.
On the one hand, the improvement of the single sensor evaluation leads to a decrease of
the incidence angles φk and consequently the penalization level ρk. On the other hand,
the sensor configuration evaluation tends to benefit from having larger baselines between
sensors to reduce localization uncertainty. Therefore, weights are added to the fitness
function in order to balance these criteria.

Firstly, since the penalization level ρk is mapped to each ηpk along the deployment
surface in relation to a specific beacon position, a global ρ is formulated for each sensor
configuration as the average ρk of the sensor positions that it integrates, ρ = ∑S

i=1 ρki
/S.

Recalling the approaches presented in Section 2, when a double improvement was con-
sidered, a map of ρk was created for each beacon position considered. Therefore, in this
case the ρks are initially computed as the average values obtained in the penalization
level maps for both beacon positions, having the global ρ once more as the average of
the sensor positions included in the configuration. Regarding the fitness function, in an
irregular shaped body the incidence angle along neighbouring positions can vary very
rapidly, therefore the localization uncertainty may be very penalized if the same weight is
attributed to both optimization criteria. In order to balance these criteria, a rank system was
created that attributes the same weight to sufficiently similar ρ values, in order to decrease
the sensibility of the fitness function to small ρ variations, since these will not significantly
affect the signal quality. Therefore, the ρ values are divided into X clusters, and a rank
r = [1, . . . , X] is attributed to each ρ value in ascending order.

Secondly, the variable localization requirements of some applications require the
definition of specific constraints for localization uncertainty depending on the reference
beacon position. In case of a single improvement, the goal is to optimize localization for
a single fixed relative position of the deployment surface in relation to the beacon, thus
the fitness function will aim at minimizing the localization uncertainty, Λm, in regards to
that beacon position. If the application scenario expects a double improvement, where the
deployment surface follows a trajectory in proximity to the beacon, two relative beacon
positions are selected as reference, thus the optimization process aims at minimizing the
uncertainty Λm for short range, when accuracy is more critical, and bound uncertainty
Λb for medium/long range, when localization requirements are typically more relaxed.
In order to define the tolerable localization uncertainty for medium/long range, a threshold
γ is defined according to the specific application. Based on this threshold, a binary function
bΛb is generated to classify the solutions according to their feasibility

bΛb =

{
0, Λb ≤ γ
M, otherwise, M large

.

Accordingly, in case of a feasible solution, the uncertainty value Λb is below the
threshold γ and bΛb does not change the fitness value. Otherwise, in case of an infeasible
solution, bΛb assumes the large number M, damaging irreversibly the value of the fitness
function for that solution.
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Overall, the multi-objective fitness function,F , aims at minimizing the following expression

arg min
F

F = Λm + (Λm + bΛb) r. (10)

The fitness function minimizes the localization uncertainty, Λm, while defining feasi-
bility of the solution through bΛb and weighting it with the incidence angle ranking r. It
should be noted that for optimization regarding a single position, bΛb is always equal to
zero, meaning that there are no unfeasible solutions based on range uncertainty.

3.2. Local Search

The implemented LS routine is based on an iterative first improvement neighbourhood
search [37], in which an incumbent solution is substituted by the first solution found in the
iterative process that is fitter than the incumbent. Recalling that an individual corresponds
to a candidate solution composed by a group of S sensors, referred to as genes, it considers
a neighbour any individual from the population that only differs from another individual
by one gene. Additionally, this gene’s ηpk is within the LS area, i.e., distanced from the
original gene a maximum azimuth range of α◦ and a maximum height range of β cm from
the original gene.

Algorithm 2 describes the LS routine. Recalling the presented MA, the LS takes place
at the end of the MA loop whenever the current iteration g of the algorithm is a multiple
of δ. For each of the l% fittest individuals of the current population, serving as initial
incumbent solutions, an intensive spatial search is performed by substituting each of its
genes by neighbours and analysing the resulting fitness.

