Open-Path Laser Absorption Sensor for Mobile Measurements of Atmospheric Ammonia
Abstract
:1. Introduction
2. Experimental Methods
2.1. Experimental Setup
Sensor Mounting and Integration for Mobile Measurements
2.2. Principle of Operation and Analysis Method
3. Results and Discussion
3.1. Laboratory Studies
3.1.1. Example Measurement at Fixed Conditions
3.1.2. Sensor Accuracy and Precision
3.2. Demonstrative Field Measurements
3.2.1. Vehicle Based (Ground) Measurements
3.2.2. UAV-based Measurements
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fangmeier, A.; Hadwiger-Fangmeier, A.; Van der Eerden, L.; Jäger, H.J. Effects of atmospheric ammonia on vegetation--a review. Environ. Pollut. 1994, 86, 43–82. [Google Scholar] [CrossRef]
- Sutton, M.A.; Fowler, D.; Burkhardt, J.K.; Milford, C. Vegetation atmosphere exchange of ammonia: Canopy cycling and the impacts of elevated nitrogen inputs. Water Air Soil Pollut. 1995, 85, 2057–2063. [Google Scholar] [CrossRef]
- Pleim, J.E.; Bash, J.O.; Walker, J.T.; Cooter, E.J. Development and evaluation of an ammonia bidirectional flux parameterization for air quality models. J. Geophys. Res. Atmos. 2013, 118, 3794–3806. [Google Scholar] [CrossRef]
- Clarisse, L.; Clerbaux, C.; Dentener, F.; Hurtmans, D.; Coheur, P.-F. Global ammonia distribution derived from infrared satellite observations. Nat. Geosci. 2009, 2, 479–483. [Google Scholar] [CrossRef]
- Warneck, P. Chemistry of the Natural Atmosphere; Max-Planck-Institut für Chemie: Mainz, Germany, 2000; Volume 71, p. 927. [Google Scholar]
- Aneja, V.P.; Bunton, B.; Walker, J.T.; Malik, B.P. Measurement and analysis of atmospheric ammonia emissions from anaerobic lagoons. Atmos. Environ. 2001, 35, 1949–1958. [Google Scholar] [CrossRef]
- Baum, K.A.; Ham, J.M. Adaptation of a speciation sampling cartridge for measuring ammonia flux from cattle feedlots using relaxed eddy accumulation. Atmos. Environ. 2009, 43, 1753–1759. [Google Scholar] [CrossRef]
- Aneja, V.P.; Blunden, J.; James, K.; Schlesinger, W.H.; Knighton, R.; Gilliam, W.; Jennings, G.; Niyogi, D.; Cole, S. Ammonia assessment from agriculture: U.S. status and needs. J. Environ. Qual. 2008, 37, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Barnam, M.G.; Beem, K.; Carrico, C.M.; Bebhart, K.A.; Hand, J.L. RoMANS: Rocky Mountain Atmospheric Nitrogen and Sulfur Study; 2009; Volume 2. Available online: http://vista.cira.colostate.edu/improve/wp-content/uploads/2018/05/RoMANS_V2_20100218.pdf (accessed on 13 July 2023).
