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Abstract: Soft robotic grippers offer great advantages over traditional rigid grippers with respect to
grabbing objects with irregular or fragile shapes. Shape memory polymer composites are widely
used as actuators and holding elements in soft robotic grippers owing to their finite strain, high
specific strength, and high driving force. In this paper, a general 3D anisotropic thermomechanical
model for woven fabric-reinforced shape memory polymer composites (SMPCs) is proposed based
on Helmholtz free energy decomposition and the second law of thermodynamics. Furthermore, the
rule of mixtures is modified to describe the stress distribution in the SMPCs, and stress concentration
factors are introduced to account for the shearing interaction between the fabric and matrix and warp
yarns and weft yarns. The developed model is implemented with a user material subroutine (UMAT)
to simulate the shape memory behaivors of SMPCs. The good consistency between the simulation
results and experimental validated the proposed model. Furthermore, a numerical investigation
of the effects of yarn orientation on the shape memory behavior of the SMPC soft gripper was
also performed.

Keywords: soft robotic gripper; shape memory polymer composites; woven fabric reinforcement;
anisotropic; constitutive model

1. Introduction

Soft robotic grippers can perform complex tasks in uncertain environments where it
is difficult for rigid-bodied manipulators to perform tasks requiring flexibility. The main
challenge faced by soft robotic grippers is that their stiffness can be variable during the
grasping and transfer process [1]. During the grasping process, the stiffness of soft robotic
grippers should be low to effectively buffer external impacts in complex environments and
be able to adaptively grab irregularly shaped objects. During the object transfer process, the
stiffness of soft robotic grippers should be high to maintain their configuration. Thermally
induced shape memory polymer composites (SMPCs) are composed of thermally induced
shape memory polymers (SMPs) and reinforcement. SMPs are a class of smart materials
with the advantages of high stiffness, strength, and driving force, and SMPC-based soft
actuators can be easily integrated with other adaptive functional components [2,3]. Fur-
thermore, their stiffness varies with heat stimuli, which makes them a point of attraction in
the field of soft robotic grippers [4–7].

The incorporation of a constitutive model is imperative to capture the thermomechan-
ical and the shape memory behavior of SMPs and SMPCs. A great deal of research has
been conducted on the thermomechanical modeling of SMPs. The modeling approaches of
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SMPs can be divided into two main types: the phase-transition-modeling approach and the
viscoelastic modeling approach. The phase-transition-modeling approach assumes that
SMPs are composed of a rubbery phase and a glass phase and that shape memory behavior
can be realized by provoking the temperature induced transition between the glassy phase
and the rubbery phase [8–14]. The viscoelastic modeling approach is based on the essential
thermodynamic properties of SMPs and can be used to describe the entropy elasticity of
SMPs above the glass transition temperature and the viscoelastic behavior below the glass
transition temperature [15–22]. Moreover, there are also models that combine the concepts
of phase transition and viscoelasticity theory [23–27].

Evidently, the constitutive models for SMPCs are more complicated than pure SMPs
due to the introduction of reinforcements. Tan et al. [28] developed a constitutive model for
unidirectional, continuous, carbon-fiber-reinforced SMPCs within a small strain range, and
the effects of the inclination angle and the volume fraction of fiber on the thermomechanical
and shape memory properties of SMPCs were investigated. Gu et al. [29] developed
a finite strain viscoelastic model for unidirectional, continuous, fiber-reinforced SMPCs
with internal state variables and considered the anisotropic thermal properties of SMPCs
using a mesomechanics-based method. Li et al. [30] developed a thermomechanical model
to describe the temperature-dependent elastic constants of unidirectional carbon-fiber-
reinforced SMPCs with various fiber volume fractions based on the phase transition theory.
Wang et al. [31] developed a constitutive model for unidirectional carbon-fiber-reinforced
SMPCs that accounted for interfacial bonding strength. Hong et al. [32] developed a
constitutive model based on energy decomposition that accounted for thermal residual
stress. Su et al. [25] developed an anisotropic thermomechanical constitutive model for
woven-fabric-reinforced SMPCs and investigated the effects of fiber yarn orientation on
the shape memory properties of SMPCs. Although the above studies have made great
contributions to the modelling of SMPCs, more efforts are needed to improve the accuracy
of the corresponding models and facilitate their further development

In this paper, a novel 3D anisotropic thermomechanical model for thermally induced
woven-fabric-reinforced SMPCs is developed based on Helmholtz free energy decomposi-
tion and the second law of thermodynamics. The total Helmholtz free energy is decomposed
into the isotropic part of the matrix and the anisotropic part of the woven fabric. The energy
of matrix part can be further decomposed into a hyperelastic part and a viscoelastic part,
and the energy of the woven fabric part can be further decomposed into a hyperelastic
part through the action of fiber stretching and fiber–fiber shearing. Furthermore, the rule
of mixtures is modified to consider the stress distribution in the phases of the SMPCs,
and stress concentration factors are introduced to consider fiber–matrix and fiber–fiber
shearing interactions.