Algorithm 2: Neighbourhood based Local Search
Result: Local optimized sensor configuration

1 IS = IncumbentSolution()
2 for a ∈ IS do
3 for b /∈ IS do
4 if b ∈ [−α, α] ∩ b ∈ [−β, β] then
5 SubstituteGene()
6 NC = NewCandidate()
7 if Valid(NC) then
8 if Fitness(NC) < Fitness(IS) then
9 IS = NC

10 end
11 end
12 end
13 end
14 end

Therefore, for each gene a selected randomly from the incumbent individual and for
each gene b not present in the individual, if gene b is within the LS area, then it substitutes
a. If the new candidate individual is valid, its fitness is calculated and compared with the
fitness of the best individual at the moment. In case the new fitness is worse, the candidate
is dropped and the search moves to the next iteration, otherwise, as a first improvement
algorithm, the new candidate becomes the best solution, from which the search proceeds.
The LS finishes when no fitness improvement is detected after searching all genes of the
individual that currently holds the best fitness. Figure 8 illustrates an example of LS in an
incumbent solution composed by S1, S2, S3 and S4, where S1 is being tested for replacement
by other candidate positions within the LS area to improve fitness, taking into consideration
a sensor’s guard areas.
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Figure 8. Illustrative example of local search of an incumbent solution composed by four sensors S1,
S2, S3 and S4, referred to as genes. In this phase, gene S1 is being substituted by candidate genes
within the LS area, from which examples of possible outcomes are highlighted: (a) in red, a valid
gene that leads to a better fitness solution than the incumbent, therefore will substitute gene S1 in
the following incumbent solution; (b) in dark blue, a valid gene that leads to a worse fitness solution
than the incumbent, therefore is discarded; (c) in light blue, invalid solutions that invade sensor’s
guard areas.

4. Simulations and Results

The proposed multi-objective optimization algorithm is suitable for scenarios where it
is critical to achieve maximum localization accuracy for a single relative position between
the deployment structure and an acoustic beacon, such as docking [38] and “rendezvous”
maneuvers in cooperative navigation [39]. Additionally, it also accommodates applications
in which the localization requirements are variable with range, for instance in approaching
manoeuvres, such as homing and docking [31] or search and recovery. Therefore, this
section is dedicated to presenting the potential of the proposed algorithm in a very relevant
and increasingly growing application scenario: homing and docking missions of AUVs.

4.1. Fundamentals

Underwater docking systems may be used during AUVs missions to recharge bat-
teries and transfer data. These are usually aided with one or more acoustic beacons
that serve as localization reference and the AUVs commonly rely on an inverted USBL
system [2,31,38,40,41] to estimate the relative localization and approach the station ac-
cordingly to a predefined navigation strategy. Although several works add vision-based
techniques to improve short range performance [2], these are very dependent on varying
environment conditions, as water turbidity, to which acoustic-based techniques are insensi-
ble. Therefore, it is relevant to decrease localization uncertainty both during homing and
docking. In this regard, a double improvement approach is required and the employed
homing and docking strategies dictate the selection of the most relevant beacon’ relative
positions for sensor configuration optimization.

In homing, the AUV navigates towards the target station equipped with an acoustic
beacon starting from hundreds to thousands of meters of distance, using acoustic signals
as reference. The AUV typically points its nose directly at the station; however, it also may
navigate with some inclination angle, not directly pointing at the station, depending on the
context and navigation approach [42]; for instance if the station is placed directly below
the AUV it may not be capable of navigating fully vertically. At this stage, localization
requirements are usually more relaxed since the AUV can correct its path in relation to the



Sensors 2023, 23, 6316 15 of 24

current localization error; however, the error needs to be bounded to ensure that the path
converges to the target [31,43]. Therefore, it is relevant to select a sensor configuration that
ensures bounded localization uncertainty for this scenario, where the beacon is directly
aligned with the nose of the AUV or, alternatively, at an expected angle depending on the
mission context, as illustrated in Figure 9.

In close proximity to the station of a few meters, accurate relative position is essential
to avoid collision when performing manoeuvres, allowing correct landing and effective
attachment to the system for battery recharge, data transfer, among others. Docking
strategies vary depending on the type of AUV and docking station, that influences the
selection of relevant relative positions for sensor configuration optimization. Two of the
most typical scenarios will be considered:

• Flying AUVs [40]: The docking station is usually shaped as a funnel or cone where the
AUV is expected to enter. When in close proximity, the AUV must be aligned with the
entrance to correctly enter the station. Therefore, the aim is to minimize localization
uncertainty for a relative position of the AUV directly at the entrance of the station,
thus a beacon position aligned with the nose of the AUV, as illustrated in Figure 9a.

