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Abstract: The challenging issues in infrared and visible image fusion (IVIF) are extracting and fusing
as much useful information as possible contained in the source images, namely, the rich textures
in visible images and the significant contrast in infrared images. Existing fusion methods cannot
address this problem well due to the handcrafted fusion operations and the extraction of features only
from a single scale. In this work, we solve the problems of insufficient information extraction and
fusion from another perspective to overcome the difficulties in lacking textures and unhighlighted
targets in fused images. We propose a multi-scale feature extraction (MFE) and joint attention
fusion (JAF) based end-to-end method using a generative adversarial network (MJ-GAN) framework
for the aim of IVIF. The MFE modules are embedded in the two-stream structure-based generator
in a densely connected manner to comprehensively extract multi-grained deep features from the
source image pairs and reuse them during reconstruction. Moreover, an improved self-attention
structure is introduced into the MFEs to enhance the pertinence among multi-grained features. The
merging procedure for salient and important features is conducted via the JAF network in a feature
recalibration manner, which also produces the fused image in a reasonable manner. Eventually, we
can reconstruct a primary fused image with the major infrared radiometric information and a small
amount of visible texture information via a single decoder network. The dual discriminator with
strong discriminative power can add more texture and contrast information to the final fused image.
Extensive experiments on four publicly available datasets show that the proposed method ultimately
achieves phenomenal performance in both visual quality and quantitative assessment compared with
nine leading algorithms.

Keywords: infrared and visible image fusion (IVIF); multi-scale feature extraction (MFE); joint
attention fusion (JAF); generative adversarial network (GAN); self-attention mechanism (SAM)

1. Introduction

Multimodality image fusion is the synthesis of multiple original images of objects in
the same scene captured simultaneously from different sensors into a single new image
that is enriched with information through image processing and computer technology,
and provides a more intuitive understanding with the human eye system. As a typical
heterogeneous sensor image fusion, infrared and visible image fusion (IVIF) has already
been applied in various fields, like military reconnaissance, video surveillance, vehicle
night navigation, target detection and identification [1] and much more. There are special
properties such as difference, complementarity, and correlation between different modal-
ities of information. Infrared images can be captured by actively receiving the thermal
radiation from objects, highlighting heat regions that are undetectable in the visible images,
and working around the clock. However, infrared images are often blurred due to low
spatial resolution. On the contrary, visible images exhibit high spatial resolution and rich
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texture details. Nevertheless, they are easily affected by weather factors, like rain, fog, or
poor lighting [2,3]. IVIF techniques can make the best of the desirable characteristics of
both imaging mechanisms. The aim of IVIF is to take advantage of the useful complemen-
tary information of multi-sensor images [4] and eliminate the possible redundancy and
contradictions between them. As a result, the raw data can be used much more efficiently.

In the past few years, research on IVIF approaches has drawn extensive attention.
In [5,6], researchers detailed many existing IVIF methods and analyzed their problems.
Here, we further subdivide IVIF methods into three categories in accordance with the
differences in fusion theory and architecture. We classify multi-scale transform (MST)
methods [7], sparse representation (SR) methods [8], saliency-based methods [9], subspace-
based methods [10], hybrid methods [11] and others [12,13] into the traditional methods.
Deep learning methods employ a neural network to complete one or all of the three key
steps (i.e., feature extraction, fusion and image reconstruction) involved in image fusion.
According to the fused image acquisition process, this paper divides them into two modes:
end-to-end image fusion methods and combinatorial-based image fusion methods. The end-
to-end methods based on deep learning include the network architecture of autoencoder
(AE), convolutional neural network (CNN) and generative adversarial network (GAN).
Our method falls under this category. Another type is the combination of traditional and
deep learning approaches, termed combinatorial-based methods. Examples include the
combination of pulse coupled neural network (PCNN) and multi-scale transformation [14],
the combination of CNN and Laplace pyramid decomposition [15], the combination of CNN
and saliency-based [16], the combination of CNN and SR [17], etc., which are commonly
used in image fusion tasks. While the above IVIF approaches have obtained impressive
fusion performance, they still suffer from some drawbacks, especially in the traditional and
combinatorial-based methods. The main problems with both methods lie in the following
three folds. Firstly, it is quite challenging to design efficient image transformation and
representation methods. The traditional methods adopt the same transformation and
representation for heterogeneous images with multiple sources, resulting in the loss of
differential information. Generally, image fusion methods have been explored to a large
extent with the development of image representation theory. Therefore, it is urgent to
investigate new image representation approaches to boost image fusion performance.
Moreover, image decomposition is usually time-consuming. Secondly, designing complex
activity-level measurements, feature extraction, or fusion operations in a manual manner
will increase computing costs and algorithm complexity, further limiting their practicability.
Thirdly, although deep learning techniques have been introduced into combinatorial-
based methods, they are only performed for feature extraction or result reconstruction.
Consequently, the limitations of traditional image fusion methods still remain.

In view of the above disadvantages, one research focus is to design IVIF models in an
end-to-end fashion. In particular, the end-to-end methods completely circumvent the short-
comings of the traditional and combinatorial-based methods. For instance, DenseFuse [18]
and TSFNet [19] utilize pre-trained AE architecture to extract features from source images
and then reconstruct the fused images, which can achieve relatively promising fusion
performance. DeepFuse [20] and RXDNFuse [21] are representative methods based on
CNN, which can guide models to produce fused images via specially designed metrics of
unsupervised learning. The FusionGAN [22], D2WGAN [23] and GANMcC [24] methods
proposed based on GAN all apply adversarial games to reduce the difference in probabil-
ity distribution between the fused images and the source images, and thus promote the
preservation of original information.

Generally speaking, feature extraction and fusion of the source images are two key
steps in the design of IVIF algorithms. On the basis of all previous comments, the motivation
for our paper consists of two folds. In the first place, the key to image fusion is to design a
more comprehensive feature extraction strategy based on neural networks. This is also the
fundamental goal of training models for most IVIF algorithms, that is, to train a network
with strong feature extraction capabilities. However, all of the above models only focus on
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single scale features in the sources. For example, Refs. [18,21,23] all operate at the same
level of convolution kernel to extract specific scale features. Hence, the fusion results do
not preserve the information of original features on a full scale. Additionally, a prerequisite
for producing a fused image with highlighted targets and abundant texture information is
the selection of important and salient features to be blended. Nevertheless, the handcrafted
feature fusion strategies such as concatenation in channel-dimension or pixel-wise addition
adopted by most IVIF methods cannot efficiently integrate significant features into fusion
results in a way that is more consistent with human visual perception. As a result, the
significant information in the sources is completely lost, and the reconstructed image has
less gray level and low contrast.

To solve the problems mentioned above, we propose a novel IVIF method using GAN
with multi-scale feature extraction (MFE) and joint attention fusion (JAF), called MJ-GAN.
On one hand, multi-scale information in multimodality images is considered. More specif-
ically, the highlighted objects in infrared images and the textures in visible images are
automatically captured via more MFE modules. Additionally, an improved self-attention
structure, which can achieve contextual information mining and attention learning, is
introduced into MFEs to enhance the pertinence among multi-grained features. On the
other hand, there is compelling evidence that the human visual system (HVS) automatically
pays more attention to some salient features or areas rather than the whole. Therefore, we
design a JAF network based on the channel attention and spatial attention to strengthen
the attention to salient and important features in the source images during the feature
fusion stage. Consequently, the fused images will be more consistent with human visual
perception. Besides, it is also a well-known phenomenon that the stronger the discrim-
inative ability of discriminators, the better the fused images produced by the generator.
For this purpose, the loss functions of the dual discriminator are designed based on the
idea of SCD loss function [25] to improve the discriminative ability of the discriminators.
Specifically, we build the dual adversarial mechanism between the source images and their
contributions to lessen the variance of the probability distribution between them.

To visually exhibit the superiorities of our method, we select some representative end-
to-end methods, including DenseFuse [18], CSR [17], FusionGAN [22] and GANMcC [24]
for comparison, as presented in Figure 1. Clearly, all comparison methods generate the
fusion results with blurry thermal targets and insufficient textures, together with halos
along the edges. By contrast, the fused image generated by our method keeps the high-
contrast heat sources, reserves the richest and most natural background texture details, and
accommodates human visual perception.

The contributions and characteristics of this work can be generalized as follows.

• To adequately preserve the global information, multi-scale feature extraction (MFE)
modules are introduced into the two-stream structure-based generator to extract source
image features of different scales for fusion.

