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Abstract: This paper presents a novel motion control strategy based on model predictive control
(MPC) for distributed drive electric vehicles (DDEVs), aiming to simultaneously control the longitu-
dinal and lateral motion while considering efficiency and the driving feeling. Initially, we analyze
the vehicle’s dynamic model, considering the vehicle body and in-wheel motors, to establish the
foundation for model predictive control. Subsequently, we propose a model predictive direct motion
control (MPDMC) approach that utilizes a single CPU to directly follow the driver’s commands
by generating voltage references with a minimum cost function. The cost function of MPDMC is
constructed, incorporating factors such as the longitudinal velocity, yaw rate, lateral displacement,
and efficiency. We extensively analyze the weighting parameters of the cost function and introduce
an optimization algorithm based on particle swarm optimization (PSO). This algorithm takes into
account the aforementioned factors as well as the driving feeling, which is evaluated using a trained
long short-term memory (LSTM) neural network. The LSTM network labels the response under dif-
ferent weighting parameters in various working conditions, i.e., “Nor”, “Eco”, and “Spt”. Finally, we
evaluate the performance of the optimized MPDMC through simulations conducted using MATLAB
and CarSim software. Four typical scenarios are considered, and the results demonstrate that the
optimized MPDMC outperforms the baseline methods, achieving the best performance.

Keywords: parameter optimization; distributed drive electric vehicles; PMSM; overall efficiency;
driving feeling; LSTM neural network

1. Introduction

Vehicle motion control is primarily dependent on the manipulation of steering angles
and torque applied to the wheels. These parameters are determined by sophisticated
path planning systems [1,2]. To ensure both longitudinal movement control and stability
during lateral movement, wheel torques must be carefully regulated [3]. Among various
vehicle configurations, distributed drive electric vehicles (DDEVs) have attracted significant
attention due to their unique ability to independently control the torques of all four wheels.
This feature provides substantial advantages in terms of longitudinal, lateral, and yaw
motion control [4,5].

The existing motion control systems for DDEVs typically consist of a vehicle handling
controller and four motor controllers [6,7]. The vehicle handling controller’s main objective
is to accurately track movement references in different directions for DDEVs. However, it
faces several challenges that need to be addressed. These challenges include the nonlinearity
of the vehicle mathematical model, constraints imposed by the system, and the over-
actuation problem [8,9].

The longitudinal motion control of DDEVs is commonly achieved by manipulating the
acceleration and brake pedals. Recent research has focused on integrating real-time road
conditions and vehicle dynamics to make comprehensive judgments about the optimal
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longitudinal speed. This approach aims to enhance both passenger comfort and fuel
economy [10,11]. Notably, a literature study [12] proposed a vehicle speed control strategy
based on road gradient information with the objective of reducing energy consumption.
This strategy effectively reduces energy usage while improving computational efficiency.

Furthermore, various control strategies have been developed to improve the stability
and handling of DDEVs. For instance, Ref. [13] addressed the steering stability control of
four in-wheel motor drive electric vehicles on a road with varying adhesion coefficients.
Another study [14] designed a sliding mode direct yaw moment control system specifically
for in-wheel electric vehicles. Moreover, Ref. [15] proposed a post-impact stability control
method for four hub motor independent-drive electric vehicles.

Model predictive control (MPC) has been extensively applied in the control of DDEVs.
Researchers have developed a real-time nonlinear model predictive controller for optimiz-
ing the yaw motion of distributed drive electric vehicles [16]. Another study proposed a
path tracking and direct yaw moment coordinated control system based on robust MPC for
autonomous independent-drive vehicles [17]. Additionally, a nonlinear model predictive
lateral stability control system for the active chassis of intelligent vehicles was designed
in [18].

Several studies have also investigated the integration of longitudinal, lateral, and
vertical vehicle stability control for DDEVs. For example, Ref. [19] proposed a real-
time NMPC strategy that combines torque vectoring with rear wheel steering to improve
electric vehicle stability. In another study, an analysis of integrated longitudinal and lateral
vehicle stability control was performed under extreme conditions with safety dynamic
requirements [20]. Additionally, a handling and stability integrated control system based
on risk assessments and predictions was developed in [21]. Moreover, Ref. [22] proposed a
multi-level coordinated yaw stability control strategy based on sliding mode predictive
control for DDEVs under extreme conditions. Lastly, Ref. [23] presented a cooperative
strategy for trajectory tracking and stability control.

However, none of the aforementioned literature is based on the MPDMC framework.
An additional controller is required to interpret driver control commands, convert throttle
signals into torque commands for different hub motors, and then achieve torque track-
ing through dedicated motor controllers. In this framework, the two-level controllers
directly exchange limited information through specific communication methods. Moreover,
communication between the two levels of controllers introduces certain delays and some
computations between the two levels of controllers are redundant, which adversely affects
the system’s fast response. Furthermore, such a structure requires two separate controllers
and related peripheral hardware, increasing the cost of the vehicle.

