Patch-Transformer Network: A Wearable-Sensor-Based Fall Detection Method
Abstract
:1. Introduction
2. Related Work
2.1. Non-Wearable Sensors
2.1.1. Vision-Based Sensors
2.1.2. Ambient Sensors
2.2. Wearable Sensors
3. Materials and Methods
3.1. Datasets
3.2. Data Preprocessing
3.3. Patch-Transformer Network Algorithm
4. Results
4.1. Training and Testing Strategy
4.2. Evaluation Indicators
4.3. Model Parameters
4.4. Ablation Experiments
4.5. Comparison with Existing Methods
5. Discussion
5.1. Impact of Local Feature Extraction on Model
5.2. Model Complexity Analysis
5.3. The Impact of Wearable Sensor Use on Algorithms
5.3.1. Effect of Sample Distribution
5.3.2. Large-Scale Datasets Required
5.3.3. Impact of Sensor Accuracy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 2013, 12, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajagopalan, R.; Litvan, I.; Jung, T.P. Fall prediction and prevention systems: Recent trends, challenges, and future research directions. Sensors 2017, 17, 2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vellas, B.J.; Wayne, S.J.; Romero, L.J.; Baumgartner, R.N.; Garry, P.J. Fear of falling and restriction of mobility in elderly fallers. Age Ageing 1997, 26, 189–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usmani, S.; Saboor, A.; Haris, M.; Khan, M.A.; Park, H. Latest research trends in fall detection and prevention using machine learning: A systematic review. Sensors 2021, 21, 5134. [Google Scholar] [CrossRef]
- Oumaima, G.; Hamd, A.A.; Youness, T.; Rachid, O.H.T.; Omar, B. Vision-based fall detection and prevention for the elderly people: A review & ongoing research. In Proceedings of the 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS), Fez, Morocco, 20–22 October 2021; pp. 1–6. [Google Scholar]
- Chaccour, K.; Darazi, R.; El Hassani, A.H.; Andres, E. From fall detection to fall prevention: A generic classification of fall-related systems. IEEE Sens. J. 2016, 17, 812–822. [Google Scholar] [CrossRef]
- Xefteris, V.R.; Tsanousa, A.; Meditskos, G.; Vrochidis, S.; Kompatsiaris, I. Performance, challenges, and limitations in multimodal fall detection systems: A review. IEEE Sens. J. 2021, 21, 18398–18409. [Google Scholar] [CrossRef]
- Mubashir, M.; Shao, L.; Seed, L. A survey on fall detection: Principles and approaches. Neurocomputing 2013, 100, 144–152. [Google Scholar] [CrossRef]
- Yu, M.; Gong, L.; Kollias, S. Computer vision based fall detection by a convolutional neural network. In Proceedings of the 19th ACM International Conference on Multimodal Interaction, Glasgow, Scotland, 13–17 November 2017; pp. 416–420. [Google Scholar]
- Hou, J.C.; Xu, W.M.; Chu, Y.C.; Hu, C.L.; Chen, Y.H.; Chen, S.; Hui, L. Cooperative Fall Detection with Multiple Cameras. In Proceedings of the 2022 IEEE International Conference on Consumer Electronics-Taiwan, Taipei, Taiwan, 6–8 July 2022; pp. 543–544. [Google Scholar]
- Bhattacharya, A.; Vaughan, R. Deep learning radar design for breathing and fall detection. IEEE Sens. J. 2020, 20, 5072–5085. [Google Scholar] [CrossRef]
- Saho, K.; Hayashi, S.; Tsuyama, M.; Meng, L.; Masugi, M. Machine learning-based classification of human behaviors and falls in restroom via dual doppler radar measurements. Sensors 2022, 22, 1721. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, S.B.; Villar, J.R.; Chira, C.; González, V.M.; De la Cal, E. Improving fall detection using an on-wrist wearable accelerometer. Sensors 2018, 18, 1350. [Google Scholar] [CrossRef] [Green Version]
- De Quadros, T.; Lazzaretti, A.E.; Schneider, F.K. A movement decomposition and machine learning-based fall detection system using wrist wearable device. IEEE Sens. J. 2018, 18, 5082–5089. [Google Scholar] [CrossRef]