• To focus more on the important and salient features during the fusion step, we select
and merge significant features via a joint attention fusion (JAF) network.

• To improve the discriminative ability of the discriminator, a dual adversarial mecha-
nism between the source images and their contributions is designed, which will drive
the generator to transfer more original information into the final fused images.

The rest of our paper is organized as follows. We introduce some works in Section 2
that are closely associated with our method, including some end-to-end image fusion
methods, an attention mechanism (AM) and FusionGAN. In Section 3, we present our
algorithm’s details, including the overall framework of the proposed method, network
architectures and loss functions. Plentiful comparison experiments on publicly available
datasets are illustrated in Section 4. Additionally, we also implement generalization and ab-
lation experiments in this section. Some concluding comments and an insightful discussion
of our work are provided in Section 5.
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Figure 1. Illustration of the superiorities of our approach. The first row shows the infrared and visible
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and our method, respectively.

2. Related Works
2.1. End-to-End Methods Used in Image Fusion

Currently, image fusion methods designed in an end-to-end manner have achieved
fusion performance far exceeding traditional and combinatorial based methods. These
methods mainly include CNN-based, AE-based, and GAN-based architectures. Especially
for CNN- and GAN-based methods, the key steps in image fusion, namely feature extrac-
tion, feature fusion, and feature reconstruction, are implemented in an implicit fashion.

For the CNN-based approaches, infrared and visible image fusion (IVIF) are fulfilled
by specially designed metrics of unsupervised learning. For instance, Long et al. [21]
designed a new end-to-end method that combined the structural characteristics of ResNeXt
and DenseNet to extract hierarchical features. Additionally, the loss function, defined as
a combination of pixel-wise and feature-wise components, was minimized through the
optimization of the pretrained VGG-19 network. STDFusionNet [26] was designed as
an end-to-end method by introducing a salient target mask during training. In order to
better guide extraction and reconstruction of the features, they elaborated a loss function
that also incorporates the prominent target mask. Experimental results revealed that
STDFusionNet could accomplish both highlighted object detection and critical information
fusion. Prabhakar [20] firstly put forward a CNN-based unsupervised multi-exposure
fusion algorithm, namely DeepFuse. But they could not extract much useful information
from the source images due to the excessively simple network structure. All of the above
CNN-based works highly rely on the ground truth of supervised learning or specially
designed metrics of unsupervised learning. Therefore, they suffer from the following
issues. Firstly, unlike image fusion in photography and remote sensing applications, the
ground truth of infrared and visible fused images is essentially unavailable. Secondly, it is a
challenge to design an efficient loss function to control fusion results. Thirdly, the structure
of the designed network is too plain to extract more conspicuous features. Last but not
least, thermal images are usually ignored by most CNN-based methods during the training
stage, but are fed directly into the network trained on visible images during testing. So, the
differences and associations between the sources have not yet been considered. To this end,
the proposed model does not utilize CNN as the backbone architecture.
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GAN has been a significant success in IVIF by virtue of the characteristics of its
unsupervised adversarial learning manner, and over the last couple years with a number of
effective algorithms being proposed [27]. In 2017, Ma et al. [22] reported the pioneering use
of GAN for IVIF, namely FusionGAN. In the literature [28], a simple and effective relativistic
discriminator was adopted to make the model converge quickly. More importantly, they
innovatively utilized pre-fused images as the labels, which solved the problem of requiring
ground truth in IVIF tasks. MgAN-Fuse [29] introduced multi-grained attention modules
into the encoder–decoder to extract salient features, which addressed the problem of hardly
perceiving the discriminative parts of an image existing in the previous GAN-based fusion
methods. As an improved version, the multi-grained attention mechanism was further
integrated into a generator and two discriminators in the Attention FGAN [30] model.
Thus, the generator can focalize the most discriminative regions of the sources, and the
discriminators can be constrained to focus more on the salient regions than on the entire
input. Although the above GAN-based methods have achieved relatively good fusion
results, there are still some shortcomings. Firstly, full-scale feature extraction is left out
of consideration, resulting in the loss of global information in source images. Secondly,
salient and important features cannot be selected for fusion, and a rough fusion operation
is applied to fuse extracted features. Thus, the fused images are obtained in a manner
inconsistent with human visual perception. Thirdly, the discriminator used in the above
methods has a weak discriminative ability, which leads to reduced adversarial learning
ability. Hence, the preservation of source information is inadequate.

Different from the methods based on CNN and GAN, the feature extraction and fused
image rebuild in the AE-based methods are accomplished by pre-training an autoencoder
model. But the feature fusion is implemented by applying some rough fusion strategies
such as addition and L1-norm. For example, Li et al. [18] incorporated DenseNet [31] into
the encoding network, which can extract more useful middle layer features that have been
abandoned in other CNN-based models. In TSFNet [19], two independent encoders were
used to extract discriminative features of diverse modalities. Yu Fu [32] came up with a
dual-branch encoder structure to extract the semantic and detail information from the two
source images, respectively. Han Xu [33] performed a coherent importance assessment of
features of two source images by designing a pixel-wise classification saliency-based image
fusion method (CSF) for the first time in a deep learning fashion. All of the above AE-based
methods have demonstrated their powerful feature extraction capabilities; the proposed
feature extractor also belongs to the AE architecture. Nevertheless, the handcrafted fusion
rules used in the above methods are too coarse to preserve salient features.

Considering the above limitations, we accomplished IVIF using a novel GAN with
multi-scale feature extraction (MFE) and joint attention fusion (JAF), together with two
specifically stronger discriminators, which can achieve phenomenal fusion performance.
Unlike previous approaches, the novelty of the proposed method lies in three points.
First, we designed a multi-scale feature extraction module that is dedicated to extracting
more comprehensive representations from the source images. Second, we designed a
joint attention fusion module based on the spatial and channel attention mechanisms to
recalibrate the extracted features and use them for fused image reconstruction. Third,
according to the adversarial principle, a discriminator with better judgment can further
force the generator to produce more realistic fusion results. Therefore, we designed two
discriminators based on the principle of SCD (i.e., differential correlation sum), aiming at
enhancing the discriminative ability of the proposed discriminators.

2.2. Attention Mechanism Used in Image Fusion

The attention mechanism (AM) has been widely used in various speech recogni-
tion [34], natural language processing [35] and computer vision [36] applications, due to
its characteristic in accord with the human visual perception system. The principle of the
AM is to calculate the weight between different regions or pixels according to their impor-
tance, so as to focus on the significant parts selectively. The basic idea of both multi-scale
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transform (MST) [7] and saliency-based [9] methods is to simulate the characteristics of the
human visual system (HVS), that is, to focus more on the key information and ignore the
unimportant information. In real-world scenarios, each target often contains components of
different scales; the AM can selectively focus on typical regions within the image. Therefore,
the performance of multimodality image fusion will be further improved when introducing
the AM into the image feature extraction or fusion model. By incorporating the AM, the
resulting fused image can reveal both the highlighted foreground object in infrared images
and the abundant background textures in visible images.

2.3. GAN-Based Image Fusion Method

FusionGAN [22] was firstly proposed using GAN to fuse infrared and visible images,
and our model is also designed based on it. In FusionGAN, infrared and visible images are
firstly concatenated and then input into the generator (G) to generate fused images with
major infrared heat-radiating information and few visible textures. In order to preserve
the additional texture details in the visible image, a discriminator (D) is introduced. The
adversarial interaction between a generator and a discriminator contributes to achieving
this goal effectively.

The loss function of G in FusionGAN is formulated as:

LG =
1
N

N

∑
n=1

(D(In
f )− c)2 +

λ

HW
(
∥∥∥I f − Ir

∥∥∥2

F
+ ξ
∥∥∥∇I f −∇Iv

∥∥∥2

F
) (1)

where N is the number of fused images, In
f is the n-th fused image, Ir and Iv represent

infrared and visible images, respectively, c denotes the soft label, H and W stand for height
and width of the inputs, ‖•‖F stands for matrix Frobenius norm, ∇ stands for gradient
operator. λ is the hyperparameter to balance the adversarial loss of a G and a D (i.e., the first
term on the right-hand side) and the content loss (i.e., the second term on the right-hand
side). ξ is used to equilibrate the intensity similarity of fused images and infrared images
and the gradient similarity of fused images and visible images.