Taking into account the significant improvements in microprocessor computing speeds,
this paper proposes a novel approach to MPDMC, utilizing a single controller to achieve
motion control in all three directions of the DDEV. This strategy uses the longitudinal
velocity, sideslip angle, and yaw rate of the vehicle as inputs, and combinations of voltage
vectors for the in-wheel motor drive systems are produced as outputs. By employing
MPDMC, the DDEV motion is directly controlled.

In this study, a unified mathematical model of the vehicle and motors is established.
Due to the distinct time constants of the vehicle system and the motor system, the coupling
relationship between the two systems during the prediction process is carefully analyzed,
along with a detailed examination of the simplified method.

Furthermore, a cost function is designed, which incorporates tracking the expected
value and satisfying constraint conditions. The longitudinal velocity, yaw rate, lateral dis-
placement, and efficiency are introduced into the cost function with weighting parameters.
The candidate voltage vector combination that minimizes the cost function is determined
as the final action to be implemented on the motor inverters.

To address the issue of a large number of candidate voltage vector combinations
for the four motors, as well as the repetition of voltage vector combinations resulting
from the over-actuation problem, the concept of deadbeat control is introduced. A torque
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distribution method considering the vertical loads of each wheel is employed to simplify
the candidate voltage vector combinations. By adopting this MPDMC approach, the
proposed control system achieves efficient and precise control over the DDEVs motion,
while also considering the driving experience. The integration of control tasks into a
single controller not only eliminates the need for additional controllers and peripheral
hardware, reducing the vehicle’s cost, but also improves the system’s responsiveness and
computational efficiency.

The weight coefficients associated with different terms in the cost function have a
significant impact on the final control results. However, due to the complexity of the
controlled system, selecting appropriate weight coefficients is a challenging problem. To
address this issue, the particle swarm optimization (PSO) algorithm is introduced in this
work to optimize the weight coefficients.

Similarly, the optimization process requires the introduction of a new cost function to
evaluate the effectiveness of different weight coefficients. In addition to the conventional
control terms mentioned earlier, this paper introduces a fuzzy evaluation term called
“driving feeling”. This term is evaluated using a long short-term memory (LSTM) neural
network. The vehicle response curves under different driving styles are fed into the LSTM
network for training.

During the PSO optimization process, the response curves of different weight coeffi-
cients are classified by the trained LSTM network to account for various driving experiences.
By incorporating the optimization of weight coefficients using the PSO algorithm and con-
sidering the fuzzy evaluation of driving feeling through the trained LSTM network, the
proposed approach aims to enhance both the efficiency and driving experience of the
DDEVs motion control. The optimized weight coefficients contribute to achieving desired
control performance, while the consideration of driving feeling adds a human-centric aspect
to the control system. This integration of optimization and subjective evaluation provides
a more comprehensive and tailored control strategy for the DDEV, further improving its
overall performance.

In this paper, we offer a simplified control structure by replacing multiple controllers
with a single controller, enhancing the system handling quality. The primary objective of
the MPDMC approach is to simultaneously control the longitudinal and lateral motion of
the vehicle while considering efficiency and the driving feeling. The main contributions of
this article can be summarized as follows:

• Introduction of a simplified control structure: The MPDMC strategy replaces the
traditional motion control system, which typically requires one vehicle handling con-
troller and four motor controllers, with a streamlined control structure that integrates
the control of three motion directions into a single controller. This simplification
improves the handling quality of the system and reduces the system complexity.

• Optimization considering efficiency and driving feeling: The paper presents a com-
prehensive cost function that balances control accuracy and efficiency. This cost
function takes into account various control objectives and constraint conditions. Addi-
tionally, the integration of a subjective driving feeling evaluation, achieved through a
trained LSTM neural network, allows for a more balanced and tailored control strategy.
The optimization process, utilizing the particle swarm optimization (PSO) algorithm,
determines the weight parameters associated with different terms in the cost function,
enhancing the overall control performance.

This article is organized as follows. Section 2 presents a unified mathematical model
of DDEV. Then, the proposed MPDMC strategy is detailed in Section 3. Furthermore,
Section 4 details the construction of the cost function of MPDMC. Section 5 focuses on
the cost functions considering driving feeling using an LSTM neural network. Section 6
introduces the PSO optimization of MPDMC considering the driving feeling through LSTM.
Finally, the proposed algorithm is evaluated in Sections 7 and 8 concludes this paper.
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2. Model of DDEV
2.1. Dynamics Model

The dynamics model is shown in Figure 1 and encompasses three fundamental com-
ponents: longitudinal movement, lateral movement, and yaw movement. Each of these
components contributes to the overall motion of the vehicle body on the plane. The
dynamics equations governing these movements are outlined below:

Longitudinal Movement:

m
dvx

dt
=mvyr + cos δ(Fx f l + Fx f r)

− sin δ(Fy f l + Fy f r) + Fxrl + Fxrr

(1)

Lateral movement:

m
dvy

dt
=−mvxr + sin δ(Fx f l + Fx f r)

