Three-Phase Motor Inverter and Current Sensing GaN Power IC
Abstract
:1. Introduction
1.1. GaN Power Converter ICs and Current Sensing
1.2. Structure of the Work
2. Materials and Methods
2.1. GaN IC Power Design and Characterization
2.2. Current Sensor Readout Circuits and Substrate Biasing Network
3. Results
3.1. Experimental Setups
3.2. Current Sensor Measurements
3.3. Substrate Biasing Analysis during Motor Operation
3.4. Measurement of Substrate Biasing during Motor Operation
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wattenberg, M.; Jones, E.A.; Sanchez, J. A Low-Profile GaN-Based Integrated Motor Drive for 48V FOC Applications. In Proceedings of the PCIM Europe Digital Days 2021; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 4–6 May 2021; pp. 1–8. [Google Scholar]
- Reusch, D.; Strydom, J.; Lidow, A. A new family of GaN transistors for highly efficient high frequency DC-DC converters. In Proceedings of the 2015 IEEE Applied Power Electronics Conference (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 1979–1985. [Google Scholar] [CrossRef]
- Efficient Power Conversion Corporation. How2AppNote 017 Design Compact Low-Voltage BLDC Motor Drive Inverter GaN ePower Stage. 2020. Available online: https://epc-co.com/epc/Portals/0/epc/documents/application-notes/How2AppNote017%20Design%20Compact%20Low-voltage%20BLDC%20Motor%20Drive%20Inverter%20GaN%20ePower%20Stage.pdf (accessed on 8 June 2023).
- Weiss, B. Fast-Switching Monolithically Integrated High-Voltage GaN-on-Si Power Converters. Ph.D. Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany, 2017. [Google Scholar] [CrossRef]
- Mönch, S.; Basler, M.; Reiner, R.; Benkhelifa, F.; Döring, P.; Sinnwell, M.; Müller, S.; Mikulla, M.; Waltereit, P.; Quay, R. GaN Power Converter and High-Side IC Substrate Issues on Si, p-n Junction, or SOI. In e-Prime—Advances in Electrical Engineering, Electronics and Energy; Elsevier: Amsterdam, The Netherlands, 2023; p. 100171. [Google Scholar] [CrossRef]
- Moench, S.; Reiner, R.; Weiss, B.; Waltereit, P.; Quay, R.; Ambacher, O.; Kallfass, I. Effect of substrate termination on switching loss and switching time using 600 V GaN-on-Si HEMTs with integrated gate driver in half-bridges. In Proceedings of the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October–1 November 2017. [Google Scholar] [CrossRef]
- Jiang, Q. Development of Integration Technology and Investigation of Substrate Crosstalk for GaN-Based Power ICs; Hong Kong University of Science and Technology: Hong Kong, China, 2014. [Google Scholar] [CrossRef]
- Bisi, D.; Meneghini, M.; van Hove, M.; Marcon, D.; Stoffels, S.; Wu, T.L.; Decoutere, S.; Meneghesso, G.; Zanoni, E. Trapping mechanisms in GaN-based MIS-HEMTs grown on silicon substrate. Phys. Status Solidi (a) 2015, 212, 1122–1129. [Google Scholar] [CrossRef]
- Meneghesso, G.; Meneghini, M.; Rossetto, I.; Bisi, D.; Stoffels, S.; van Hove, M.; Decoutere, S.; Zanoni, E. Reliability and parasitic issues in GaN-based power HEMTs: A review. Semicond. Sci. Technol. 2016, 31, 093004. [Google Scholar] [CrossRef]
- Tsai, C.L.; Wang, Y.H.; Kwan, M.H.; Chen, P.C.; Yao, F.W.; Liu, S.C.; Yu, J.L.; Yeh, C.L.; Su, R.Y.; Wang, W.; et al. Smart GaN platform: Performance & challenges. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 33.1.1–33.1.4. [Google Scholar] [CrossRef]