The loss function of D in FusionGAN is formulated as follows:

LD =
1
N

N

∑
n=1

(D(Iv)− a)2 +
1
N

N

∑
n=1

(D(I f )− b)2 (2)

where a and b represent the soft labels, and D(I v) and D(I f) denote the judged results of
visible images and fused images, respectively.

3. Proposed Method
3.1. Framework Overview

In the training phase, the aim is to train a generator that can generate the preliminary
fused image to fool the dual discriminator. The framework of our proposed method
is schematically shown in Figure 2. Firstly, the two inputs of the proposed model are
constructed by means of combining infrared and visible images in the difference ratio
concatenation manner [37]. The inputs are then passed through two independent paths (i.e.,
intensity path and gradient path) to extract deep features at different scales via a multi-scale
feature extraction (MFE) network. Secondly, the features extracted from the dual paths
are recalibrated via the joint attention fusion (JAF) network, so that the final fusion results
will preserve more important features. Thirdly, we can obtain a preliminary reconstructed
fused image via a single decoder under the guidance of the hybrid loss function. Finally,
the adversarial game with two enhanced discriminators (i.e., D_IR and D_VI) will compel
the generator to preserve more meaningful information of both source images. Concretely,
we input both sources and their contributions into the dual discriminator separately to
discriminate which of the inputs are from source images. The above training process is
repeated until neither discriminator can distinguish the contributions from the visible or
infrared images. As a result, we obtain a well-trained generator capable of producing
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fused images containing more meaningful information. In other words, the combination
of the generator with both MFE and JAF and enhanced discriminators can retain the
salient features of the sources well, including prominent targets in infrared images and rich
background textures in visible images.
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In the testing phase, only the generator is working. Each image pair with arbitrary size
as a whole from the test datasets is fed directly into the well-trained generator to produce
the fused images with prominent thermal targets and perceptually pleasing backgrounds.

3.2. Model Architecture
3.2.1. Generator Architecture

Based on the requirement that achieving the leading fusion performance in the IVIF
task should not only extract multi-scale features from the source inputs, but also choose
important and salient features for fusion, the generator incorporates multi-scale feature
extraction (MFE) modules and a joint attention fusion (JAF) network to achieve salient
feature extraction and fusion. Also, the dual-encoder-single-decoder structure is adopted
as the generator to achieve the cross-modality united representation and extraction of
different information. Figure 3 shows its structure.

In the process of feature extraction, the MFEs are employed to extract multi-grained
features from the source images. As we all know, the infrared image contains main contrast
information and auxiliary texture information, while the primary texture information and
secondary contrast information come from the visible image. The inputs obtained after
concatenation are passed through two encoders separately to extract discriminative features
at different scales from the source images. Then, in each path, an independent convolution
block is first applied to roughly extract the shallow features from the input. Next, we can
obtain the multi-scale features from the adjacent MFE block. Here, the combination of
an independent convolution block and its neighboring MFE block is defined as a multi-
scale block. In each encoding branch, four multi-scale blocks are arranged in turn to
extract the deep features. To circumvent the problem of gradient vanishing caused by
the deeper network designed in our model, the DenseNet structure is applied to each
encoder. Benefiting from the dense connection, it can not only enhance the information
flow between different multi-scale blocks, but also take full advantage of the multi-scale
features extracted from the middle blocks. Finally, we can obtain hierarchical synthetic
features for each modality image.

In the process of feature fusion, a JAF network based on spatial attention and chan-
nel attention is devised to select important features extracted by encoders for merging.
Four simple but effective convolution blocks are employed in the reconstruction of the
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preliminary fused image. The structures of MFE and JAF will be described in detail in
Sections 3.2.1.1 and 3.2.1.2, respectively.
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In the generator, two encoders share the same structure, which includes four 3× 3
independent convolution blocks. Batch normalization is applied to all blocks except the
first one to speed up convergence. The activation function is ReLU. The stride is fixed
at 1 in all convolutional operations, and padding is used. Consequently, the inputs and
outputs of the generator have the same size. Notably, all substructures used in the generator
(i.e., dense connection, MFEs and JAF) can blend extracted features to some extent, so the
utilization of complementary information will be greatly improved.

3.2.1.1. Multi-Scale Feature Extraction (MFE) Architecture

Efficient feature fusion depends on extracting comprehensive discriminative features
from images of different modalities. As the single scale features extracted from the source
inputs cannot represent the overall spatial properties of large targets in the original im-
ages, multiple convolution kernels with different sizes are used to extract comprehensive
information from the sources. Figure 4 shows the structure of the MFE network.

The input features are fed into three separate branches containing 3× 3, 5× 5 and
7× 7 filters followed by the ReLU activation layer to respectively extract image features
from multiple scales. The resulting multi-scale features are expressed as follows:

Fs1 = Relu(Conv3×3(Finput)) (3)

Fs2 = Relu(Conv5×5(Finput)) (4)

Fs3 = Relu(Conv7×7(Finput)) (5)

where Finput represents the input of the MFE block, Conv∗ represents the convolution
operations with different scales, and Fs1, Fs2, Fs3 represent features extracted with different
kernels sizes, respectively.
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The application of multiple small convolution kernels can bring many benefits. On
one hand, under the circumstance of an identical receptive field, the deeper the network,
the more nonlinearity of the model. On the other hand, stacking multiple small filters
can increase the receptive field, which also means that more global and intrinsic features
of the target can be extracted. Not only that, but the parameters of the network will be
greatly reduced. Therefore, instead of the 5× 5 and 7× 7 filters, two 3× 3 kernels and
three 3× 3 kernels are the best choices, respectively.

To address the redundancy and noise in multi-scale representations of source images,
self-attention modules (SAM) are introduced in each branch, aiming to enhance important
features. The major advantage of the SAM over other attention networks is that it can
trigger interactions between different spatial locations to capture the intrinsic correlations
of the input data. Hence, driven by [38], we propose an improved self-attention block
that can achieve both contextual information mining and self-attention (SA) learning, so
that it preserves salient features in both sources while suppressing insignificant features.
Figure 5 shows the structure of the self-attention blocks contained in each MFE branch. In
the global information capture path, the inputs, written as Fin for simplicity, are fed into an
independent convolution block with 1× 1 filters to output a vector (written as V). Thus,
the extracted global static information can be formulated as follows:

V = Relu(Conv1×1(Fin)) (6)

The purpose of the other path is to extract dynamic feature information. The original
inputs Fin are firstly fed into a convolution block with 3× 3 kernels to acquire local context
information (written as F1), which can be expressed as follows:

F1 = Relu(Conv3×3(Fin)) (7)

To deepen the interaction between features, we also concatenate F1 with original inputs
in the channel dimension. And then, two sequential convolution blocks with 1× 1 filters
are used to learn dynamic feature information (written as F2), which is expressed as follows:

F2 = Conv1×1(Conv1×1(bFin, F1c)) (8)
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Hence, the feature represented by global dynamic information (written as F3) can
be obtained:

F3 = V × F2 (9)

The enhanced feature via SAM is then gained by fusing local static feature F1 and
global dynamic feature F3:

Fout_SAM = F1 + F3 (10)

Finally, for integrating the multi-grained feature information, the outputs of each branch
are first concatenated and then passed through a convolution layer with a 1× 1 kernel.
Consequently, the aggregated multiscale features are expressed as follows:

Fout = Conv1×1(bsel f (Fs1), sel f (Fs2), sel f (Fs3)c) (11)

where Fout stands for the output of the MFE block, self(•) represents the self-attention
enhancing modules, and b•c denotes the concatenation operation.

3.2.1.2. Joint Attention Fusion (JAF) Architecture

Crucially, some salient and important features extracted from the dual encoder are
automatically chosen and then integrated into a single new image for achieving state-of-
the-art performance in IVIF. By coincidence, this idea can be implemented by an attention
mechanism (AM). The AM works by accessing all input sequences to calculate weights,
then combining the weights with the inputs to selectively strengthen the attention more
toward discriminant parts of the input images. Therefore, motivated by the success of AM
in IVIF [39], a joint attention fusion (JAF) network is constructed in parallel by channel
attention and spatial attention to merge the extracted features. Figure 6 shows the schematic
diagram of the JAF. As the dual encoders have the same structure, the features extracted
from them are firstly added to obtain the initial fused features, written as F1. Subsequently,
the performance of feature merging is further improved via channel-attention and spatial-
attention networks, respectively.