+ cos δ(Fy f l + Fy f r) + Fyrl + Fyrr

(2)

Yaw movement:

Jz
dr
dt

=(−d f l cos δ + l f sin δ)Fx f l

+ (d f r cos δ + l f sin δ)Fx f r

− drl Fxrlr + drrFrr + l f cos δ(Fy f l + Fy f r)

+ d f l sin δFy f l − d f r sin δFy f r − lr(Fyrl + Fyrr)

(3)

where vx, vy, and r are the longitudinal speed, lateral speed, and yaw rate of DDEV;
Fx f l , Fx f r, Fxrl , and Fxrr are the longitudinal forces experienced by the front left wheel, front
right wheel, rear left wheelm and rear right wheel, respectively; Fy f l , Fy f r, Fyrl , and Fyrr are
the lateral tire forces of the four wheels; δ is the front steering angle; m is the vehicle mass;
l f and lr are the distances from the center of gravity to the front and rear axles; and Jz is the
yaw moment of inertia of the vehicle. To simplify the model, we omit the consideration
of forces resisting motion, such as aerodynamic forces or rolling friction, converting such
forces to the traction torque of the four wheels. This simplification is made to streamline
the motion model and focus on the core aspects of the proposed MPDMC strategy. If a
more comprehensive representation of the vehicle dynamics is desired, it is indeed possible
to introduce these forces into the motion model. Incorporating these factors would make
the model predictive control more accurate, albeit at the cost of an increased complexity.

2.2. In-Wheel Motor Model

The dynamic model of the in-wheel motor is as follows:

Jw
ωij

dt
= Teij − RFxij (4)

where i = f , r is the front and rear wheel, j = l, r is the left and right wheel, Teij is the
electric torque generated by the four in-wheel motors, Jw is the inertia of the wheel, R is the
radius of the wheel, and ωij is the wheel speed.

This study focuses on utilizing permanent magnet synchronous motors (PMSMs)
as the in-wheel motors due to their numerous advantages. PMSMs offer a high power
density and efficiency, a precise torque control, a wide speed range and reliability, and
compatibility with advanced control techniques. These qualities make PMSMs an ideal
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choice for exploring and evaluating control strategies in electric motor systems. The voltage
and torque model at the d-q axis is as follows:

didij
dt = − Rs

Ld idij + ωeijiqij +
udij
Ld

diqij
dt = − Rs

Ld iqij −ωeijidij +
uqij
Lq −

ψ f
Lq ωeij

(5)

Teij = 3/2pψ f iqij (6)

where udij, idij and uqij, iqij are the d- and q-axis stator voltages and currents of ij-th motor,
respectively; p is the number of poles; Rs, Ld, and Lq are the stator resistance and the dq
axis inductance; and ψ f is the magnetic flux linkage.

vy

β

vxr

lf

Fyfl

Fxfl

δ

Fyfr

Fxfr

δ

lr

Fxrl

Fyrl

Fxrr

Fyrr

drl

drr

dfr

dfl

(a)

Fxij
Fzij

R

ωij

Fxij
Fzij

R

ωij

(b)

Figure 1. Dynamics model. (a) Vehicle dynamics model. (b) Wheel dynamics model.

The relationship between Teij and Fxij can be approximated as:

Teij = FxijR (7)

2.3. Unified Model

Combining the mathematical models of the vehicle and motors, one can obtain the
unified mathematical model: {

ẋ = f(x, u)
y = h(x)

(8)

where x = [x1|x2]T = [vx vy r| idij iqij]
T is a 11 × 1 state variable matrix;

u = [udij|uqij]
T is a 8 × 1 control variable matrix; and y = [y1|y2]T = [vx vy r| idij]

T

is a 7 × 1 output variable matrix.

3. Proposed MPDMC Strategy

A novel strategy called MPDMC is introduced in this paper, which has the capability
to predict future vehicle body states within a limited time frame and generate the optimal
voltage vector combination for in-wheel motor drive systems. Figure 2 illustrates the
structure of the MPDMC strategy.
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Figure 2. The proposed MPDMC strategy.

3.1. Reference Inputs

The reference inputs of the system are driving commands from the driver, including
the longitudinal speed vxre f and the steering angle σ. The proposed motion control strategy,
MPDMC, aims to control the longitudinal and lateral motion of the vehicle simultaneously.
To clarify, when a driver wants to steer the vehicle, they turn the steering wheel, which
results in a corresponding steering angle σ. There are two aspects involved in the steer-
ing process. Firstly, the mechanical structure of the vehicle associates each steering angle
with a corresponding steering angle for the front wheels. This mechanical relationship
ensures the vehicle steers in response to the driver’s input. Secondly, the steering angle σ is
fed into the MPDMC controller. Through a torque distribution algorithm, the MPDMC con-
troller calculates the desired reference torques for each of the four wheels. These reference
torques are then used to control the four-wheel torques by adjusting the applied voltages
using the MPDMC strategy. This control process ensures that the vehicle turns with a low
slip rate and tire slip rate, optimizing the steering performance.