• Hovering AUVs [44]: The docking station usually has an entrance above where the
AUV is expected to anchor. The AUV approaches the station and starts by positioning
itself directly above it, distanced at a few meters. Then it continues to approximate
vertically to the station’s surface until reaching the docking platform. In this approach,
the goal is to minimize localization uncertainty for a relative position of the beacon
aligned with the underside of the AUV, as illustrated in Figure 9b.

(a) Flying AUV

(b) Hovering AUV

Figure 9. Homing and docking strategies.
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In order to combine the homing and docking localization requirements presented
above, the multi-objective optimization algorithm should select a sensor configuration that
minimizes localization uncertainty to the most relevant docking relative position between
the station and the AUV, bounds localization uncertainty based on a defined threshold to
ensure homing and improves incidence angle of the acoustic signals.

4.2. Simulation and Results

In order to evaluate the implemented algorithm, a set of simulations were formulated
using inverted USBL sensor configurations in both flying and hovering type AUVs for
homing and docking scenarios. Four single improvement and four double improvement
cases will be presented, followed by an additional adaptability analysis adding forbidden
areas for sensor placement in the AUVs body.

An initial parameter tuning was performed to find the best combination of the memetic
algorithm parameters. The values used in the remainder of this section are defined in
Table 1.

Table 1. Summary of the input and output variables of the memetic algorithm.

Input Value
S Number of sensors per configuration 4

N Population size 1000
G Number of generations 500
c Fraction of population to which crossover is applied 40%

m Fraction of population to which mutation is applied 5%
l Fraction of population to which local search is applied 20%

µ Radius of guard area 0.06 m
δ LS execution frequency (no. of iterations) 50
α Azimuth of LS area 20◦

β Height of LS area 0.1 m
γ Threshold for medium/long range uncertainty 15%

Output
F Fitness value
ρ Penalization level
ε Localization uncertainty

Some of the main characteristics provided by the selected memetic algorithm pa-
rameters are increased gene variability in the population, variation of the population,
intensification of the local search in adequate stages of the evaluation and convergence
of the fitness function that leads to a higher chance of reaching the optimal solution [28].
The number of sensors S per solution is 4, since this is the minimum to avoid ambiguity
in 3D localization based on time measurements. The threshold γ is expressed by the ratio
between the maximum acceptable localization uncertainty for medium/long range, Λb,
and the distance between the reference beacon and the closest point of the AUVs body, d.
This value is influenced by the ability of the AUVs navigation and control mechanisms
to converge to the reference beacon; thus, it is dependent on the application and context.
In this case, a 15% threshold is considered when the distance d is 500 m, that consists
on an uncertainty of 75 m and a deviation of approximately 8.5◦ which is assumed to
ensure convergence.
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The simplified torpedo shaped AUV considered in this section has an 1.6 m of length
and a diameter of 0.4 m. The considered reference frame is fixed in the AUVs body, having
the vehicle aligned with the z axis, the edge of the nose positioned in [0 0 1.6] m, in Cartesian
coordinates, and the opposite side set on plane xy. Throughout this section, the AUV is
assumed to be fixed in the reference frame and the reference beacon positions will be
updated to define different relative positions to the AUV.

The performed simulations intend to demonstrate the sensor placement optimization
in homing and docking of both flying and hovering AUV, as illustrated in Figure 9. Four
distinct reference beacon positions were chosen based on relevant orientations between the
AUV and the beacon during homing and docking, defined as follows:

• R1 represents a beacon distanced 0.5 m from the AUVs nose, to simulate a critical
relative position of docking for a flying AUV;

• R2 characterizes a beacon distanced 500 m from the AUVs nose, representing a homing
mission of an AUV navigating with the nose heading to the station, that can occur
both with flying and hovering AUVs;

• R3 represents a beacon distanced 0.5 m from the AUVs side, to simulate the final stage
of a docking approach for a hovering AUV;

• R4 illustrates a beacon distanced 500 m from the AUVs side, representing a homing
approach in which the AUV does not point the nose directly at the reference and
navigates at an approximated angle of 50◦ with the direct path reference.

Assuming these reference beacon positions, an initial set of simulations were per-
formed using a single improvement approach, aiming at minimizing localization uncer-
tainty Λm while reducing the penalization level ρ, due to the contribution of the inci-
dence angle.