- Meneghini, M.; de Santi, C.; Abid, I.; Buffolo, M.; Cioni, M.; Khadar, R.A.; Nela, L.; Zagni, N.; Chini, A.; Medjdoub, F.; et al. GaN-based power devices: Physics, reliability, and perspectives. J. Appl. Phys. 2021, 130, 181101. [Google Scholar] [CrossRef]
- Pradhan, M.; Alomari, M.; Moser, M.; Fahle, D.; Hahn, H.; Heuken, M.; Burghartz, J.N. Physical Modeling of Charge Trapping Effects in GaN/Si Devices and Incorporation in the ASM-HEMT Model. IEEE J. Electron Devices Soc. 2021, 9, 748–755. [Google Scholar] [CrossRef]
- Uren, M.J.; Caesar, M.; Chatterjee, I.; Karboyan, S.; Meneghini, M.; Meneghesso, G.; Zanoni, E.; Moens, P.; Vanmeerbeek, P.; Kuball, M. Electron Trapping in GaN-on-Si Power HEMTs: Impact of Positive Substrate Bias. In Proceedings of the Eleventh International Conference on Networking and Services (ICNS 2015), Rome, Italy, 24–29 May 2015. [Google Scholar]
- Croon, J.A.; Hurkx, G.A.M.; Donkers, J.J.T.M.; Šonský, J. Impact of the backside potential on the current collapse of GaN SBDs and HEMTs. In Proceedings of the 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hong Kong, China, 10–14 May 2015; pp. 365–368. [Google Scholar] [CrossRef]
- Bisi, D.; Meneghini, M.; Marino, F.A.; Marcon, D.; Stoffels, S.; Hove, M.V.; Decoutere, S.; Meneghesso, G.; Zanoni, E. Kinetics of Buffer-Related RON-Increase in GaN-on-Silicon MIS-HEMTs. IEEE Electron Device Lett. 2014, 35, 1004–1006. [Google Scholar] [CrossRef]
- Moens, P.; Vanmeerbeek, P.; Banerjee, A.; Guo, J.; Liu, C.; Coppens, P.; Salih, A.; Tack, M.; Caesar, M.; Uren, M.J.; et al. On the Impact of Carbon-Doping on the Dynamic Ron and Off-state Leakage Current of 650V GaN Power Devices. In Proceedings of the 2015 IEEE 27th International Symposium on Power Semiconductor Devices & Ic’s (ISPSD), Hong Kong, China, 10–14 May 2015; pp. 37–40. [Google Scholar] [CrossRef]
- Meneghini, M.; Rossetto, I.; Bisi, D.; Ruzzarin, M.; van Hove, M.; Stoffels, S.; Wu, T.L.; Marcon, D.; Decoutere, S.; Meneghesso, G.; et al. Negative Bias-Induced Threshold Voltage Instability in GaN-on-Si Power HEMTs. IEEE Electron Device Lett. 2016, 37, 474–477. [Google Scholar] [CrossRef]
- Moench, S.; Reiner, R.; Waltereit, P.; Meder, D.; Basler, M.; Quay, R.; Ambacher, O.; Kallfass, I. Asymmetrical Substrate-Biasing Effects at up to 350V Operation of Symmetrical Monolithic Normally-Off GaN-on-Si Half-Bridges. In Proceedings of the 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, NC, USA, 29–31 October 2019. [Google Scholar]
- Li, X.; van Hove, M.; Zhao, M.; Geens, K.; Lempinen, V.P.; Sormunen, J.; Groeseneken, G.; Decoutere, S. 200 V Enhancement-Mode p-GaN HEMTs Fabricated on 200 mm GaN-on-SOI With Trench Isolation for Monolithic Integration. IEEE Electron Device Lett. 2017, 38, 918–921. [Google Scholar] [CrossRef]
- Lidow, A. Semiconductor Devices with Back Surface Isolation. US20120153300A1, 14 December 2011. [Google Scholar]
- Moench, S.; Reiner, R.; Waltereit, P.; Quay, R.; Ambacher, O.; Kallfass, I. Investigation of GaN-on-Si and GaN-on-SOI Substrate Capacitances for Discrete and Monolithic Half-Bridges. In Proceedings of the 33rd IEEE International Symposium on Power Semiconductor Devices & ICs (ISPSD 2021), Nagoya, Japan, 30 May–3 June 2021; pp. 335–338. [Google Scholar] [CrossRef]