3.2. Discretization of the Mathematical Model

To implement the MPDMC system on a microprocessor, it is necessary to discretize
the unified continuous mathematical model of the vehicles and motors. The vehicle
discretization sampling time, denoted as Tsv, should be chosen as an integer multiple of the
motor discretization sampling time Tsm, such that Tsv = nTsm (where n is an integer). The
motor voltage equation is discretized using the forward Euler method:

ik+1
dij =

(
1− RsTsm

Ld

)
ik
dij + Tsmik

qijω
k
eij +

RsTsm
Ld

uk
dij

ik+1
qij =

(
1− RsTsm

Lq

)
ik
qij − Tsmik

dijω
k
eij

−ψ f Tsm
Lq

ωk
eij +

Tsm
Lq

uk
dij

(9)

where the superscript k represents the kth instant in the motor time domain.
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

m ∆vx(K)
Tsv

= mvy(K)r(K) + cos δ(Fx f l(K) + Fx f r(K))

− sin δ(Fy f l(K) + Fy f r(K)) + Fxrl(K) + Fxrr(K)

m ∆vy(K)
Tsv

= −mvx(K)r(K) + sin δ(Fx f l(K) + Fx f r(K))

+ cos δ(Fy f l(K) + Fy f r(K)) + Fyrl(K) + Fyrr(K)

Jz
∆r(K)

Tsv
= (−d f l cos δ + l f sin δ)Fx f l(K) + Fx f r(K)

+(d f r cos δ + l f sin δ)− drl Fxrlr(K) + drrFrr(K)

+l f cos δ(Fy f l + Fy f r)− lr(Fyrl(K) + Fyrr(K))

+d f l sin δFy f l(K)− d f r sin δFy f r(K)

(10)

where the superscript K represents the Kth instant in the motor time domain, ∆vx(K) =
vx(K + 1)− vx(K), ∆vy(K) = vy(K + 1)− vy(K), and ∆r(K) = r(K + 1)− r(K).

The specific timing diagram of MPDMC is shown in Figure 3. Taking the moment t
in the motor time domain as an example, firstly, the dq-axis current and electrical angular
velocity of the motor at time k, as well as the longitudinal velocity, lateral velocity, and
yaw rate of the vehicle at time K, are collected. Then, based on the candidate voltage
vector combinations, the dq-axis current of the four wheel hub motors at time k + 1, as
well as the longitudinal velocity, lateral velocity, and yaw rate at time K + 1, are predicted.
Subsequently, using these predicted values and their corresponding target values, an
evaluation function is designed to select the voltage vector combination that minimizes
the evaluation function value, which is then output to the inverter. The following sections
will provide detailed explanations of the evaluation function design and the selection of
candidate voltage vector combinations.

k(K)

k and K state sampling
k+1 and K+1 state prediction

k optimal vectors decision

Output optimal vectors

Holding

k+1k(K)

k and K state sampling
k+1 and K+1 state prediction

k optimal vectors decision

Output optimal vectors

Holding

k+1

Figure 3. Prediction process at the kth instant.

3.3. Inverter Voltage Vectors

For a three-phase voltage source inverter of the ijth wheel, the output voltages of three
motor phases, referred to as their star point, can be expressed as:

Uabc =
[
Ua Ub Uc

]
=

Udc
3

 2 −1 −1
−1 2 −1
−1 −1 2

[Sa Sb Sc
]

(11)

where Uabc = [Ua Ub Uc]T represents the phase voltages at the terminals and [Sa Sb Sc]T

represents the states of the three-phase inverter switches. There are a total of 23 combina-
tions: [0 0 0]T , [0 0 1]T , [0 1 0]T , [0 1 1]T , [1 0 0]T , [1 0 1]T , [1 1 0]T , [1 1 1]T . Udc represents
the bus voltage.

4. Cost Functions of MPDMC

To achieve the accurate and stable operation of DDEV systems, the control objectives
of the vehicle can be divided into three main parts. Firstly, the longitudinal velocity is
chosen as the control objective to ensure the vehicle’s longitudinal motion. Secondly, to
stabilize the vehicle’s control, the yaw rate and the lateral deviation angle of the center of
mass are typically used as control objectives. Based on the two-degree-of-freedom vehicle
model, the desired values for the yaw rate and the lateral deviation angle of the center of
mass can be obtained. Thirdly, in order to increase the electric vehicle’s driving range, we
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have included a loss term in the cost function to evaluate the power losses at the next time
step for different voltage vector combinations.

4.1. Longitudinal Velocity Control Objective

In order to accurately control the velocity of a vehicle, the cost function of the longitu-
dinal velocity is defined as:

Cv = ||vK+1
xre f − vK+1

x ||2 (12)

The longitudinal velocity of a vehicle is controlled through the output torque of the
four in-wheel motors, which is generated under different voltage vectors.