Table 2 summarizes the simulation’s details, recalling that the inputs are d, the distance
between the reference beacon and the closest point of the AUVs body, and ηb, the Cartesian
coordinates of the reference beacon. For each reference, the optimization algorithm outputs
a sensor configuration solution, with sensor positions ηs1 , ηs2 ,ηs3 and ηs4 , that results in a
localization uncertainty of Λm and the total penalization level ρ.

Table 2. Simulation results for single improvement scenarios.

Ref
Reference Beacon Position Fitness Function

d(m) ηb(m) Λm(m) Λm/d(%) ρ

R1 0.5 [0 0 2.1] 0.095 19 29.9
R2 500 [0 0 501.6] 70.74 14.1 30.0
R3 0.5 [0.7 0 0.8] 0.044 8.8 26.7
R4 500 [206 250 380] 26.16 5.2 28.4

Ref
Final Sensor Coordinates

ηs1 (10−2 m) ηs2 (10−2 m) ηs3 (10−2 m) ηs4 (10−2 m)
R1 [5.3 −1.6 158.4] [−0.6 −5.1 158.7] [−6.4 −0.4 158] [0.4 6.3 158]
R2 [7.7 −5.1 155.7] [1.3 1.4 159.8] [−0.4 7.6 157.1] [−7.2 −5.4 155.8]
R3 [17.3 10 64.1] [18.8 −6.8 71.4] [17.3 −10 78.8] [19.7 3.5 93.5]
R4 [14.1 6.1 148.2] [−2.1 17.5 144.4] [12.9 15.3 32.2] [2.0 8.6 156.1]

Figure 10 illustrates the resulting sensor configurations for the several simulated
cases. For each reference beacon, the penalization level is mapped with colors in the
AUVs surface. The color ranges from yellow, representing of the most penalized areas
with higher incidence angle, to blue, illustrating the most favourable areas for sensor
placement with lower incidence angle. Beacon positions are represented by the black
segmented shapes. The red dots represent the positions ηs1 , ηs2 , ηs3 and ηs4 of the optimized
sensor configuration.
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Figure 10. Single improvement scenarios: (a) docking of flying AUV, using reference beacon R1;
(b) docking of hovering AUV, using reference beacon R2; (c) homing with nose directly pointed at
the station, using reference beacon R3; (d) homing with an inclination angle to the station, using
reference beacon R4.

It can be observed that reference beacon positions that form reduced low penalization
areas in the AUV body, particularly R1 and R2, tend to concentrate the sensors in a small
area, in order to contain the incidence angle and consequently penalization level. This
results in a reduced baseline between sensors that leads to increased localization uncertainty.
Additionally, the observed penalization levels are similar for all cases, maintain the average
incidence angle between 35◦ and 37◦. For R1, the beacon position is aligned with the AUVs
nose and, since incidence angle varies more rapidly for short range positions, R1 represents
the case with larger localization uncertainty. In practice, since the larger uncertainty
eigenvector is along the direction of the reference beacon, R2 has a slightly larger low
penalization area due to an increased range between the AUV and the beacon, therefore a
decrease in uncertainty is observed. In R3 the beacon is positioned on the side of the AUV,
forming a larger low penalization area and the surface is more flat allowing more distance
between sensors without penalizing incidence angle. Lastly, in R4 the beacon reaches a
much larger area with LOS, therefore the configuration sensors are spread out through the
surface, reaching lower uncertainty while compensating incidence angle by averaging the
penalization level of all sensor positions.

It should be noted that in the case that a simulated combination of surface shape and
reference beacon position cannot ensure the predefined threshold γ for Λb, no feasible
solution is returned by the algorithm.

Having the previous single improvement analysis as foundation, double improvement
scenarios of homing and docking were formulated by combining R1, R2, R3 and R4. The goal
in this approach was to minimize localization uncertainty Λm for short range beacon
positions and bound localization uncertainty Λb for medium/long range beacon positions,
while reducing the penalization level ρ.

Table 3 summarizes the obtained solutions. For each double improvement case,
the combination of reference beacons Rc and Rd is referred to as Rcd. The optimization
algorithm outputs a sensor configuration, formed by sensor positions ηs1 , ηs2 ,ηs3 and ηs4 ,
that results in a localization uncertainty for the short range position Λm, a localization
uncertainty for the medium/long range position Λb and the total penalization level ρ.
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Table 3. Simulation results for double improvement scenarios: a flying AUV in R12 and R14 and a
hovering AUV in R32 and R34.