The paper is arranged as follows. Section 2 introduces a 3D anisotropic thermome-
chanical model for thermally induced woven-fabric-reinforced SMPCs. In Section 3, the
model determination protocols for the material parameters’ and model’s verification are
presented. Finally, the conclusions are drawn in Section 4.

2. Constitutive Model
2.1. Kinematics

In this section, a 3D anisotropic thermomechanical model for thermally induced
woven-fabric-reinforced SMPCs is proposed based on Helmholtz free energy decomposition
and the second law of thermodynamics along with the consideration of the temperature-
dependent interfacial effects of the SMPCs during the shape memory cycle. To keep matters
simple, the anisotropic thermal deformation and residual stress of the SMPCs were not
considered. The corresponding rheological model is shown in Figure 1. The subscripts m,
e, v, and f denote the single spring element of the matrix part, the spring in the Maxwell
element, the dashpot in the Maxwell element, and the single spring element of the fabric
part, respectively.
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In this case, perfect bonding between the fabric and matrix is assumed, which leads to
the following relation:

F f = Fm = F (1)

where F is the total deformation gradient.
F can be further decomposed into an elastic part Fe and a viscous part Fv:

F = Fe · Fv (2)

Then, the Cauchy–Green deformation tensors can be expressed as follows:

C = FT · F, B = F · FT

Cv = FT
v · Fv, Bv = Fv · FT

v

Ce = FT
e · Fe= (F · F−1

v
)T · F · F−1

v = F−T
v ·C · F−1

v

Be = Fe · FT
e = F · F−1

v ·
(
F · F−1

v
)T

= F ·Cv
−1 · FT

(3)

The Green–Lagrange tensors are denoted as follows:

E =
1
2
(C− I) Ee =

1
2
(Ce − I) (4)

where I is the second-order unit tensor.
The invariants of C and Ce can be defined as follows:

I1 = I1
m = I1

f tr(C), I2 = I2
m = I2

f
1
2

[
(trC)2 − tr(C)2

]
, I3 = I3

m = I3
f det(C)

I1
e = tr(Ce), I2

e = 1
2

[
(trCe)

2 − tr(Ce)
2
]
, I3

e = det(Ce)
(5)

The yarn orientation unit vectors in the original configuration are denoted as a0 and
b0, as shown in Figure 2a, and the yarn orientation unit vectors in the current configuration
are denoted as a, b, which can be formulated as follows:

a =
a0 · F
‖a0‖

b =
b0 · F
‖b0‖

(6)

The main modes of the deformation of the fabrics mainly include tension along the
yarn orientation and shearing between the weft and warp yarn. To analyze the mechanical
behavior of the fabrics, the invariants I4 and I7 are introduced [33]:

I4
a = a0 ·C · a0, I4

b = b0 ·C · b0
I7 = a0 ·C2 · b0

(7)
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2.2. Constitutive Model for Matrix SMPs

It can be seen from Figure 1 that the total Helmholtz free energy of SMPs ψmatrix can
be decomposed into ψm and ψe:

ψmatrix(C, Ce, T) = ψm(C, T) + ψe(Ce, T) (8)

Based on Equation (8),
.
ψmatrix can be formulated as

.
Ψmatrix =

∂Ψm

∂C
:

.
C +

∂Ψe

∂Ce
:

.
Ce +

∂Ψm

∂T

.
T +

∂Ψe

∂T

.
T (9)

The Clausius–Duhem inequality based on the second law of thermodynamics can be
expressed as follows [10]:

S :
.
E−

( .
Ψ +

.
Tη
)
− q · ∇T/T ≥ 0 (10)

where S is the second Piola–Kirchhoff stress tensor, η is entropy, q is the heat flux vector,
and ∇ represents the gradient operator.

Substituting Equations (4) and (9) into (10) leads to

1
2

[
S− 2 ∂ψm

∂C − 2F−1
v

∂ψe
∂Ce

F−T
v

]
:

.
C− 2Ce · ∂ψe

∂Ce
: Lv −

(
∂ψm
∂T + ∂ψe

∂T + η
) .