4.2. Stability of the Vehicle

To achieve stable operation of DDEV systems, the given values for the yaw rate and the
lateral displacement of the center of mass can be obtained from the two-degree-of-freedom
vehicle model. The values of rre f 0 and βre f 0 for DDEV are determined by calculating the
steady state of a two DOF linear bicycle model, which focuses solely on tire lateral forces
and utilizes a linear model [8,14,24]:

rK+1
re f 0 =

vK
x

(l f + lr)(1 + r(vK
x )

2)
δK (13)

βK+1
re f 0 =

lr −
l f m(vK

x )
2

2c f (l f +lr)

(l f + lr)(1 + β1(vK
x )

2)
δK (14)

where β1 = m(lrcr − l f c f )/(2c f cr(l f + lr)2) and c f and cr represent the lateral stiffness of
the front and rear tires, respectively. Taking into account the conditions of the tires and
road surface, the constraint conditions for the yaw rate and lateral displacement of the
center of mass are as follows:

rK+1
re f =

{
rK+1

re f 0 |rK+1
re f 0 | ≤ rmax

rmaxsign(rK+1
re f 0 ) |r

K+1
re f 0 | > rmax

(15)

βK+1
re f =

{
βK+1

re f 0 |βK+1
re f 0 | ≤ βmax

βmaxsign(βK+1
re f 0 ) |β

K+1
re f 0 | > βmax

(16)

where rmax = 0.85 µg/vK
x , βmax = arttan(0.02 µg) is the limit of the yaw rate and lateral

displacement, µ is the road adhesion coefficient, and g is gravitational acceleration.
In this way, the cost function of the stability of a vehicle consists of the yaw rate control

error and the lateral deviation angle:

Cr =

{
||rK+1

re f − rK+1||2 |rK+1| ≤ rmax

in f |rK+1| > rmax
(17)

Cβ =

{
||βK+1

re f − βK+1||2 |βK+1| ≤ βmax

in f |βK+1| > βmax
(18)

The condition in the second line is used to prevent the variables rK+1 and βK+1 from
exceeding the specified limits (rmax and βmax).

4.3. Efficiency of DDEVs

In this paper, we focus on the power loss of the inverter and the motor, discarding
other power losses such as those of the battery and transmission system. It is worth noting
that we do not propose power loss optimal motor control methods. There is a number
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of previous works providing extensive algorithms to minimize the power loss of motor
control systems. We introduce such information to enhance the MPDMC performance.

4.3.1. Power Loss of the Inverter

Various methods are described in the scientific literature for evaluating power elec-
tronic converter losses [25,26] and establishing an appropriate energy model. The simplest
approach is to treat the power converter as an equivalent resistive load, where the internal
power losses are proportional to the square of the current flowing through it. As most
power converters adopt a three-phase inverter topology, the expression for the power loss
can be formulated as PLossInv = 3Rinv I2, where Rinv represents the equivalent resistance

of the inverter and I =
√

i2d + i2q denotes the instantaneous current of the inverter output
phase (equivalent to the RMS current of the input electromagnetic phase).

4.3.2. Power Loss of the PMSM

The loss analysis of the PMSM is a challenging problem. Simply put, motor losses are
mainly composed of copper losses and iron losses, which have been extensively discussed
in numerous papers [27–29]. However, the actual motor losses are influenced by more
complex factors. On the one hand, the parameters of the motor change dynamically during
operation with variations in current and temperature. The specific static parameters of
the motor used in this paper are shown in Table 1. During dynamic operation, the dq-axis
inductance undergoes certain changes, as illustrated in Figure 4. On the other hand, the
harmonics, friction loss in the bearings, and winding loss effects are all aspects that affect
the power loss [30].

Table 1. Parameters of PMSM and vehicles.

Symbol Quantity Value

mv Vehicle mass 1152 kg
R Tire radius 0.35 m
l f Center to front axle distance 1.050 m
lr Center to rear axle distance 1.569 m
d f Distance between front wheels 1.565 m
dr Distance between rear wheels 1.565 m
c f Front tire cornering stiffness 79,240 N/rad
cr Rear tire cornering stiffness 87,002 N/rad
p Poles 4

Rs Stator resistance 34.3 mΩ
Ld D-axis inductance 0.72 mH
Lq Q-axis inductance 1.79 mH
ψ f Flux linkage 0.164 Wb
Jw Wheel inertia 59.6 × 10−6 kg·m2

ωm Rated speed 2850 rpm
Te Rated torque 60 N·m

4.3.3. Maximum Efficiency Operating Map

Due to the aforementioned reasons and limitations in terms of space, the efficiency
operating chart of the motor is directly presented in this paper. Under specific operating
conditions, the optimal given values of dq-axis currents are shown in Figure 5. When
the speed exceeds the rated speed, motor weakening techniques are typically employed.
However, the specific optimization of PMSM operation is beyond the scope of this paper. In
Figure 5, we consider the weakening and power loss to obtain the optimal Id. Due to space
limitations, we are unable to provide a detailed analysis in this regard. The efficiency chart
of the motor and the efficiency chart of the motor with an inverter are depicted in Figure 6.
Under different operating conditions, the given values of q-axis currents are calculated by
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the model, then the optimal d-axis currents idopt are obtained directly through consulting
the table. The corresponding cost function for power losses is as follows:

Cl =

{
||iK+1

dopt − iK+1
d ||2 sqrt((iK+1

d )2 + (iK+1
q )2) ≤ Imax

in f sqrt((iK+1
d )2 + (iK+1

q )2) > Imax
(19)

(a) (b)

Figure 4. Dynamic parameters map. (a) D-axis inductance. (b) Q-axis inductance.