- Sun, R.; Lai, J.; Chen, W.; Zhang, B. GaN Power Integration for High Frequency and High Efficiency Power Applications: A Review. IEEE Access 2020, 8, 15529–15542. [Google Scholar] [CrossRef]
- Basler, M.; Reiner, R.; Moench, S.; Benkhelifa, F.; Döring, P.; Waltereit, P.; Quay, R.; Ambacher, O. Building Blocks for GaN Power Integration. IEEE Access 2021, 163122–163137. [Google Scholar] [CrossRef]
- Basler, M. Extended Monolithic Integration Levels for Highly Functional GaN Power ICs. Ph.D. Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany, 2022. [Google Scholar] [CrossRef]
- Uemoto, Y.; Morita, T.; Ikoshi, A.; Umeda, H.; Matsuo, H.; Shimizu, J.; Hikita, M.; Yanagihara, M.; Ueda, T.; Tanaka, T.; et al. GaN monolithic inverter IC using normally-off gate injection transistors with planar isolation on Si substrate. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009. [Google Scholar] [CrossRef]
- Nagai, S.; Yamada, Y.; Negoro, N.; Handa, H.; Kudoh, Y.; Ueno, H.; Ishida, M.; Otuska, N.; Ueda, D. A GaN 3×3 matrix converter chipset with Drive-by-Microwave technologies. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; Fujino, L., Ed.; IEEE: Piscataway, NJ, USA, 2014; pp. 494–495. [Google Scholar] [CrossRef]
- Weiss, B.; Reiner, R.; Waltereit, P.; Quay, R.; Ambacher, O. Operation of PCB-embedded, high-voltage multilevel-converter GaN-IC. In Proceedings of the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October–1 November 2017; pp. 398–403. [Google Scholar] [CrossRef]
- Yan, D.; Ma, D.B. A Monolithic GaN Power IC With On-Chip Gate Driving, Level Shifting, and Temperature Sensing, Achieving Direct 48-V/1-V DC–DC Conversion. IEEE J. Solid-State Circuits 2022, 57, 3865–3876. [Google Scholar] [CrossRef]
- Reiner, R.; Basler, M.; Moench, S.; Waltereit, P.; Benkhelifa, F.; Mikulla, M.; Quay, R. Lateral GaN Power Devices and Integrated GaN Power Circuits: Status and Recent Progress. In Proceedings of the ETG-Fachbericht 171 “Bauelemente der Leistungselektronik und ihre Anwendungen 2023”, Bad Nauheim, Germany, 20–21 June 2023. [Google Scholar]
- Biglarbegian, M.; Parkhideh, B. Characterization of SenseGaN current-mirroring for power GaN with the virtual grounding in a boost converter. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017. [Google Scholar] [CrossRef]
- Roberts, J.; Klowak, G.; Chen, D.; Mizan, A. Drive and protection methods for very high current lateral GaN power transistors. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015. [Google Scholar] [CrossRef]
- Nguyen, V.S.; Escoffier, R.; Catellani, S.; FaYolle-Lecocq, M.; Martin, J. Design, implementation and characterization of an integrated current sensing in GaN HEMT device by using the current-mirroring technique. In Proceedings of the 2022 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe), Hanover, Germany, 5–9 September 2022; pp. 1–9. [Google Scholar]
- Zaman, M.S.; Jiang, W.L.; Murray, S.; de Vleeschouwer, H.; Moens, P.; Roig, J.; Trescases, O. Integrated SenseHEMT and Gate-Driver on a 650-V GaN-on-Si Platform Demonstrated in a Bridgeless Totem-pole PFC Converter. In Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 13–18 September 2020; pp. 26–29. [Google Scholar] [CrossRef]