In the channel dimension, we mainly focus on which features of the input are mean-
ingful. In general, the infrared radiation information is mainly represented by the low-
frequency information captured by a global average pooling operation. Therefore, the
inputs F1 with h×w× c are firstly transformed into a 1× 1× c compressed channel rep-
resentation using the global average pooling operation to obtain the global information
of the given input features. Next, the importance of each channel is learned via two fully
connected (FC) layers, and then the weight coefficients are calculated through the sigmoid
activation function. Finally, the recalibration features (i.e., the channel-wise fused features)
can be obtained by multiplying the weight coefficients by the initial fused feature F1. Con-
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sequently, the channel-attention network can selectively emphasize important features
while suppressing others. The process of using channel attention to enhance features can
be shown in Equation (12):

Fout_chan = (Sig(FC2(FC1(GAP(F1)))))× F1 (12)

where Fout_chan represents the recalibration feature of the channel attention, GAP represents
the global average pooling operation, and Sig denotes the sigmoid function.
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In the spatial dimension, the purpose is to concentrate on which parts of the output
are rich in effective information, which can bridge the shortage of only using channel
attention to some extent. We utilize a simple yet effective 1× 1 convolution layer to learn
the importance of each input feature F1. Similarly, the weight coefficients are also obtained
by sigmoid, which means the amount of information contained in each feature. At last, the
informative features (i.e., the spatial fused features) can be obtained by multiplying the
weight coefficients by the initial fused feature F1. The process of using spatial attention to
enhance features can be shown in Equation (13):

Fout_spat = (Sig(Conv1×1(F1)))× F1 (13)

where Fout_spat represents the recalibration feature of the spatial attention.
To sum up, the purpose of selecting salient features to reconstruct a fused image can

be achieved by re-mixing channel-wise fused features and spatial fused features:

Ff use = Fout_chan + Fout_spat (14)

3.2.2. Dual-Discriminator Architecture

In our work, the two enhanced discriminators have the same structure. Figure 7
presents the architecture of the discriminator, which consists of four convolutional blocks.
A convolution layer with 3× 3 kernel and ReLU is applied in the first four blocks. It is
worth noting that all convolution blocks except the first one employ batch normalization
operations to improve the convergence speed. Subsequently, the flattened data are fed into
a full-connection layer that outputs a scalar value of the estimation probability. Unlike the
generator, the stride of each convolution layer is 2 and has no padding.
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3.3. Loss Function
3.3.1. Loss Function of Generator

To guide model training in an even better fashion, the loss function of the generator
considers structural information, complementary information (i.e., primary and secondary
information contained in sources) of multi-mode images, and the adversarial losses between
a generator and two discriminators. We formalize it as follows:

LG = λ1Lcontent + λ2LSSIM + λ3Ladv (15)

where λ1, λ2 and λ3 are the positive parameters to control the trade-off among three items,
respectively.

Lcontent represents the content loss. In order to address the under-utilization of infor-
mation and inspired by [24], Lcontent is designed as follows:

Lcontent = ε1

∥∥∥I f used − Iir

∥∥∥
2
+ ε2

∥∥∥I f used − Ivi

∥∥∥
2
+

ε3

∥∥∥∇I f used −∇Iir

∥∥∥
2
+ ε4

∥∥∥∇I f used −∇Ivi

∥∥∥
2

(16)

where Ifused, Iir and Ivi are the fused images, the infrared images, and the visible images,
respectively. ‖•‖2 denotes 2-norm, and∇ represents gradient operator. ε1, ε2, ε3 and ε4 are
the weights used to balance the above items.

To measure the loss of structural integrity as well as luminance consistency, the
structural similarity loss LSSIM is introduced. For IVIF, the formula definition is:

LSSIM =
(

1− SSIMI f used ,Iir

)
+ η

(
1− SSIMI f used ,Ivi

)
(17)

where SSIM(•) stands for the structural similarity measure between two images (i.e., the
fused image and two source images). η is used to achieve an equilibrium between them.

The adversarial loss Ladv is defined as follows:

Ladv =
1
N

N

∑
n=1

(Dir(I f used)− a)2 +
1
N

N

∑
n=1

(Dvi(I f used)− a)2 (18)

where D(•) stands for the estimated result of the two discriminators. Due to the expectation
of the generator that the discriminators will judge the fused image as real data, the soft
label of a ranges from [0.7, 1.2].

3.3.2. Loss Function of Discriminator

Indeed, according to the loss function of the generator designed in this article, the
fusion results with both the information of heat radiation and visible textures can be
obtained in the absence of a discriminator. But that is far from enough. Therefore, the
adversarial architecture is adopted to keep more information of the sources in the fusion
results. Generally speaking, the stronger the discriminative ability of the discriminator, the
better the implementation of the fused image produced by the generator. We thus designed
two discriminators with the same simple and naïve structure to respectively distinguish
one of the source images and its contribution [40]. Specifically, we input |F− S2| and S1 to



Sensors 2023, 23, 6322 13 of 29

the first discriminator (i.e., D_IR) and feed |F− S1| and S2 into the second discriminator
(i.e., D_VI) to make it difficult for the discriminators to distinguish the inputs. Hence, the
adversarial relationship between the two discriminators and a generator is stronger.

The loss function of the dual discriminator can be denoted as:

LD1 =
1
N

N

∑
i=1

(D(
∣∣∣I f used − Iir

∣∣∣)− b)
2
+

1
N

N

∑
i=1

(D(Ivi)− a)2 (19)

LD2 =
1
N

N

∑
i=1

(D(
∣∣∣I f used − Ivi

∣∣∣)− b)
2
+

1
N

N

∑
i=1

(D(Iir)− a)2 (20)

where N denotes the number of images (i.e., the sources or the fused images). D(•) denote
the classification results. |Ifused − Iir| represents the contribution of the source visible
images, and |Ifused − Ivi| indicates the contribution of the source infrared images. Both of
the above represent false data and will be reduced by the discriminators. Nevertheless, the
source image Iir and Ivi will be increased. Thus, the soft label of b is in the range of [0, 0.3].

4. Qualitative and Quantitative Experiments
4.1. Experiment Details

In this section, we will firstly introduce four publicly available datasets in detail for
training and testing the proposed model. Then, the details of training and testing are
described. Thirdly, we choose nine state-of-the-art algorithms for comparison with our
method. Finally, we introduce eight commonly used metrics for quantitative evaluation of
image fusion performance.

4.1.1. Publicly Available Datasets

We selected three commonly used IVIF datasets to train or test our method, including
the TNO dataset (available at https://figshare.com/articles/dataset/TNO_Image_Fusion_
Dataset/1008029) (accessed on 5 February 2023), OSU dataset (available at http://vcipl-
okstate.org/pbvs/bench) (accessed on 5 February 2023) and RoadScene dataset (available
at https://github.com/hanna-xu/RoadScene) (accessed on 5 February 2023). The TNO
dataset mainly takes military scenes as background and collects infrared and visible image
pairs of soldiers, vehicles, and buildings in different environments under the same scene
for image fusion research. The OSU dataset includes infrared grayscale images and color
visible image sequences. As we only studied grayscale image fusion, we needed to convert
color images to grayscale images in advance. The RoadScene dataset is dominated by traffic
scenes, including different scenes formed by the combination of roads, cars, pedestrians,
buildings, and other elements. Compared with the TNO dataset, it has higher spatial
resolution. The above three datasets all contain pairs of normally exposed infrared and
visible images. It is well known that the goal of infrared and visible image fusion is to
generate fused images with significant targets and rich textures in extreme environments.
Therefore, we further tested the robustness of the proposed algorithm on the Multi-Spectral
Road Scenarios (MSRS) dataset (available at https://github.com/Linfeng-Tang/MSRS)
(accessed on 5 February 2023) containing both night and daytime scene images. The MSRS
dataset contains 1444 pairs of aligned infrared and visible images of high quality. Each
dataset and its role are clarified below.

During training, 55 infrared and visible image pairs were selected from the TNO
dataset, which included the images with different scenes and resolutions that had been
registered [29]. However, these training data were insufficient to train our IVIF model.
We adopted the common expansion strategy of non-overlapping clipping to expand the
training image samples. Concretely, a stride was set as 12 and then an 84 × 84 patch was
randomly cropped from each image pair. Eventually, 61,679 image patches were obtained
to train the proposed model. All training data were scaled to the range of −1 to 1.