The condition in the second line is used to prevent the current from exceeding the
maximum current Imax.

(a) (b)

Figure 5. Optimal operating dq-axis current with maximum efficiency. (a) Optimal Id. (b) Optimal Iq.

(a) (b)

Figure 6. Efficiency map. (a) Efficiency of PMSM. (b) Efficiency of motor driver.
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4.3.4. Entire Cost Function of MPDMC

Based on the above factors, the entire cost function of MPDMC is constructed as
their sum:

C = λvCv + λrCr + λβCβ + λlCl (20)

where λv, λr, λβ, and λl represent the weighting coefficients for longitudinal velocity,
steering angle, yaw angle, and losses, respectively. These coefficients directly influence the
selection of the optimal voltage vector in MPDMC. A higher value of the corresponding
weighting coefficient increases the impact of the respective term during model predic-
tion. However, overweighting coefficients can lead to an insufficient influence from other
terms. Therefore, it is necessary to balance these coefficients in order to achieve the best
overall control (Figure 7).
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Figure 7. The optimization process based on PSO.

5. Optimization of Cost Functions Considering Driving Feeling

In this section, we will introduce the evaluation of driving feeling using an LSTM
neural network.

5.1. Typical Labeled Data

The driving feeling of the driving environment is a critical aspect of autonomous
vehicles, as it involves understanding and interpreting the surrounding objects, road
conditions, and potential hazards. Traditional approaches to evaluating the driving feeling
often rely on rule-based systems or handcrafted features, which may have limitations in
capturing complex and dynamic driving scenarios. In this paper, we focus on the driving
feeling associated with the acceleration of longitudinal velocity. The requirement for electric
torque for each in-wheel motor at different initial speeds is shown in Figure 8. To generate
the curves, an experimental setup was designed to collect data on various driving scenarios
and conditions. After collecting the data, a group of consumers participated in labeling the
driving feelings based on their subjective perceptions and experiences. They evaluated the
driving characteristics and provided feedback on the corresponding torque references for
each driving feeling. In each figure, there are 13 curves for the initial speeds of 0, 10, 20,
. . . , 120 km/h marked in different colors. There are three typical driving modes that can
be referred to as “ecology conservation optimization”, “normal”, and “sport”, commonly
abbreviated as “Eco”, “Nor”, and “Spt”, respectively. These driving modes represent
different preferences in terms of vehicle performance and efficiency. The “Eco” mode
focuses on maximizing fuel efficiency and minimizing the environmental impact. The “Nor”
mode represents a balanced driving style that is suitable for everyday driving conditions.
The “Spt” mode emphasizes a more dynamic and sporty driving experience, with increased
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responsiveness and performance. These driving modes allow drivers to select a preferred
driving style based on their individual preferences and driving conditions.

The purpose of training a neural network in this study is for it to serve as a fuzzy
cost function to evaluate the performance of the proposed motion control strategy under
different weighting parameters. This allows the network to classify and evaluate the
driving performance based on the given input parameters. By incorporating the trained
neural network as a fuzzy cost function, the proposed motion control strategy can adapt
its control decisions based on the desired driving feeling. The weighting parameters in
the cost function can be adjusted to prioritize certain driving modes or optimize specific
performance criteria.
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Figure 8. Typical required torque vs. acceleration with driving feeling labeled as “Eco”, “Nor”, and
“Spt”. (a) Labeled ’Eco’. (b) Labeled ’Nor’. (c) Labeled ’Spt’.

5.2. LSTM Training

LSTM is widely used for the prediction and classification of time-series or sequence
data, e.g., ECG [31,32], sleep apnea [33], and human activities [34]. As shown in Figure 9a,
a typical LSTM cell has a memory cell, an input gate, and a forget gate in addition to the
hidden state in traditional recurrent neural networks [33,35]. Considering the low amount
of training data, we use the dropout technique to randomly drop 20% of the weights during
the training process. The LSTM model is shown in Figure 9b. The number of memory cells
is set to 100 × 3 and the initial learning rate is set to 0.01. The training process was run for
50 epochs and the training data were shuffled at each epoch to maximize the representability
and minimize the variance. The training processes were implemented in MATLAB 2021b.
Figure 10 shows the training accuracy and loss functions during the process using the raw
sequence data. After training for 100 iterations, the accuracy gradually converges to the
final value of about 98%.