- Bosch-Jorge, M.; Sánchez-Salmerón, A.J.; Valera, Á.; Ricolfe-Viala, C. Fall detection based on the gravity vector using a wide-angle camera. Expert Syst. Appl. 2014, 41, 7980–7986. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Yang, W.; Huang, W. A fall detection method based on a joint motion map using double convolutional neural networks. Multimed. Tools Appl. 2022, 81, 4551–4568. [Google Scholar] [CrossRef]
- Rougier, C.; Meunier, J.; St-Arnaud, A.; Rousseau, J. Fall detection from human shape and motion history using video surveillance. In Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW’07), Niagara Falls, ON, Canada, 21–23 May 2007; Volume 2, pp. 875–880. [Google Scholar]
- Agrawal, S.C.; Tripathi, R.K.; Jalal, A.S. Human-fall detection from an indoor video surveillance. In Proceedings of the 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, India, 3–5 July 2017; pp. 1–5. [Google Scholar]
- Ramirez, H.; Velastin, S.A.; Meza, I.; Fabregas, E.; Makris, D.; Farias, G. Fall detection and activity recognition using human skeleton features. IEEE Access 2021, 9, 33532–33542. [Google Scholar]
- Kong, X.; Meng, Z.; Meng, L.; Tomiyama, H. A privacy protected fall detection IoT system for elderly persons using depth camera. In Proceedings of the 2018 International Conference on Advanced Mechatronic Systems (ICAMechS), Zhengzhou, China, 30 August–2 September 2018; pp. 31–35. [Google Scholar]
- Hayashida, A.; Moshnyaga, V.; Hashimoto, K. The use of thermal ir array sensor for indoor fall detection. In Proceedings of the 2017 IEEE international conference on systems, man, and cybernetics (SMC), Banff, AB, Canada, 30 November 2017; pp. 594–599. [Google Scholar]
- Popescu, M.; Mahnot, A. Acoustic fall detection using one-class classifiers. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 3505–3508. [Google Scholar]
- Liu, L.; Popescu, M.; Skubic, M.; Rantz, M.; Yardibi, T.; Cuddihy, P. Automatic fall detection based on Doppler radar motion signature. In Proceedings of the 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, Dublin, Ireland, 23–26 May 2011; pp. 222–225. [Google Scholar]
- Bet, P.; Castro, P.C.; Ponti, M.A. Fall detection and fall risk assessment in older person using wearable sensors: A systematic review. Int. J. Med. Inform. 2019, 130, 103946. [Google Scholar] [CrossRef] [PubMed]
- Kusumah, I.H.; Mauludi, P.I.; Junfithrana, A.P.; Edwinanto. Wearable Fall Detection for Elderly with Simple Belt Design Using Android Application. In Proceedings of the 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED), Sukabumi, Indonesia, 5–6 August 2021; pp. 1–5. [Google Scholar]
- He, J.; Zhang, Z.; Wang, X.; Yang, S. A low power fall sensing technology based on FD-CNN. IEEE Sens. J. 2019, 19, 5110–5118. [Google Scholar] [CrossRef]
- Yhdego, H.; Li, J.; Morrison, S.; Audette, M.; Paolini, C.; Sarkar, M.; Okhravi, H. Towards musculoskeletal simulation-aware fall injury mitigation: Transfer learning with deep CNN for fall detection. In Proceedings of the 2019 Spring Simulation Conference (SpringSim), Tucson, AZ, USA, 29 April–2 May 2019; pp. 1–12. [Google Scholar]
- Musci, M.; De Martini, D.; Blago, N.; Facchinetti, T.; Piastra, M. Online fall detection using recurrent neural networks on smart wearable devices. IEEE Trans. Emerg. Top. Comput. 2020, 9, 1276–1289. [Google Scholar] [CrossRef]
- Yhdego, H.; Li, J.; Paolini, C.; Audette, M. Wearable sensor gait analysis of fall detection using attention network. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 9–12 December 2021; pp. 3137–3141. [Google Scholar]
- Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A fall and movement dataset. Sensors 2017, 17, 198. [Google Scholar]
- Micucci, D.; Mobilio, M.; Napoletano, P. Unimib shar: A dataset for human activity recognition using acceleration data from smartphones. Appl. Sci. 2017, 7, 1101. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Michel, P.; Levy, O.; Neubig, G. Are sixteen heads really better than one? Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar] [CrossRef]
- Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. A deep convolutional neural network-xgb for direction and severity aware fall detection and activity recognition. Sensors 2022, 22, 2547. [Google Scholar] [CrossRef] [PubMed]
- Waheed, M.; Afzal, H.; Mehmood, K. NT-FDS—A noise tolerant fall detection system using deep learning on wearable devices. Sensors 2021, 21, 2006. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, J.; Bogdan, M.; Classen, J.; Fricke, C. Support vector machine classifiers show high generalizability in automatic fall detection in older adults. Sensors 2021, 21, 7166. [Google Scholar] [CrossRef]
- Lu, X.; Ling, Y.; Liu, S. Temporal Convolutional Network with Wavelet Transform for Fall Detection. J. Sens. 2022, 2022, 7267099. [Google Scholar] [CrossRef]
- Xu, T.; Se, H.; Liu, J. A two-step fall detection algorithm combining threshold-based method and convolutional neural network. Metrol. Meas. Syst. 2021, 28. [Google Scholar] [CrossRef]
Parameters | SisFall | UnMib SHAR |
---|---|---|
Batch size | 16 | 32 |
Epochs | 50 | 50 |
Optimizer | Adam | Adam |
Learning rate | 0.001 | 0.001 |
Lr* decay | 0.98 | 0.95 |
Predicted Fall | Predicted No-Fall | |
---|---|---|
Actual Fall | ||
Actual No-Fall |
Datasets | Window Size | Acc (%) | Sen (%) | Spe (%) | F1-Score (%) | Params (M) | Flops (M) | (ms) |
---|---|---|---|---|---|---|---|---|
SisFall | 1 s | 97.90 | 96.84 | 98.85 | 97.71 | 0.64 | 5.77 | 4.51 |
2 s | 99.86 | 100.0 | 99.76 | 99.45 | 0.77 | 6.91 | 4.58 | |
4 s | 99.50 | 98.94 | 99.80 | 99.43 | 1.05 | 9.43 | 4.80 | |
6 s | 99.48 | 98.86 | 98.98 | 99.28 | 1.32 | 11.87 | 4.92 | |
UnMib SHAR | 1 s | 98.97 | 99.30 | 99.31 | 98.47 | 0.06 | 0.50 | 1.36 |
2 s | 99.14 | 98.85 | 99.29 | 98.83 | 0.06 | 0.52 | 1.37 | |
3 s | 98.42 | 97.02 | 99.13 | 97.64 | 0.07 | 0.56 | 1.43 |
Method | Dataset | Signal | Results |
---|---|---|---|
FD-CNN [26] | SisFall | Accelerometer Gyroscope | Acc = 98.61% |
Sen = 98.62% | |||
Spe = 99.80% | |||
CNN+XGB [34] | SisFall | Accelerometer Gyroscope | Precision = 90.59% |
Sen = 88.25% | |||
Spe = 99.36% | |||
F1-score = 89.11% | |||
BiLSTM [35] | SisFall | Accelerometer Gyroscope | Acc = 97.41% |
Sen = 100% | |||
Spe = 95.45% | |||
Precision = 94.28% | |||
SVM [36] | SisFall | Accelerometer Gyroscope | Acc = 96.0% |
Sen = 99.0% | |||
Spe = 94.0% | |||
CNN+LSTM [37] | UnMib SHAR | Accelerometer | Acc = 99.11% |
TBM+CNN [38] | UnMib SHAR | Accelerometer | Acc = 97.02% |
Sen = 97.83% | |||
Spe = 96.64% | |||
PTN (Ours) | SisFall | Accelerometer Gyroscope | Acc = 99.86% |
Sen = 100.0% | |||
Spe = 99.76% | |||
F1-score = 99.45% | |||
PTN (Ours) | UnMib SHAR | Accelerometer | Acc = 99.14% |
Sen = 98.85% | |||
Spe = 99.29% | |||
F1-score = 98.83% |
Datasets | Local Feature | Acc (%) | Sen (%) | Spe (%) | F1-Score (%) |
---|---|---|---|---|---|
SisFall | - | 97.01 | 96.01 | 97.85 | 96.70 |
✔ | 99.86 | 100.0 | 99.76 | 99.45 | |
UnMib SHAR | - | 95.24 | 95.97 | 94.89 | 93.16 |
✔ | 99.14 | 98.85 | 99.29 | 98.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wu, J. Patch-Transformer Network: A Wearable-Sensor-Based Fall Detection Method. Sensors 2023, 23, 6360. https://doi.org/10.3390/s23146360
Wang S, Wu J. Patch-Transformer Network: A Wearable-Sensor-Based Fall Detection Method. Sensors. 2023; 23(14):6360. https://doi.org/10.3390/s23146360
Chicago/Turabian StyleWang, Shaobing, and Jiang Wu. 2023. "Patch-Transformer Network: A Wearable-Sensor-Based Fall Detection Method" Sensors 23, no. 14: 6360. https://doi.org/10.3390/s23146360
APA StyleWang, S., & Wu, J. (2023). Patch-Transformer Network: A Wearable-Sensor-Based Fall Detection Method. Sensors, 23(14), 6360. https://doi.org/10.3390/s23146360