- Baron, J.S. Hindcasting nitrogen deposition to determine an ecological critical load. Ecol. Appl. 2006, 16, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Gebhart, K.A.; Schichtel, B.A.; Malm, W.C.; Barna, M.G.; Rodriguez, M.A.; Collett, J.L. Back-trajectory-based source apportionment of airborne sulfur and nitrogen concentrations at Rocky Mountain National Park, Colorado, USA. Atmos. Environ. 2011, 45, 621–633. [Google Scholar] [CrossRef]
- Sutton, M.A.; Asman, W.A.H.; SchjØRring, J.K. Dry deposition of reduced nitrogen. Tellus B 1994, 46, 255–273. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.X.; Zhao, M.; Xing, J.; Wu, Y.; Zhou, Y.; Lei, Y.; He, K.B.; Fu, L.X.; Hao, J.M. Quantifying the Air Pollutants Emission Reduction during the 2008 Olympic Games in Beijing. Environ. Sci. Technol. 2010, 44, 2490–2496. [Google Scholar] [CrossRef]
- Mount, G.H.; Rumburg, B.; Havig, J.; Lamb, B.; Westberg, H.; Yonge, D.; Johnson, K.; Kincaid, R. Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet. Atmos. Environ. 2002, 36, 1799–1810. [Google Scholar] [CrossRef]
- Nowak, J.B.; Huey, L.G.; Eisele, F.L.; Tanner, D.J.; Mauldin, R.L.; Cantrell, C.; Kosciuch, E.; Davis, D.D. Chemical ionization mass spectrometry technique for detection of dimethylsulfoxide and ammonia. J. Geophys. Res.-Atmos. 2002, 107, ACH 10-1–ACH 10-8. [Google Scholar] [CrossRef]
- Dong, F.S.; Li, H.; Liu, B.; Liu, R.D.; Hou, K.Y. Protonated acetone ion chemical ionization time-of-flight mass spectrometry for real-time measurement of atmospheric ammonia. J. Environ. Sci. 2022, 114, 66–74. [Google Scholar] [CrossRef] [PubMed]
- McManus, J.B.; Nelson, D.D.; Shorter, J.; Zahniser, M.; Mueller, A.; Bonetti, Y.; Beck, M.; Hofstetter, D.; Faist, J. Quantum cascade lasers for open and closed path measurement of atmospheric trace gases. In Proceedings of the Conference on Diode Lasers and Applications in Atmospheric Sensing, Seattle, WA, USA, 10–11 July 2022; pp. 22–33. [Google Scholar]
- Gong, L.; Lewicki, R.; Griffin, R.J.; Flynn, J.H.; Lefer, B.L.; Tittel, F.K. Atmospheric ammonia measurements in Houston, TX using an external-cavity quantum cascade laser-based sensor. Atmos. Chem. Phys. 2011, 11, 9721–9733. [Google Scholar] [CrossRef] [Green Version]
- Leen, J.B.; Yu, X.Y.; Gupta, M.; Baer, D.S.; Hubbe, J.M.; Kluzek, C.D.; Tomlinson, J.M.; Hubbell, M.R., 2nd. Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer. Environ. Sci. Technol. 2013, 47, 10446–10453. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.A.; Murphy, J.G.; Pattey, E.; van Haarlem, R.; O’Brien, J.M.; Herndon, S.C. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for measurements of atmospheric ammonia. Atmos. Meas. Tech. 2010, 3, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Manne, J.; Sukhorukov, O.; Jäger, W.; Tulip, J. Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath. Appl. Opt. 2006, 45, 9230–9237. [Google Scholar] [CrossRef]
- Shadman, S.; Rose, C.; Yalin, A.P. Open-path cavity ring-down spectroscopy sensor for atmospheric ammonia. Appl. Phys. B-Lasers Opt. 2016, 122, 194. [Google Scholar] [CrossRef]
- He, Y.B.; Jin, C.J.; Kan, R.F.; Liu, J.G.; Liu, W.Q.; Hill, J.L.; Jamie, I.M.; Orr, B.J. Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers. Opt. Express 2014, 22, 13170–13189. [Google Scholar] [CrossRef]
- Miller, D.J.; Zondlo, M.A. Open-Path High Sensitivity Atmospheric Ammonia Sensing with a 9 mu m Quantum Cascade Laser. In Proceedings of the 2010 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 16–21 May 2010. [Google Scholar]
- Villa, T.F.; Gonzalez, F.; Miljievic, B.; Ristovski, Z.D.; Morawska, L. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives. Sensors 2016, 16, 1072. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Z.; Zheng, Z.J.; Bian, K.G.; Song, L.Y.; Han, Z. Real-Time Profiling of Fine-Grained Air Quality Index Distribution Using UAV Sensing. IEEE Internet Things J. 2018, 5, 186–198. [Google Scholar] [CrossRef]