Ct−1

σ
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tanh

(a)

LSTM-cellLSTM-cell LSTM-cellLSTM-cell LSTM-cellLSTM-cellLSTM-cell LSTM-cell LSTM-cell
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(b)

Figure 9. Efficiency map. (a) LSTM cell. (b) LSTM model.
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Figure 10. Training progress.

6. PSO Optimization

In this section, we use the trained LSTM network to evaluate the performance of
different weighting parameters and search for the optimal parameters through PSO.

Fitness Function

The fitness function of optimization consists of two parts: the traditional cost function
of MPDMC and the driving feeling. The former is similar to Equation (20), and the latter is
generated by the trained LSTM. Notably, the traditional cost function in the fitness function
is calculated by the response of the DDEV simulation rather than a simple model of DPDMC.
In this, the power loss is calculated by the difference between the input power and the
output power. Furthermore, the control accuracy is obtained by the error in the reference
and feedback for the longitudinal velocity, the yaw rate, and the lateral displacement.

f =λv

∫
Cvdt + λr

∫
Crdt + λβ

∫
Cβdt

+ λl

∫
||(Pin − Pout)||2dt + λd||Dre f −L(TΣ

e )||2
(21)

where λd is the weighting parameter of the driving feeling, Dre f = 1, 2, 3 is the driving feel-
ing command from drivers, TΣ

e = [T1
e , T2

e , . . . TK
e ] is the time sequence of electric torque for

in-wheel PMSM, and L(·) is the classification function of the trained LSTM neural network:

L(TΣ
e ) =


1 (if labeled as ‘Eco’)
2 (if labeled as ‘Nor’)
3 (if labeled as ‘Spt’)

(22)

7. Evaluation
7.1. Settings

To validate the effectiveness of the proposed model of predictive direct motion control,
numerical simulations were conducted using MATLAB and CarSim software. The standard
D series SUV in CarSim was selected as the control object for the simulations, and the key
parameters of the vehicle are listed in Table 1. The verification method has two MPDMCs,
where the subscript 0 represents those that have not undergone parameter optimization,
and the subscript ’opt’ represents those that have undergone parameter optimization. The
proposed control strategy will be validated under the following two scenarios:

A. Acceleration and a double lane change: The vehicle will first decelerate from
70 km/h to 50 km/h and then accelerate to 80 km/h. The vehicle will travel on a double
line change condition, thereby simultaneously verifying the vehicle’s performance in both
longitudinal and lateral directions. We analyzed three driving modes to validate the fuzzy
evaluation based on the trained LSTM.
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B. Under different road adhesion coefficients with a double lane change: The ve-
hicle operates under different road adhesion coefficients (µ = [0.3, 0.4, 0.5]). This case
focuses on analyzing the control performance specifically in relation to slip rates, rather
than considering different driving modes. Thus, we omit the ‘Eco’ and ‘Spt’ driving modes.

The weights are set to constant values (0.1, 0.2, 10, and 5) for all cases based on prior
experience. For different cases, the optimal weights need to be optimized separately.

7.2. Case A
7.2.1. “Nor” Mode

The cost function graph is shown in Figure 11. Within 200 iterations, the cost function
gradually decreases from 0.205 to 0.175. It reaches the optimal value around 100 iterations
and remains unchanged at 0.175 thereafter. The optimized weights used are [2.0 0.5 8 20],
determined through the optimization process to achieve faster longitudinal and lateral
responses in this particular scenario. The simulation results are illustrated in Figure 12. In
Figure 12a, the vehicle, under MPDMCopt, achieves precise tracking of the desired longitu-
dinal velocity with zero error. However, MPDMC0 exhibits a noticeably inferior control
performance compared to MPDMCopt. Particularly, at times of 4 s and 6 s,x when the
vehicle begins the double lane change, the nonoptimized weight coefficients in MPDMC0
fail to effectively balance the coupling relationship between longitudinal and lateral mo-
tion variables. Figure 12b,c depict the vehicle’s yaw rate and sideslip angle, respectively.
Significant fluctuations are observed under MPDMC0, whereas MPDMCopt ensures a more
stable lateral stability. Figure 12d,f show the vehicle’s trajectory and lateral position error,
indicating a slightly larger lateral position error in MPDMC0 compared to MPDMCopt. In
Figure 12e, the tire longitudinal slip rate is presented, and it is evident that the fluctuations
in the tire slip ratio are significantly reduced under MPDMCopt compared to MPDMC0.
The comparison of simulation results highlights the substantial influence of the weight
coefficients on both the longitudinal and lateral motion control of the vehicle. Through pa-
rameter algorithm optimization, MPDMCopt achieves optimal performance in longitudinal
velocity control and lateral stability control, thus confirming the necessity and effectiveness
of the parameter optimization algorithm. The method MPDMCopt with superscripts “0”
and “1” denotes model predictive control without and with resistance, respectively. The
simulation results of MPDMC0, MPDMC0

opt, and MPDMC1
opt provide clear evidence that

drag plays an important role in vehicle dynamics. Specifically, the omission of drag ob-
served in MPDMC0

opt causes high-frequency oscillations in the predicted behavior of the
vehicle, which is evident in the graph related to the tire slip ratio. However, after the drag
was included in MPDMC1

opt, we observed a significant reduction in these high-frequency
oscillations. This finding further verifies the importance of considering drag in vehicle
models for accurately predicting and controlling vehicle behavior.
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Figure 11. The cost function in iterations.
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Figure 12. Results of Case A for the “Nor” mode. (a) Longitudinal velocity. (b) Yaw rate. (c) Sideslip
angle. (d) Track. (e) Lateral offset. (f) Tire slip rate.