T
−q · ∇T/T ≥ 0

(11)

where Lv =
.
Fv · Fv

−1 is the velocity gradient tensor.
Equation (11) must account for arbitrary thermodynamic processes. Therefore, the

second Piola–Kirchhoff stress of matrix Smatrix and the velocity gradient tensor of the
viscoelastic part can be expressed as follows:

Smatrix = 2 ∂ψm
∂C + 2F−1

v ·
∂ψe
∂Ce
· F−T

v

Lv = 1
ζ Ce · ∂We

∂Ce

(12)

where ζ is a temperature-dependent viscosity parameter, which can be expressed as follows:

ζ(T) = φζ_l + ζ_h exp
(

A
T

)
(13)

where subscript l denotes parameters at Tl , which is the lowest temperature below the glass
transition temperature (Tg) in a thermomechanical test. Subscript h denotes the parameters
at Th, which is the highest temperature above Tg in a thermomechanical test. A is a material
parameter, while φ is a weight function, which can be expressed as follows:

φ =
1

1 + exp[g(T − Tr)]
(14)
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where g is a material parameter, and Tr is the reference temperature.
Here, the Mooney–Rivlin model is adopted for ψm and ψe:

ψm = C10
m

[(
I3
m
)− 1

3 I1
m − 3

]
+ C01

m

[(
I3
m
)− 2

3 I2
m − 3

]
+ 1

Dm

[(
I3
m
) 1

2 − 1
]2

ψe = C10
e

[(
I3
e
)− 1

3 I1
e − 3

]
+ C01

e

[(
I3
e
)− 2

3 I2
e − 3

]
+ 1

De

[(
I3
e
) 1

2 − 1
]2 (15)

where C10
m , C10

e , C01
m , C01

e , Dm, and De are temperature-dependent parameters, which can be
expressed as follows:

P(T) = φP_l + P_l exp
(

A
T

)
,
(

P = C10
m , C10

e , C01
m , C01

e , Dm, De

)
(16)

Here, the isochoric flow assumption (|Fv| = 1) leads to the following relation:

I3
m = I3

e Dm = De = D (17)

Based on Equations (12)–(17), the Cauchy stress of the matrix SMPs and the velocity
gradient of the viscoelastic part can be expressed as follows:

σmatrix =
(

I3
m
)− 1

2 F · Smatrix · FT

= 2C10
m
(

I3
m
)− 5

6
(

Bm − 1
3 I1

mI
)
+ 2C01

m
(

I3
m
)− 7

6
[(

I1
mI−Cm

)
Bm − 2

3 I2
mI
]

+2C10
e
(

I3
m
)− 1

2
(

I3
e
)− 1

3
(

Be − 1
3 I1

e I
)
+ 2C01

e
(

I3
m
)− 1

2
(

I3
e
)− 2

3[(
I1
e I−Ce

)
Be − 2

3 I2
e I
]
+ 2

D

((
I3
m
) 1

2 − 1
)

I

Lv = 1
ζ

{
C10

e
(

I3
e
)− 1

3
(

Ce − 1
3 I2

e I
)
+ C01

e
(

I3
e
)− 2

3
[(

I1
e I−Ce

)
Ce − 2

3 I2
e I
]

+ 1
D
(

I3
e
) 1

2

[(
I3
e
) 1

2 − 1
]

I
}

(18)

2.3. Constitutive Model for Fabric

The woven fabric yarn can be stretched along the fiber orientation and sheared at a
wider angle when a load is applied. Therefore, the total Helmholtz free energy of the fabric
ψ f abric can be decomposed into a fiber-stretching part ψten and a fiber-shearing part ψshr:

Ψ f abric

(
I4
a , I4

b , I7
)
= Ψten

(
I4
a , I4

b

)
+ Ψshr

(
I7
)

(19)

Here, the polynomial function of I4
a , I4

b was adopted for ψten, and I4
a , I4

b are assumed to
be equal to 1 under the following condition [33]:

Ψten
(

I4
a , I4

b
)
= k1

[(
I4
a − 1

)4
+
(

I4
b − 1

)4
]
+ k2

[(
I4
a − 1

)3
+
(

I4
b − 1

)3
]

+k3

[(
I4
a − 1

)2
+
(

I4
b − 1

)2
] (20)

where k1, k2, k3 are material parameters.
Here, the polynomial function of I7 was adopted for ψshr [33]:

Ψshr

(
I7
)
= k4

(
I7
)4

+ k5

(
I7
)3

+ k6

(
I7
)2

(21)

where k4, k5, k6 are material parameters.
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By substituting Equations (19)–(21) into Equation (10), the Cauchy stress of fabric can
be expressed as follows:

σ f abric =
(

I3)− 1
2 F · S f abric · FT

=
(

I3)− 1
2
[
2I4

a
∂Ψten

∂I4
a
−
(

I7 + a0 · b0
) ∂Ψshr

∂I7

]
a⊗ a

+
(

I3)− 1
2

[
2I4

b
∂Ψten

∂Ib
4
−
(

I7 + a0 · b0
) ∂Ψshr

∂I7

]
b⊗ b

+
(

I3)− 1
2 ∂Ψshr

∂I7 (a⊗ b + b⊗ a)

(22)

Generally, the total stress of SMPCs σ can be formulated using the rule of mixtures:

σ = vmσmatrix + v fσ f abric (23)

where vm, v f are the volume fractions of the matrix SMPs and fabric, respectively, and
vm + v f = 1.

However, as demonstrated in previous experiments [25,31,34], the total stress of
SMPCs cannot be accurately described by the rule of mixtures alone since a phase transition
of the SMPs will occur with a temperature change, and the stress distribution in the phases
of the SMPCs are also related to their microstructure. Therefore, an effective temperature-
dependent fabric volume fraction of fabric is introduced based on phase transition theory,
and Equation (23) is modified as follows:

σ = (1− v f )σmatrix + γinterv fσ f abric

v f =
v f _re f

1+exp[g(T−Tr)]

(24)

where v f _re f denotes the reference volume fractions of the fabric, and γinter denotes the
stress concentration factors to consider fiber–fiber and matrix-fiber shearing interactions,
which are assumed to be equal to 1 when stretching along the yarn.

3. Parameters for Determining Protocol and Model Verification
3.1. Methods for Determining Matrix SMPs Material Parameters

The material parameters in the matrix SMP part can be determined following the
protocol outlined in our previous works [26].

3.2. Methods for Determining Remaining Material Parameters

With the parameters of the matrix SMP part determined, the parameters of k1, k2, k3
in ψten and k4, k5, k6 in ψshr and v f _re f can be determined using the following procedure:

1. Based on the Equations (18) and (22)–(24), k1, k2, k3 can be determined by fitting the
stress–strain curve of the 0◦ SMPCs at Tl with an initial assumption of v f _re f = v f .

2. With k1, k2, k3 determined, k4, k5, k6 can be obtained by fitting the stress–strain curve
of the bias tension of the SMPCs based on Equations (18) and (22)–(24).

3. v f _re f can be obtained by fitting the curve of the strain of the 0◦ SMPCs in the loading
step, cooling step, and unloading step in the shape memory cycle.

4. Compare the fitting results with the experimental data. If good consistency has been
achieved, then these parameters are determined. If not, modify the initial estimate of
the constant v f _re f and return to (1).

5. With the above parameter determined, γinter can be obtained by fitting the curve of
the strain of the 45◦ SMPCs in the loading step, cooling step, and unloading step in
the shape memory cycle.

According to the above parameter determination protocol, the parameters of k1, k2, k3
in ψten and k4, k5, k6 in ψshr and v f _re f are shown). All determined material parameters are
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summarized in Table 1, and the fitting results regarding k1, k2, k3, k4, k5, k6, v f _re f , and γinter
are shown in Figures 3–6.

k1 = 3690 (MPa), k2 = 3650 (MPa), k3 = 115 (MPa)
k4 = 300 (MPa), k5 = 220 (MPa), k6 = 170 (MPa)
v f _re f = 0.7, γinter = 0.01

(25)

Table 1. Material parameters of the proposed model.

Parameters Value Unit

Matrix

C10
m , C01

m , C10
e _l , C01

e _l 1.8, 0.9, 160, 25 MPa
A −2850 K−1

g 0.25 ◦C−1

Tr 43 ◦C
D_l 5.57 × 10−3 MPa−1

ξ_l 5.0 × 104 MPa·s

Fiber
k1, k2, k3 3690, 3620, 115 MPa
k4, k5, k6 300, 220, 170 MPa

v f _re f , γinter 0.7, 0.01
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3.3. Model Verification

The proposed model was implemented in the commercial finite element software
package ABAQUS/Standard via a user material subroutine (UMAT) to simulate the shape
memory tests carried out in the study by Su et al. [25]. Eight-node linear hexahedron
continuum elements (C3D8) are used. Loading and boundary conditions are set according
to the design of the experiment. Heat transfer is ignored here, and the temperature is
applied through the predefined field.