- Jiang, W.L.; Kadee Murray, S.; Zaman, M.S.; de Vleeschouwer, H.; Roig, J.; Moens, P.; Trescases, O. Monolithic Integration of a 5-MHz GaN Half-Bridge in a 200-V GaN-on-SOI Process: Programmable dv/dt Control and Floating High-Voltage Level-Shifter. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; pp. 728–734. [Google Scholar] [CrossRef]
- Jiang, W.L.; Kadee Murray, S.; Zaman, M.S.; de Vleeschouwer, H.; Moens, P.; Roig, J.; Trescases, O. An Integrated GaN Overcurrent Protection Circuit for Power HEMTs Using SenseHEMT. IEEE Trans. Power Electron. 2022, 37, 9314–9324. [Google Scholar] [CrossRef]
- Udrea, F.; Arnold, M.; Efthymiou, L.; Ansari, Z.; Fung, O.; Findlay, J.; Ledins, K.; Longobardi, G. The smart ICeGaNTM platform with sensing and protection functions for both enhanced ease of use and gate reliability. In Proceedings of the 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vancouver, BC, Canada, 22–25 May 2022; pp. 41–44. [Google Scholar] [CrossRef]
- Longobardi, G.; Efthymiou, L.; Findlay, J.; Bricconi, A.; Comiskey, P.; Arnold, M.; Miller, D.; Udrea, F. ICeGaNTM technology: The easy-to-use and self-protected GaN power IC. Power Electron. Devices Compon. 2023, 4, 100028. [Google Scholar] [CrossRef]
- Biglarbegian, M.; Kim, N.; Zhao, T.; Parkhideh, B. Development of Isolated SenseGaN current monitoring for boundary conduction mode control of power converters. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018. [Google Scholar] [CrossRef]
- Sun, R.; Liang, Y.C.; Yeo, Y.; Zhao, C. Au-Free AlGaN/GaN MIS-HEMTs With Embedded Current Sensing Structure for Power Switching Applications. IEEE Trans. Electron Devices 2017, 64, 3515–3518. [Google Scholar] [CrossRef]
- Moench, S.; Reiner, R.; Waltereit, P.; Quay, R.; Ambacher, O.; Kallfass, I. Integrated Current Sensing in GaN Power ICs. In Proceedings of the 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), Shanghai, China, 19–23 May 2019. [Google Scholar] [CrossRef]
- Basler, M.; Moench, S.; Reiner, R.; Waltereit, P.; Quay, R.; Kallfass, I.; Ambacher, O. A GaN-based Current Sense Amplifier for GaN HEMTs with Integrated Current Shunts. In Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 13–18 September 2020; pp. 274–277. [Google Scholar] [CrossRef]
- Moench, S.; Reiner, R.; Waltereit, P.; Hückelheim, J.; Meder, D.; Quay, R.; Ambacher, O.; Kallfass, I. A 600 V GaN-on-Si Power IC with Integrated Gate Driver, Freewheeling Diode, Temperature and Current Sensors and Auxiliary Devices. In Proceedings of the CIPS 2020—11th International Conference on Integrated Power Electronics Systems (CIPS 2020), Berlin, Germany, 24–26 March 2020. [Google Scholar]
- Moench, S.; Reiner, R.; Waltereit, P.; Benkhelifa, F.; Hückelheim, J.; Meder, D.; Zink, M.; Kaden, T.; Noll, S.; Mansfeld, S.; et al. PCB-Embedded GaN-on-Si Half-Bridge and Driver ICs With On-Package Gate and DC-Link Capacitors. IEEE Trans. Power Electron. 2021, 36, 83–86. [Google Scholar] [CrossRef]
- White, T.P.; Shetty, S.; Ware, M.E.; Mantooth, H.A.; Salamo, G.J. AlGaN/GaN Micro-Hall Effect Devices for Simultaneous Current and Temperature Measurements From Line Currents. IEEE Sens. J. 2018, 18, 2944–2951. [Google Scholar] [CrossRef]
- Poluri, N.; Souza, M.M.D. An Integrated On-Chip Flux Concentrator for Galvanic Current Sensing. IEEE Electron Device Lett. 2018, 39, 1752–1755. [Google Scholar] [CrossRef] [Green Version]