During testing, we also selected an additional 38 image pairs from the TNO dataset
to carry out the fusion performance verification of our algorithm. Additionally, the gen-

https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029
https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029
http://vcipl-okstate.org/pbvs/bench
http://vcipl-okstate.org/pbvs/bench
https://github.com/hanna-xu/RoadScene
https://github.com/Linfeng-Tang/MSRS
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eralization capabilities of the deep-learning model are also an important way to evaluate
the robustness of algorithms. Therefore, the commonly used image fusion datasets, i.e.,
OSU, RoadScene and MSRS datasets were picked, and we chose 24, 20 and 40 infrared and
visible image pairs from them, respectively. It is worth noting that as we only studied IVIF
in single-band gray, additional preprocessing should be performed for the aforementioned
datasets to satisfy the experimental requirements.

4.1.2. Training Details and Parameter Settings

Training details: During the training stage, to maintain adversarial relationships
between the two types of networks, we initially trained the dual discriminator (i.e., D_IR
and D_VI) three times (t = 3) before alternating the training of the generator (G) and dual
discriminator once per batch. As the training process continued, more infrared intensity
information and visible texture information were gradually added to the fusion result when
the dual discriminator could hardly distinguish the source images from its contributions
simultaneously. In other words, we obtained a generator with strong capability that could
produce realistic fused images. The entire training details are presented in Algorithm 1.
During the testing stage, only the G was valid. Each image pair from the training dataset
or testing datasets was fed into G as a whole instead of image patches to directly generate
the fusion result. The proposed network was programmed on TensorFlow.

Algorithm 1: Our model’s training details
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Algorithm 1: Our model’s training details 
Inputs: infrared image, visible image 
Output: fused image 

1   for e in range maximum epoch do 
2 for t times do 

3  Select m visible image patches { }1 2 m
vi vi viI ,I ,...,I ; 

4  
Select m contribution of visible image patches 

{ }1 1 2 2 m m
f ir f ir f irI -I ,I -I ,...,I -I ; 

5  Update discriminator1 by Adam Optimizer: 
D 1θ DL∇ ; 

6  Select m infrared image patches { }1 2 m
ir ir irI ,I ,...,I ; 

7  

Select m contribution of infrared image patches  

{ }1 1 2 2 m m
f vi f vi f viI -I ,I -I ,...,I -I ; 

8  Update discriminator2 by Adam Optimizer:
D 2θ DL∇ ; 

9 end 

10 
Select m visible image patches { }1 2 m

vi vi viI ,I ,...,I  and m infrared image 

patches { }1 2 m
ir ir irI ,I ,...,I ; 

11 Update generator by Adam Optimizer: 
Gθ GL∇ ; 

12   end 

Parameter settings: The learning rates of G and D were the same as 1× 10−5, batch size
was fixed at 20, epoch was set at 10, and the optimizer was Adam. The other parameters
in the loss function of G were set as λ1 = λ3 = 1, λ2 = 0.35, ε1 = 1, ε2 = 0.3, ε3 = 3, ε4 = 5,
η = 1.8.

4.1.3. Baseline Methods

As described in Section 3, several subnetwork structures are involved in our model
based on the GAN architecture, such as encoder–decoder and DenseNet. Therefore, the
aforementioned subnetworks included in IVIF algorithms should be competitors to be
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compared with our method. Methods containing DenseFuse [18], FusionGAN [22], GAN-
McC [24], Dualbranch [32] and CSF [33] were recently introduced with the aim of achieving
state-of-the-art fusion results. Additionally, to capture original image information from
multiple scales to improve the perception of HVS, methods that most commonly make
use of sparse representation (SR) and multi-scale transform (MST) have also been in-
troduced. Hence, some traditional and combinatorial-based representative competitors,
including convolutional sparse representation (CSR) [17], discrete cosine harmonic wavelet
(DCHWT) [41], multi-resolution singular value decomposition (MSVD) [42], and multi-
scale weighted gradient-based fusion (MWGF) [43], were also compared against ours. In
conclusion, to prove the superiority of our method, nine mainstream methods were selected
to compare fusion performance qualitatively and quantitatively with ours on four public
datasets. The idea behind these experiments was to combine the merits of all previous
approaches while avoiding the shortcomings of each.

To guarantee the fairness of the evaluation results, all competing methods were run
based on the publicly available code of the corresponding author or a well-known toolbox,
and the settings refer to corresponding original papers. The above methods were run on
the same GPU, an NVIDIA GeForce RTX 3070.

4.1.4. Objective Metrics

Trivial differences among fusion results will bring about a challenge for precise sub-
jective assessment. Generally, it is a reasonable matter to adopt multiple image quality
metrics for overall evaluation. Over the past few years, all kinds of quantitative assessment
indexes for IVIF algorithms have been presented [44]. These metrics can be categorized as
information theory-based, structural similarity-based, image features-based, human visual
perception-based, and sources and fused images-based. But to be honest, none of them
is certainly better than the others. Hence, a multi-index evaluation system covering the
above quality indicators was adopted in this work to perform a thorough evaluation of the
generated fused images. Herein, we selected eight commonly used metrics to evaluate our
model quantitatively, including sum of the correlations of differences (SCD) [25], mutual
information (MI) [45], correlation coefficient (CC) [46], standard deviation (SD) [47], spatial
frequency (SF) [48], visual information fidelity for fusion (VIFF) [49], mean structural simi-
larity index measurement (MSSIM) [49], and entropy (EN) [50]. Each of them is described
in detail below.

(1) SCD

SCD can be adopted to measure how much of the fused image comprises complemen-
tary information from the two source images. The differences between the fused image (F)
and two sources (S1, S2) can be formulated as:

D1 = F− S2 (21)

D2 = F− S1 (22)

The SCD can be expressed as:

SCD = r(D1, S1) + r(D2, S2) (23)

where r(•) is to calculate the similarity between Dk and Sk, which is defined as:

r(Dk, Sk) =

∑
i

∑
j
(Dk(i, j)−

−
Dk)(Sk(i, j)−

−
Sk)√√√√∑

i
∑
j
(Dk(i, j)−

−
Dk)

2

∑
i

∑
j
(Sk(i, j)−

−
Sk)

2
(24)
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where
−

Dk and
−
Sk stand for the average of the pixel values of Dk and Sk.

(2) MI

MI estimates the amount of information transferred from the two source images to the
fused image. The definition of MI in infrared and visible image fusion is:

MIX,F = ∑
x, f

pX,F(x, f ) log2
pX,F(x, f )

pX(x)pF( f )
(25)

MI = MIv, f + MIr, f (26)

where pX(x) and pF(f) represent the edge histograms of the images X and F, respectively.
pX,F(x, f) represents the joint histogram of the images X and F. MIr,f denotes the MI value
between the infrared image and the fused image, when the infrared image is taken as
reference. Similarly, MIv,f represents the MI value between the visible image and fused
image, when the visible image is taken as reference. The sum of the two MI values equals
the final MI value.

(3) CC

CC can measure the degree of linear correlation between the sources and the fused
image. It is mathematically expressed as:

CC = λarv, f + λbri, f = λa

M
∑

i=1

N
∑

j=1
(Vi,j−µV)(Fi,j−µF)√

M
∑

i=1

N
∑

j=1
(Vi,j−µV)

2 M
∑

i=1

N
∑

j=1
(Fi,j−µF)

2
+

λb

M
∑

i=1

N
∑

j=1
(Ii,j−µI)(Fi,j−µF)√

M
∑

i=1

N
∑

j=1
(Ii,j−µI)

2 M
∑

i=1

N
∑

j=1
(Fi,j−µF)

2

(27)

where µV, µI and µF denote the mean values of the two sources and the fused image,
respectively.

(4) SD

SD can express the contrast of the fused image. The definition of the SD is:

SD =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

(Fi,j − µ)2 (28)

where Fi,j is the pixel value of the fused image with the size of M×N at the point (i, j), and
µ is the average pixel value of the fused image.

(5) SF

SF can reflect the texture details of the fused image according to gradient distribution
and is defined by spatial row frequency and column frequency:

RF =
√

∑M
i=1∑N

j=2(Fi,j − Fi,j−1)
2 (29)

CF =
√

∑M
i=2∑N

j=1(Fi,j − Fi−1,j)
2 (30)

SF =
√

RF2 + CF2 (31)
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(6) VIFF

VIFF is used to calculate the fidelity of the fused image based on human visual
perception and is formulated as:

VIFF(X, F) =
∑
k

∑
b

log2(1 +
g2

k,b(σ
X
k,b)

2

((σF
k,b)

2−g2
k,b•(σ

X
k,b)

2
+σ2

N)
)

∑
k

∑
b

log2(1 +
(σX

k,b)
2

σ2
N

)

(32)

where gk,b =
σX,F

k,b

(σX
k,b

)2 . X and F are the source images and the fused image, respectively. σN

is the hypothetical covariance of the VIFF function. σX
k,b represents the standard deviation

of the b-th sub-band of the k-th image block of the sources. σX,F
k,b denotes the covariance of

the sources.
In practice, the calculation steps include: (1) filter and divide the source images and

the fused image into different blocks; (2) evaluate the visual information of each block; (3)
calculate the VIF for each sub-band; (4) calculate the overall index.