First, the shape memory tests of the matrix SMPs were simulated. The temperature
histories of the simulation in the cooling and reheating steps are consistent with the
experimental data, as shown in Figure 7. During the shape memory cycle tests, the
temperature of the experimental specimens cannot immediately reach the temperature
of the experimental equipment because it takes time for the specimens to reach thermal
equilibrium. Therefore, a temperature lag of 3.7 ◦C for SMP was assumed. The simulation
results regarding the matrix SMPs are shown in Figure 8. It can be seen that the simulation
results are in good agreement with the experimental data, thus verifying the effectiveness
of the proposed model in predicting the shape memory behavior of matrix SMPs.
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Second, the shape memory tests of the SMPCs with an initial yarn orientation of
0/90◦ and ±45◦ were simulated. The temperature histories of the simulation in the cooling
and reheating steps are consistent with the experimental data, as shown in Figure 7.
Temperature lag values of 3.2 ◦C and 3.7 ◦C for the 0/90◦ and±45◦ woven-fabric-reinforced
SMPCs were assumed. The simulation results are shown in Figure 9. It can be seen that
the simulation accurately reproduces the shape memory recovery behavior of the SMPCs,
which demonstrates the validity of the proposed model in predicting the shape memory
behavior of SMPCs. The deviation between the simulation results and the experimental
data in the final recovery stage might have been caused by interfacial failure and internal
stress, and this deviation will be modified by introducing anisotropic thermal and stress
internal stress and interfacial failure in our future research.

Finally, the shape memory behavior of the SMPC gripper part was simulated to
investigate the effects of yarn orientation. The main deformation mode of a soft robotic
gripper is flexural deformation, as shown in Figure 10, since the human hand’s ability to
grasp objects is achieved through the movement of bones and joints. Here, the grasping of
objects via hands is simulated through the flexural deformation of the individual gripper
part with dimensions of 70 mm× 25 mm× 2 mm. Eight-node linear hexahedron continuum
elements (C3D8) and six-node linear triangular prism elements (C3D6) are used. The
applied position of the load and the boundary conditions are shown in Figure 11. The left
area of the fixed boundary and the right area of the displacement boundary represent the
two finger bones, and the middle part represents the flexible joint.
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Initially, the temperature was set at 70 ◦C, and a rotation boundary condition of
UR2 =−π/4 was applied. Then, the temperature was set to decrease from 70 ◦C to 20 ◦C
at a cooling rate of −2 ◦C/min, which allowed for the shape to be maintained, followed
by unloading when the temperature reached 20 ◦C. Finally, the temperature was set to
increase from 20 ◦C to 70 ◦C at a heating rate of 2 ◦C/min in the free state. The simulation
results are shown in Figures 12 and 13.

It can be seen from Figure 12 that the recovery rate of the 0/90◦ SMPCs is faster
than that of the ±45◦SMPCs owing to their larger stored recovery stress, as shown in
Figure 13. However, the shape fixity ratio of the 0/90◦ SMPCs is lower than that of the
±45◦ SMPCs, as shown in Figure 14, because the fabric used in this paper was carbon
fabric; additionally, as the fiber orientation angle decreased, the reinforcing effect of the
carbon fiber was enhanced; thus, the carbon fiber was rendered elastic. When SMPCs are
stretched at a high temperature and unloaded after cooling, the larger rebound stress of
the fiber reduces the shape fixation rate of the 0/90 SMPCs compared to the ±45 SMPCs.
Therefore, it is necessary to comprehensively consider the response rate and accuracy of an
SMPC soft gripper to design an appropriate fiber orientation in practical applications.
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4. Conclusions

An anisotropic thermomechanical model for thermally induced woven-fabric-reinforced
SMPCs was developed based on Helmholtz free energy decomposition and the second
law of thermodynamics. The total Helmholtz free energy of the SMPCs was decomposed
into an isotropic visco-hyperelastic matrix part and an anisotropic hyperelastic fabric part.
The stress distribution of the phases in the SMPCs was described using a modified rule of
mixtures based on phase transition theory, and stress concentration factors were introduced
to consider fiber–matrix and fiber–fiber shearing interactions. The shape memory tests
presented in the study by Su et al. [25] were simulated, and a comparison between the
simulation results and the experimental data verified the effectiveness of the proposed
model. Finally, the effects of yarn orientation on the shape memory behavior of the soft
robotic gripper were investigated using the proposed model.
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