Ref
Fitness Function

Λm(m) Λm/d(%) Λb(m) Λb/d(%) ρ

R12 0.075 15 69.10 13.8 39.96
R14 0.083 16.6 68.28 13.6 35.54
R32 0.047 9.4 53.69 10.7 64.55
R34 0.042 8.4 50.79 10.1 59.82

Ref
Final Sensor Coordinates

ηs1 (10−2 m) ηs2 (10−2 m) ηs3 (10−2 m) ηs4 (10−2 m)
R12 [4.2 4.0 158.3] [−2.1 3.2 159.3] [−8.8 −3.8 155.3] [4.8 −9.6 154.2]

R14 [13.3 3.2 150.6] [−1.6 5.3 158.4] [2.3 0.1 159.7] [7.6 17.7 141.3]

R32 [18.8 −6.8 78.8] [−0.2 −2.7 159.6] [19.7 −3.5 73.9] [6.8 18.8 81.2]

R34 [7.8 18.1 140.5] [18.8 6.8 69.0] [18.8 6.8 78.8] [12.9 −15.3 88.6]

Figure 11 presents the resulting sensor configurations for each case, followed by the
illustrative representation of the corresponding homing and docking scenario. The penal-
ization color map represented in the AUVs body corresponds to the averaged individual
maps for each reference beacon, resulting in an increase of the general penalization along
the surface.

Figure 11. Double improvement scenarios: (a) R12 combines reference R1 for docking and R2 for homing,
assuming a flying AUV; (b) R14 combines reference R1 for docking and R4 for homing, assuming a
flying AUV; (c) R32 combines reference R3 for docking and R2 for homing, assuming a hovering AUV;
(d) R34 combines reference R3 for docking and R4 for homing, assuming a hovering AUV.

Overall, the following assessments can be made based on the observed results:

• In R12, the penalization maps, generated by R1 and R2, were very similar and the
low penalization area was very constrained. Therefore, an improvement in Λm in
relation to R1 was observed; due to the slight enlargement of the low penalization area,
the Λb was approximately the same and under the defined threshold and ρ increased,
corresponding to an approximated average incidence angle of 41◦;
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• In R14, the combination of a very constrained penalization map from R1 and a more
relaxed one from R4, resulted in an attenuation of the less prominent low penalization
areas. Therefore, Λm was improved in comparison with R1; due to the larger low
penalization area, Λb remained below the defined threshold but worsened in relation
to R4, due to the spatial concentration of the low penalization area, and ρ increased
slightly, producing an average incidence angle of approximately 39◦;

• In R32, the combined penalization maps had concentrated low penalization areas
in distinct spatial locations of the surface, resulting in a global degradation of the
overall penalization level for the Therefore, Λm deteriorated slightly in relation to
R3, Λb complied with the defined threshold and improved in relation to R2, due to
the low penalization area increment. The value of ρ increased significantly, to an
average incidence angle of approximately 51◦, since the reference beacon positions
had divergent incidence orientations;

• In R34, the overlaid maps resulted in a dispersed area of low penalization that allowed
increased sensor baselines while containing the penalization level. Therefore, Λm
improved slightly in relation to R3, Λb deteriorated in relation to R4 but remained
under the defined threshold. The value of ρ increased to an average incidence angle of
approximately 49◦.

After analyzing the method’s performance in homing and docking scenarios, a last
scenario was simulated to test the adaptability of the algorithm. Therefore, forbidden areas
were added to the AUV surface by attributing maximum penalization to selected segments,
as a way to constraint the sensor placement. In order to simulate this, the MARES [45] AUV
was used as a model, represented in Figure 12. The selected forbidden areas for sensor
placement in this case was the surface around the thrusters, since these were a significant
source of noise, and the sonar, due to spatial incompatibility.

Figure 12. MARES model [45] (left) and simulation representation of the AUV with added forbidden
areas and the optimized sensor configuration given by the algorithm (right).

The scenario of reference R34 was used to test this feature and the results of the
simulation are presented in Table 4. A degradation of Λm in relation to R34 was observed,
as expected since the sensor placement was more constrained, while Λb slightly improved
since an additional sensor moved to the most relevant area for the homing reference,
or the medium/long range. The value of ρ decreased slightly, due to the sensor placement
alteration, to an average incidence angle of approximately 47◦.
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Table 4. Simulation results for adding forbidden areas to MARES AUV model in reference scenario
R34.