(7) MSSIM

SSIM is used to model loss and distortion between the sources and fused image based
on their similarities in light, contrast, and structure information. Mathematically, MSSIM
can be defined as follows:

SSIM(Xi, Fi) = ∑
Xi ,Fi

2µXi µFi + c1

µXi
2 + µFi

2 + c1
•

2σXi σFi + c2

σXi
2 + σFi

2 + c2
•

σXi Fi + c3

σXi σFi + c3
(33)

MSSIM(V, R, F) =
1

2M
(

M

∑
i=1

SSIM(Vi, Fi) +
M

∑
i=1

SSIM(Ri, Fi)) (34)

where µ denotes the mean value of the corresponding images, σ is the standard deviation of
the corresponding images, and c1, c2 and c3 are the constant values to make the algorithm
stable, respectively.

(8) EN

EN is used to measure the amount of information in the fused image. The mathematical
formula of EN is expressed as:

EN = −
L−1

∑
l=0

pl log2 pl (35)

where L represents the gray level of the fused image, and pl is the normalized histogram
with the gray level of l in the fused image.

What is noteworthy is that the higher the above metrics, the better the fused image.
Moreover, we used the codes provided by the author or a well-known third party to
perform the calculations of all image quality indicators through MATLAB.

4.2. Results in TNO Dataset
4.2.1. Qualitative Analysis

At first, four infrared and visible image pairs from the TNO dataset were selected to
implement fusion operations using different methods. As shown in Figure 8, there were
some visual results for the fusion performance. The infrared images described the scene
that showed hot objects well, e.g., pedestrians, while the abundant background details
were provided by the visible images, such as grass clusters, street lamps, and tree branches.
The ideal fused image should contain both prominent thermal targets and rich background
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textures and be artifact-free. In other words, the fused image should resemble an infrared
image as well as a visible image. We marked some distinctive areas with different color
frames in the sources and the fused images for easier observation.
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From Figure 8, we can see that almost all comparison methods can achieve certain fu-
sion results. However, neither of the above two tasks (i.e., the resulting fused image should
retain both salient targets and rich texture details without introducing any artifacts) was
well achieved. The MSVD method generated the fusion results with low brightness, such
as blurred pedestrian targets in the fusion results. This demonstrated that more features
could be extracted from the two sources by the MSVD method, but the visible features
diluted the thermal radiation information during the feature fusion process, resulting in
less prominent heat sources. The MWGF method could well obtain more information from
the sources, but undesirable visual artifacts were introduced (such as unnatural artifacts
and noise in the background of the fusion results). This is because the introduction of more
spectral information from infrared images into fused images will destroy the visual quality
of visible images. To make matters worse, it seems that the hot target information in the
fused images was barely drawn from the infrared images. The fusion results produced by
the DCHWT method also had the problem of texture information destruction as well as un-
natural visual experiences to some extent, such as pedestrians and background branches in
the fusion results. The CSR and DenseFuse methods could extract the thermal targets from
the source images well, such as persons. However, some regions, such as the pedestrians
in the fused images, showed low brightness and unhighlighted thermal targets due to the
image energy loss. The fusion results of the CSF could not highlight the thermal targets.
Due to information loss caused by downsampling, the fusion results of the Dualbranch
were blurred. The targets extracted by the FusionGAN method had a halo effect along the
edges. The reason is that the FusionGAN method does not account for additional thermal
information. Additionally, FusionGAN reconstructed the sky scene of the fused image
with unnatural artifacts. The GANMcC method achieved results comparable with ours,
but smoothed out most of the textures of the fused images, leading to low contrast of the
fused images. After intuitive comparative analysis, we could see that our method acquired
excellent performance in terms of thermal object extraction and comparable of background
texture details.

4.2.2. Quantitative Analysis

We selected 37 image pairs from the TNO dataset to objectively assess the fusion
performance of our method. Table 1 lists the measurement results for different fusion
methods using eight image quality metrics. Bold-red and bold-blue values indicate the
best and second-best values for that column metric by the corresponding row algorithm
compared to the others, respectively. Obviously, our method achieved the highest average
values on six measurements, i.e., EN, MSSIM, SD, VIF, CC and SCD. Our method’s results
for the remaining two metrics merely followed behind GANMcC and MWGF by a slight
margin, respectively.

Table 1. The averages for the eight metrics among all methods on the TNO dataset. Bold red and
bold blue represent the optimal and suboptimal results, respectively.

Methods EN MI MSSIM SF SD VIF CC SCD

MSVD 6.2910 1.5459 0.8691 9.0863 23.1439 0.3072 0.7845 1.5076
DCHWT 6.3624 1.4758 0.8591 9.1122 25.3286 0.3170 0.7609 1.4793
MWGF 6.8143 1.9285 0.6770 10.9906 31.8245 0.1677 0.7089 0.9596

CSR 6.3558 1.5582 0.8919 9.5963 24.3851 0.3261 0.7771 1.5299
DenseFuse 6.7256 1.7079 0.8445 10.0688 32.8838 0.5303 0.7767 1.5671

CSF 6.2718 1.4957 0.8215 6.6046 23.3368 0.2831 0.7653 1.4056
Dualbranch 6.6357 1.7618 0.8364 8.8754 28.5149 0.3290 0.7665 1.5054
FusionGAN 6.6357 1.7618 0.8364 8.8754 28.5149 0.3290 0.7665 1.5054
GANMcC 6.4598 2.1528 0.8544 7.6292 29.6072 0.3520 0.7306 1.1864

Ours 6.8979 2.0605 0.9102 10.0811 39.3882 0.5333 0.7857 1.6021
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The first and second ranks on EN and MI denote that the fusion results of our method
contained the maximum amount of information. The best and second-best SD and SF
demonstrated that our fusion results for the highest contrast contained more edges and
texture details. The best MSSIM showed that the fusion results of our method had the
highest structural similarity to the two source images, and implied the least loss and
anamorphosis in our fused images. The best VIFF indicated that the fusion results for the
proposed method were more in line with the HVS. The best SCD and CC values indicated
that our fused images were highly correlated with the source images. All in all, the
performance of our method was competitive on all eight metrics. Among the quantitative
evaluation metrics of the fusion results obtained by our method, few were lower than
those of the other comparison algorithms. This is because our method achieved multi-scale
representation of the source images and selected significant features to reconstruct the
fused images.

4.3. Generalization Results in OSU Dataset
4.3.1. Qualitative Analysis

We validated the generalization ability of the proposed method on the OSU dataset,
and Figure 9 shows the comparison results. In the OSU dataset, the infrared images
contained radiating targets, such as pedestrians and parterre marked with red rectangles,
while the visible images had rich details and high visual perception, such as buildings
marked with yellow rectangles. Apart from ours, almost all fused images suffered from
unpleasant artifacts that caused degradation of the visual quality. Clearly, our method
performed better than others in terms of thermal target extraction, spatial detail retention
and visual perceptual quality.
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4.3.2. Quantitative Analysis

Table 2 shows a quantitative comparison between the proposed method and its com-
petitors after examination of the fusion results by subjective evaluation. The values among
all methods shown as bold red, bold blue and bold green denote the best, second-best and
third-best scores, respectively. Clearly, the fusion performance of our method was in the
top place on the six metrics, i.e., MI, SF, SD, VIFF, CC, SCD. The scores on the EN metric
were suboptimal. It can be inferred that our method’s fusion performance was phenomenal
in terms of information retention, visual quality, and correlation with two source images.
Although the results for the MSSIM were lower than those obtained with the CSR and
DenseFuse, there is no doubt that our method achieved the best performance on all indexes.
This shows that our method is robust on the OSU dataset.
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Table 2. The averages for the eight metrics among all methods on the OSU dataset. Bold red, bold
blue and bold green represent the best, second-best and third-best results, respectively.