- Herriott, D.; Kogelnik, H.; Kompfner, R. Off-Axis Paths in Spherical Mirror Interferometers. Appl. Opt. 1964, 3, 523–526. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Sun, K.; Khan, M.A.; Miller, D.J.; Zondlo, M.A. Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser. Opt. Express 2012, 20, 28106–28118. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Han, J.; Ning, Z.; Lan, Y.; Yin, X.; Zhang, J.; Ge, Y. Numerical analysis and validation of spray distributions disturbed by quad-rotor drone wake at different flight speeds. Comput. Electron. Agric. 2019, 166, 105036. [Google Scholar] [CrossRef]
- Do, S.; Lee, M.; Kim, J.S. The Effect of a Flow Field on Chemical Detection Performance of Quadrotor Drone. Sensors 2020, 20, 3262. [Google Scholar] [CrossRef]
- Sur, R.; Spearrin, R.M.; Peng, W.Y.; Strand, C.L.; Jeffries, J.B.; Enns, G.M.; Hanson, R.K. Line intensities and temperature-dependent line broadening coefficients of Q-branch transitions in the v2 band of ammonia near 10.4μm. J. Quant. Spectrosc. Radiat. Transf. 2016, 175, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef] [Green Version]
- Goldenstein, C.S.; Strand, C.L.; Schultz, I.A.; Sun, K.; Jeffries, J.B.; Hanson, R.K. Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Appl. Opt. 2014, 53, 356–367. [Google Scholar] [CrossRef]
- Rieker, G.B.; Jeffries, J.B.; Hanson, R.K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 2009, 48, 5546–5560. [Google Scholar] [CrossRef] [PubMed]
- Reid, J.; Labrie, D. Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory. Appl. Phys. B 1981, 26, 203–210. [Google Scholar] [CrossRef]
- Sun, K.; Chao, X.; Sur, R.; Goldenstein, C.S.; Jeffries, J.B.; Hanson, R.K. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers. Meas. Sci. Technol. 2013, 24, 125203. [Google Scholar] [CrossRef]
- Shadman, S. Measurement of Ammonia Emission from Agricultural Sites Using Open-Path Cavity Ring-Down Spectroscopy and Wavelength Modulation Spectroscopy Based Analyzers. In Mechanical Engineering; Colorado State University: Fort Collins, CO, USA, 2018. [Google Scholar]
- Huang, H.F.; Lehmann, K.K. Long-term stability in continuous wave cavity ringdown spectroscopy experiments. Appl. Opt. 2010, 49, 1378–1387. [Google Scholar] [CrossRef] [Green Version]
- Albertson, J.D.; Harvey, T.; Foderaro, G.; Zhu, P.P.; Zhou, X.C.; Ferrari, S.; Amin, M.S.; Modrak, M.; Brantley, H.; Thoma, E.D. A Mobile Sensing Approach for Regional Surveillance of Fugitive Methane Emissions in Oil and Gas Production. Environ. Sci. Technol. 2016, 50, 2487–2497. [Google Scholar] [CrossRef] [Green Version]
- Martinez, B.; Miller, T.W.; Yalin, A.P. Cavity Ring-Down Methane Sensor for Small Unmanned Aerial Systems. Sensors 2020, 20, 454. [Google Scholar] [CrossRef] [Green Version]
- Lassman, W.; Collett, J.L.; Ham, J.M.; Yalin, A.P.; Shonkwiler, K.B.; Pierce, J.R. Exploring new methods of estimating deposition using atmospheric concentration measurements: A modeling case study of ammonia downwind of a feedlot. Agric. For. Meteorol. 2020, 290, 107989. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shadman, S.; Miller, T.W.; Yalin, A.P. Open-Path Laser Absorption Sensor for Mobile Measurements of Atmospheric Ammonia. Sensors 2023, 23, 6498. https://doi.org/10.3390/s23146498
Shadman S, Miller TW, Yalin AP. Open-Path Laser Absorption Sensor for Mobile Measurements of Atmospheric Ammonia. Sensors. 2023; 23(14):6498. https://doi.org/10.3390/s23146498
Chicago/Turabian StyleShadman, Soran, Thomas W. Miller, and Azer P. Yalin. 2023. "Open-Path Laser Absorption Sensor for Mobile Measurements of Atmospheric Ammonia" Sensors 23, no. 14: 6498. https://doi.org/10.3390/s23146498
APA StyleShadman, S., Miller, T. W., & Yalin, A. P. (2023). Open-Path Laser Absorption Sensor for Mobile Measurements of Atmospheric Ammonia. Sensors, 23(14), 6498. https://doi.org/10.3390/s23146498