Ref
Fitness Function

Λm(m) Λm/d(%) Λb(m) Λb/d(%) ρ

R34 0.057 11 47.28 9 54.8

Ref
Final Sensor Coordinates

ηs1 (10−2 m) ηs2 (10−2 m) ηs3 (10−2 m) ηs4 (10−2 m)
R34 [4.2 4.0 158.3] [18.8 −6.8 88.6] [18.8 −6.8 88.6] [7.4 17.1 142.6]

Although the used AUV model is considerably simple, this algorithm is also appli-
cable in more complex AUV shapes, for example integrating wings or remotely operated
underwater vehicles (ROVs). In these cases, the spatial complexity of the surface can be
exploited to improve localization with a reduced incidence angle, and avoiding placing
sensors in fragile, noisy or other constrained areas.

5. Conclusions

The present work proposes a multi-objective memetic algorithm for acoustic sensor
placement in an irregular and constrained 3D surface to improve localization of an acoustic
beacon. The implemented algorithm combines the expected quality of the measurements,
affected by the incidence angle of acoustic signals arriving at each sensor on the deployment
body, with the information acquired from the localization uncertainty associated with the
spatial geometry of a sensor configuration. Additionally, the sensor configuration solutions
can follow a single improvement approach, that aims at minimizing the localization uncer-
tainty for a single acoustic beacon position, or a double improvement approach, that aims
at simultaneously minimizing and bounding uncertainty based on the range between the
deployment body and the reference beacon positions.

A case study was addressed considering homing and docking scenarios with flying
and hovering AUVs. Considering these scenarios, there are many unknown details regard-
ing the application context, for instance navigation and control strategies, that influence the
suitability of the results in a real application. However, by optimizing the sensor placement,
having taken into consideration both the quality and the information acquired from the
measurements, we believe that the resulting sensor configurations will improve localization
in real field applications. Lastly, adding forbidden areas allows real and complex vehicles to
be modelled as simplified structures, improving computational performance and widening
the applications spectrum for this sensor placement optimization methodology.

Future work includes exploiting alternative ways of integrating the acoustic sensors’
sensitivity response in the fitness function. In the current formulation, the orientation of
the individual sensors with respect to the acoustic source was considered as a penalization
in the fitness function, as the average of the incidence angles of the acoustic wave to all the
acoustic sensors. This penalization aims to contemplate a non-omnidirectional sensitivity
reception diagram that is expected for acoustic receivers placed on a non-planar surface,
or even partially buried in the structure wall. As acoustic localization procedures rely on
the determination of the time of arrival of acoustic signals, an alternative, and possibly
better, way to include this metric in the fitness function is to translate the incidence angle
of the arriving acoustic wave of each sensor in order to calculate an uncertainty of the time
of arrival for that sensor.

The scenarios considered in this work allow the position of a set of acoustic receivers
along a given surface to be optimized. Although this approach might be of interest when
setting up a set of acoustic sensors for localization on the body of a vehicle, the fixed position
of such sensors would naturally compromise the operation under different scenarios.
A variant of this problem considers a fixed, pre-determined set of M discrete locations for
placing the S acoustic sensors (S << M) required to implement the localization processes,
and optimize the set of S sensors in use to improve the localization accuracy. With the
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capability of building arrays of custom acoustic sensors attached to a vehicle’s surface,
an adaptive localization system may choose, in real-time, the best set of S sensors, out of
the larger set M, that optimize the localization process for the current relative position of
the reference transmitting beacon. Another related and more generalized optimization
problem is to optimize the M locations where to place the acoustic sensors, from which
only S will be dynamically selected for the localization process.

These problems are the focus of the ongoing research aiming to build adaptive, and thus
more flexible, acoustic localization systems for the operation of underwater vehicles.
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AUV Autonomous Underwater Vehicle
CRLB Cramer-Rao Lower Bound
FIM Fisher Information Matrix
LBL Long Baseline
LOS Line-of-Sight
LS Local Search
NLOS Mon-Line-of-Sight
MA Memetic Algorithm
PSO Particle Swarm Optimization
ROV Remotely Operated Underwater Vehicles
SBL Short Baseline
TOA Time of Arrival
TDOA Time Difference of Arrival
USBL Ultra-Short Baseline
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