Methods EN MI MSSIM SF SD VIF CC SCD

MSVD 7.2833 2.6055 0.8521 25.3853 43.1537 0.3705 0.8441 1.2627
DCHWT 7.5213 2.5685 0.8142 28.824 49.4463 0.3472 0.8341 1.2625
MWGF 7.6195 2.7098 0.6600 26.9111 51.7509 0.2449 0.8192 0.8987

CSR 7.3895 2.6396 0.8760 28.4073 46.1330 0.3821 0.8436 1.2927
DenseFuse 7.2631 3.0613 0.8619 18.6400 42.9906 0.3998 0.8491 1.3160

CSF 7.4299 2.7373 0.8515 18.7358 47.8021 0.4110 0.8417 1.3636
Dualbranch 7.2669 2.9374 0.8043 25.9692 45.2490 0.3296 0.8291 1.0696
FusionGAN 7.2844 2.3880 0.8165 25.0017 44.8362 0.3616 0.8281 1.1857
GANMcC 7.1948 2.7391 0.8182 19.0651 44.2739 0.3642 0.8386 1.2058

Ours 7.5510 3.0675 0.8592 30.3577 64.7876 0.4357 0.8494 1.4693

4.4. Generalization Results in RoadScene Dataset
4.4.1. Qualitative Analysis

The RoadScene dataset is also commonly used in IVIF tasks. Therefore, 20 image
pairs from the RoadScene dataset were selected to implement the test of generalization
ability. Figure 10 shows one of the generalized results for the different methods. The
infrared images contained heat source targets and spatial textures, while the visible images
exhibited better visual perception. For easier observation, distinct regions in the source
images and the fusion results were marked with red rectangles. They were subsequently
enlarged and placed in the lower right corner. As we can see, both the MSVD and MWGF
methods failed to extract more spatial textures, leading to artifacts such as marker regions
in the fused images. Although the DCHWT method generated the fusion result with higher
contrast, it also introduced artifacts in the sky. The fusion result generated by the CSR
method had a high structural similarity with the source images, but some details were still
lost. The DenseFuse method preserved details well, but the fused image suffered from low
brightness. Although the results with the CSF contained rich information, the low contrast
resulting in blurred signs. Due to the low brightness, the fused image generated by the
Dualbranch method showed a black appearance. The FusionGAN method produced a
fused image with halo effects along the target edges. The GANMcC method produced a
fused image that contained more target information and spatial textures, but the contrast
was relatively low. To a certain degree, we can say that our algorithm provided a more
pleasing fused image with clearer texture details, better visual quality, and higher contrast.
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4.4.2. Quantitative Analysis

In order to further verify the generalization ability of our method, 20 image pairs from
the RoadScene dataset were calculated by eight evaluation metrics to analyze quantitatively.
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Table 3 shows that the performance of our approach on the EN, SF, CC, and SCD metrics
was best and fell behind the DCHWT and CSF methods by a narrow margin on the SD
and VIFF metrics. Our fusion results had the highest CC and SCD values, and it could be
verified that the fused images generated by our method were visually more like the sources.
The best EN and SF values verified that our results retained more information. Although
the results on the MI and MSSIM metrics were inferior to the second-best score, they also
provided competitive fusion results. The competitive evaluation results indicate that the
MFE and JAF modules in our model still worked well on the RoadScene dataset.

Table 3. The averages for the eight metrics among all methods on the RoadScene dataset. Bold red,
bold blue and bold green represent the best, second-best and third-best results, respectively.

Method EN MI MSSIM SF SD VIF CC SCD

MSVD 6.8385 2.6733 0.8596 11.2012 31.5209 0.3499 0.7904 1.2882
DCHWT 7.2092 2.7422 0.8687 11.9652 65.6307 0.4187 0.7713 1.2821
MWGF 7.2488 2.7267 0.8410 10.4601 47.9735 0.3888 0.7385 0.9468

CSR 6.9308 2.7179 0.9090 12.4601 33.2636 0.4069 0.7892 1.3046
DenseFuse 7.1912 2.9594 0.8278 11.1098 41.7094 0.5403 0.7869 1.2294

CSF 7.3976 2.8815 0.9320 12.3282 46.2293 0.5920 0.7890 1.2318
Dualbranch 7.0685 2.9691 0.7584 13.1972 36.8233 0.3051 0.7600 1.1011
FusionGAN 7.3255 2.9797 0.8358 8.5244 47.7102 0.4102 0.7672 1.4583
GANMcC 7.2460 3.2011 0.8841 10.3838 46.3536 0.4661 0.7581 1.3714

Ours 7.5183 2.8357 0.8988 14.0514 51.7240 0.5447 0.8124 1.6672

4.5. Generalization Results in MSRS Dataset
4.5.1. Qualitative Analysis

The source images on the MSRS dataset contained diverse scenarios and illumination
variations. We implemented testing experiments on 20 daytime infrared and visible image
pairs from the MSRS dataset. Figure 11 shows one of the fusion results for the different
methods. Some discriminative regions are highlighted by blue rectangles. Infrared images
highlight the thermal targets, while visible images provide rich details and strong contrast
and illumination. One can see that the fusion results for MSVD, CSR, DenseFuse, CSF, and
GANMcC exhibited low contrast and lighting. To make matters worse, the Dualbranch
and FusionGAN methods severely lost the texture details contained in the visible images,
such as the words on the ground. Although the DCHWT and MWGF methods achieved
relatively good fusion results, our fused image contained more and richer details and
were better and brighter than theirs. These advantages can be attributed to the multi-scale
feature extraction and attention-based salient feature fusion strategies included in the
proposed method.

Additionally, 20 pairs of nighttime infrared and visible images from the MSRS dataset
were selected for evaluation testing. In the nighttime scenario, the quality of the visible
images was degraded by insufficient illumination. Hence, the fused images should have
retained more texture details of the infrared images to enhance the description of the night
scene. Figure 12 shows representative fusion results for the proposed method and its
competitors. The discriminative regions are marked with different color boxes. Obviously,
the MWGF, FusionGAN, and GANMcC methods failed to highlight the objects labeled by
the red boxes. The fusion results generated by the MSVD, MWGF, CSR, DenseFuse, CSF,
and Dualbranch methods were blurred in some regions. Although our method preserved
more texture details from the source images, some important targets were still lost. Existing
traditional and learning-based methods are designed for the fusion of infrared and visible
images with normal exposure, and they do not specifically study the illumination imbalance
problem. As a result, the state-of-the-art algorithms, including ours, failed to achieve
satisfactory fusion results in the nighttime image fusion task. Therefore, designing robust
image fusion methods that can sense illumination conditions will be a hot research topic in
the future.
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4.5.2. Quantitative Analysis

Table 4 shows the results of the quantitative evaluation of 20 daytime image pairs
on the MSRS dataset. Our metric ranked first in terms of the EN, MI, MSSIM, SF, and
VIF metrics, and second in the SD metric. The best scores on the EN and MI metrics
demonstrated that our fusion results contained the most information compared to other
baseline methods. The largest MSSIM score indicated that our method produced fused
images with minimal distortion and preserved the integrity of structural information.
Leading scores on the SF and VIF metrics showed that our fused images contained richer
edge and texture information and the best human visual perception. Our method achieved
impressive performance on the SD metric, second only to Dualbranch. For the CC metric,
the correlation was lower due to the salient feature selection operation, which reduced
the linear correlation between the fused image and the two source images. For the SCD
metric, our method maintained brightness and contrast close to those of the visible images,
reducing the similarity between the fused image and the differential images. On the whole,
our method achieved the excellent performance on all metrics.
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Table 4. The averages for the eight metrics among all methods on the daytime images of the MSRS
dataset. Bold represents the optimal results.