7.2.2. “Spt” and “Eco” Mode

The simulation results for the “Spt” (sport) mode and “Eco” (economy) mode are
illustrated in Figures 13 and 14, respectively. In comparison to the “Nor” (Normal) mode,
the “Spt” mode showcases a more aggressive approach to acceleration and deceleration,
aiming to achieve a faster response speed. This is evident in the higher slide slip rate and
tire slip rate, reaching up to 0.8 and 0.12 radians, respectively.

On the contrary, the “Eco” mode exhibits a more balanced approach, considering
that higher acceleration levels result in greater energy consumption. Consequently, the
corresponding slide slip rate and tire slip rate in “Eco” mode are lower, reaching a maximum
of 0.5 and 0.02 radians, respectively.
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Figure 13. Results of Case A for the “Spt” mode. (a) Longitudinal velocity. (b) Yaw rate. (c) Sideslip
angle. (d) Track. (e) Lateral offset. (f) Tire slip rate.

7.3. Case 2

This part of the simulation is primarily aimed at validating the optimization effects of
the parameter optimization algorithm under different road adhesion conditions represented
by the coefficient µ. The simulation results are depicted in Figure 15. The optimized weights
used were [6.3 0.4 6 2], selected after a process to optimize the slide slip rate, the tire slip
rate, and the driving feeling for this specific situation. Figure 15a showcases the vehicle’s
performance in low-µ longitudinal motion. Through the parameter optimization algorithm,
the vehicle maintains the same longitudinal velocity response across three different µ
values. Figure 15b,c demonstrate the validation of the vehicle’s lateral stability under low-µ
conditions. Although there is a slight decline in lateral stability when µ = 0.3, overall, the
vehicle manages to maintain a consistent lateral control. In Figure 15d,e, the vehicle’s
trajectory and lateral position errors remain the same for µ = 0.4 and µ = 0.5, with minimal



Sensors 2023, 23, 6324 17 of 20

fluctuations observed at µ = 0.3. In Figure 15f, the tire longitudinal slip ratio similarly
reflects an increase at µ = 0.3 but still within a stable range. It is evident that through
the proposed parameter optimization algorithm, not only can the vehicle maintain stable
motion under low-µ conditions, but it can also eliminate the impact of different µ values,
ensuring the vehicle consistently maintains optimal performance in motion control.
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Figure 14. Results of Case A for ’Eco’ mode. (a) Longitudinal velocity. (b) Yaw rate. (c) Sideslip angle.
(d) Track. (e) Lateral offset. (f) Tire slip rate.
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Figure 15. Results of Case 2. (a) Longitudinal velocity. (b) Yaw rate. (c) Sideslip angle. (d) Track.
(e) Lateral offset. (f) Tire slip rate.

8. Conclusions

A novel motion control strategy for distributed drive electric vehicles (DDEVs) called
model predictive direct motion control (MPDMC) was presented in this paper, which
aimed to simultaneously control the longitudinal and lateral motion of the vehicle while
considering efficiency and the driving feeling. First, we analyzed the dynamic model of
the vehicle, taking into account both the vehicle body and the in-wheel motors. Then, we
proposed MPDMC conducted on a single CPU to directly follow the driver’s commands by
generating voltage references with a minimum cost function, which consisted of the longi-
tudinal velocity, yaw rate, lateral displacement, and efficiency. The weighting parameters
of the cost function were extensively analyzed, and an optimization algorithm based on
particle swarm optimization (PSO) was introduced to determine the optimal parameter
values. Third, the driving feeling was considered by evaluating it using a trained LSTM
network. The LSTM network provided labels for the response under different weighting



Sensors 2023, 23, 6324 19 of 20

parameters, classifying them as “Nor”, “Eco”, and “Spt”. The accuracy of the trained LSTM
was up to 98 percent. Finally, the performance of the optimized MPDMC was evaluated
through extensive simulations conducted using MATLAB and CarSim software. After
100 iterations of optimization, the cost function under one specific work condition was
improved from 0.205 to 0.176, an improvement of 14.1 percent. Typical scenarios under
different driving feelings were considered for evaluation. The results demonstrated that
the optimized MPDMC outperformed the baseline methods, achieving a better overall
performance with a faster response, lower slideslip rate, and lower tire slip rate. In the
future, we will study the simplification of neural network training under all working
conditions and a method to optimize these conditions quickly.
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