Method EN MI MSSIM SF SD VIF CC SCD

MSVD 6.6021 2.8084 0.8697 10.5125 30.1600 0.3656 0.7700 1.5829
DCHWT 7.2387 2.3056 0.8416 13.1350 44.3694 0.5979 0.7381 1.5219
MWGF 7.0129 2.5484 0.9351 12.3888 53.6275 0.6959 0.7205 1.2018

CSR 6.7244 2.7870 0.9312 12.2905 32.5781 0.4802 0.7651 1.5708
DenseFuse 6.8581 3.1902 0.9250 9.6056 37.3920 0.5286 0.7772 1.6750

CSF 6.6866 2.6980 0.8828 9.4354 33.5528 0.4443 0.7948 1.6062
Dualbranch 6.5850 1.9526 0.3717 13.7977 63.9720 0.1377 0.6280 0.6872
FusionGAN 5.9921 2.4996 0.7581 10.3930 19.2707 0.1804 0.7954 1.1804
GANMcC 5.8653 2.7971 0.7571 6.5153 27.3598 0.2820 0.7635 1.4200

Ours 7.4177 3.5244 0.9364 14.7850 56.4928 0.6997 0.7496 1.5244

Similarly, we also calculated the objective evaluation values for 20 pairs of nighttime
infrared and visible images on the MSRS dataset. The evaluation results are shown in
Table 5. Clearly, our metric was best only on the EN, SF and SD metrics. Although other
comparison algorithms outperformed ours in the remaining metrics, they were still far
from the best results of existing methods. In other words, the proposed method and its
competitors failed to achieve excellent performance in the nighttime infrared and visible
image fusion task. This is because existing traditional and learning-based fusion methods
are designed for infrared and visible images with normal exposure, without considering
illumination variations.

Table 5. The averages for the eight metrics among all methods on the nighttime images of the MSRS
dataset. Bold represents the optimal results.

Method EN MI MSSIM SF SD VIF CC SCD

MSVD 5.5665 2.2846 0.9235 6.1290 20.6210 0.4083 0.7505 1.6688
DCHWT 5.8037 2.0093 0.9395 7.3825 28.4595 0.6260 0.7290 1.6166
MWGF 4.9787 2.6874 0.9074 7.4880 26.8118 0.5597 0.6848 1.3698

CSR 5.6038 2.2521 0.9469 6.7443 22.1749 0.5131 0.7455 1.6663
DenseFuse 5.7305 2.5001 0.9398 5.2297 23.4307 0.5311 0.7488 1.7466

CSF 5.2898 2.3370 0.9145 4.9344 20.9921 0.4550 0.7409 1.6492
Dualbranch 5.5508 2.4437 0.9140 5.0897 20.1504 0.3949 0.7539 1.6549
FusionGAN 4.9961 3.0527 0.8061 4.9658 14.6956 0.2033 0.6699 0.7486
GANMcC 3.3486 1.7811 0.7790 3.4595 14.1554 0.2040 0.6422 1.2506

Ours 5.8273 2.3644 0.8816 7.5758 33.8715 0.4742 0.6721 1.3531

4.6. Ablation Experiments

We further performed ablation experiments on the TNO dataset to illustrate the neces-
sity of the multi-scale feature extraction (MFE) and joint attention fusion (JAF) networks.
The details are described below.

4.6.1. Qualitative Analysis of Ablation Results

At first, the related ablation experiments were conducted using qualitative and quan-
titative approaches to validate the effect of the proposed multi-scale feature extraction
(MFE) network. Specifically, a model termed “without-MFE” was retrained on the TNO
dataset, and the others were retained. The third row of Figure 13 shows the ablation results.
We could see that unnatural background texture details, such as the tree branches in the
second and third columns, appeared in the fused images compared to the fused results
produced by our complete model. Benefiting from the designed MFE module, our method
could extract more comprehensive, deep features from the source images for fused image
reconstruction.
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Subsequently, the importance of the joint attention fusion (JAF) network was also
demonstrated qualitatively and quantitatively. Instead of the JAF, we trained a model
that obtained the fused features in a concatenation manner (termed as “without-JAF”) and
compared their fusion performance. The fourth row of Figure 13 displays the ablation
results. In this case, while the unnatural effects in the background were mitigated, a halo
effect along the edges was introduced, such as along the edges of the umbrella. This is
due to the fact that the extracted deep multi-scale features contained a large amount of
redundancy and noise, which inevitably introduces artifacts into the fusion results if used
directly for fused image reconstruction.

Finally, the impact of both the MFE and JAF networks on the fusion results was also
tested. We removed the MFE and JAF structures simultaneously (termed as “without-MFE
and JAF”) and kept the others the same as above. The fifth row in Figure 13 exhibits the cor-
responding ablation results. It was obvious that when the two structures (i.e., MFE and JAF)
were removed, the fused images suffered from both defects of unnatural background and
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halo effects along the edges at the same time. This is because the meaningful information
in the source images was not fully exploited in the fused image generation process.

Comparing the above ablation results with ours from the viewpoint of intuitive
assessment, it was found that they all achieved good fusion performance. However,
intuitively, the presence of texture detail loss and artifacts in the ablation results were still
observed. We attribute the dip in performance to insufficient feature extraction and fusion.
The complete model could reduce the likelihood of unnecessary artifacts by combining
MFE and JAF.

4.6.2. Quantitative Analysis of Ablation Results

Due to imperceptible differences in the ablation results, it was necessary to analyze
them from the perspective of a quantitative evaluation. Table 6 shows the objective evalua-
tion metrics measured on 37 image pairs from the TNO dataset. Clearly, adding the MFE
and JAF yielded better performance. Therefore, through joint analysis, it was concluded
that more textures could be captured from the source images into the fused images only by
using both the MFE and JAF modules.

Table 6. The averages for the six metrics among all models on the TNO dataset. Bold represents the
optimal results.

Methods MI MSSIM SF SD CC SCD

Without-MFE 1.6808 0.8974 8.9034 37.0276 0.7411 1.5119
Without-JAF 1.6780 0.8982 8.2670 37.9932 0.7477 1.5280

Without-MFE and JAF 1.6981 0.89178 8.5157 36.2963 0.7212 1.5343
Complete model 2.0605 0.9102 10.0811 39.3882 0.7845 1.6021

4.7. Comparison of Time and Space Complexity

Due to traditional algorithms included in the baseline methods run on the CPU, we
only compared the time and space complexity among the various deep learning-based
algorithms in Table 7. First, we computed the mean and standard deviation of the running
times of different methods on the TNO, OSU, RoadScene, and MSRS datasets. Second, we
counted the number of parameters of the different deep learning methods. One can see
that FusionGAN achieved the minimum running time, while DenseFuse contained the
smallest number of parameters. This is because FusionGAN and DenseFuse constructed
the simplest structures in the testing phase. Our model was very time-consuming due to
the large number of multi-scale representations and attention calculations.

Table 7. Time and space complexity of different image fusion methods.

Items DenseFuse CSF Dualbranch Fusion-GAN GANMcC Ours

Run time/s

TNO 0.77± 0.90 5.04± 2.17 1.04± 0.07 0.12± 0.60 0.28± 0.77 0.26± 0.78
OSU 0.96± 1.10 4.77± 2.11 1.69± 0.17 0.15± 0.66 0.18± 0.74 0.23± 0.97

Road-Scene 2.84± 1.05 10.45± 2.87 3.39± 0.52 0.85± 0.66 1.06± 0.73 1.34± 0.92
MSRS 1.02± 1.32 11.09± 4.31 6.35± 0.60 0.24± 0.81 0.33± 1.04 0.34± 1.14

parameters/K 73.4 185.4 89.5 925.6 186.7 302.4

5. Conclusions

We designed a GAN-based end-to-end method with multi-scale feature extraction
(MFE) and joint attention fusion (JAF) networks (named as MJ-GAN) together with two
specific, stronger discriminators that can achieve more promising fusion performance in
IVIF tasks. The inventiveness of our method is that the generator implements feature
extraction at different scales and utilizes the attention mechanism (AM) to fuse features in
a salient way. Therefore, the difficulties of heuristic design faced by combinatorial-based
and conventionally based fusion algorithms can be surmounted. Furthermore, the dual
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discriminator with strong discriminative ability adds more information to the fused image
based on the adversarial relationships between two kinds of nets. Importantly, a hybrid
loss function will guide the fusion direction and the preservation of information types from
the source inputs in the final fused image. As a result, extensive experiments demonstrated
the superiority of our proposed method over other representative and state-of-the-art
algorithms in terms of both subjective visual quality and objective evaluation metrics.

Although the proposed image fusion method achieves competitive performance in
infrared and visible image fusion tasks, there are still several issues that deserve to be
highlighted. First, the proposed method is mainly aimed at grayscale image fusion, and
its practical applications are limited. Second, the designed loss function only focuses on
retention of the primary and secondary information of the source image, but neglects
the improvement in the visual perception quality of the fused image. Third, there is
still room for improvement in extracting and fusing useful features from source images.
Therefore, in the future, we will try to extend the application fields and conditions for our
method, such as nighttime infrared and visible image fusion, multi-focus image fusion,
and multi-exposure image fusion.
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