- Igic, P.; Jankovic, N.; Evans, J.; Elwin, M.; Batcup, S.; Faramehr, S. Dual-Drain GaN Magnetic Sensor Compatible with GaN RF Power Technology. IEEE Electron Device Lett. 2018, 39, 746–748. [Google Scholar] [CrossRef] [Green Version]
- Lauer, A.; Nibir, S.J.; Biglarbegian, M.; Hiller, M.; Parkhideh, B. On Integrating Non-Intrusive Current Measurement into GaN Power Modules. In Proceedings of the 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Atlanta, GA, USA, 31 October–2 November 2018. [Google Scholar] [CrossRef]
- Funk, T.; Wicht, B. A fully integrated DC to 75 MHz current sensing circuit with on-chip Rogowski coil. In Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 8–11 April 2018. [Google Scholar] [CrossRef]
- Tröster, N.; Eisenhardt, T.; Zehelein, M.; Wölfle, J.; Ruthardt, J.; Roth-Stielow, J. Improvements of a Coaxial Current Sensor with a Wide Bandwidth Based on the HOKA Principle. In Proceedings of the 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), Riga, Latvia, 17–21 September 2018. [Google Scholar]
- Walter, J.; Acuna, J.; Kallfass, I. Design and Implementation of an Integrated Current Sensor for a Gallium Nitride Half-Bridge: PCIM Europe 2018. In Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 5–7 June 2018. [Google Scholar]
- Wang, J.; Hedayati, M.H.; Liu, D.; Adami, S.; Dymond, H.C.P.; Dalton, J.J.O.; Stark, B.H. Infinity Sensor: Temperature Sensing in GaN Power Devices using Peak di/dt. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Yang, X.; Li, H.; Wang, L.; Jain, P. A High-Bandwidth Integrated Current Measurement for Detecting Switching Current of Fast GaN Devices. IEEE Trans. Power Electron. 2018, 33, 6199–6210. [Google Scholar] [CrossRef]
- Rose, M.; Wen, Y.; Fernandes, R.; van Otten, R.; Bergveld, H.J.; Trescases, O. A GaN HEMT driver IC with programmable slew rate and monolithic negative gate-drive supply and digital current-mode control. In Proceedings of the 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hong Kong, China, 10–14 May 2015. [Google Scholar] [CrossRef]
- Xue, Y.; Lu, J.; Wang, Z.; Tolbert, L.M.; Blalock, B.J.; Wang, F. A compact planar Rogowski coil current sensor for active current balancing of parallel-connected Silicon Carbide MOSFETs. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014. [Google Scholar] [CrossRef]
- Ziegler, P.; Festerling, T.; Haarer, J.; Marx, P.; Hirning, D.; Roth-Stielow, J. Influences of Parasitic Capacitances in Wide Bandwidth Rogowski Coils for Commutation Current Measurement. In Proceedings of the 2022 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe), Hanover, Germany, 5–9 September 2022; pp. 1–10. [Google Scholar]
- Nibir, S.J.; Fregosi, D.; Parkhideh, B. Investigations on circuits and layout for non-intrusive switch current measurements in high frequency converters using parallel GaN HEMTs. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2743–2748. [Google Scholar] [CrossRef]
- Niklaus, P.S.; Bortis, D.; Kolar, J.W. Beyond 50 MHz Bandwidth Extension of Commercial DC-Current Measurement Sensors With Ultra-Compact PCB-Integrated Pickup Coils. IEEE Trans. Ind. Appl. 2022, 58, 5026–5041. [Google Scholar] [CrossRef]
- Musumeci, S.; Mandrile, F.; Barba, V.; Palma, M. Low-Voltage GaN FETs in Motor Control Application; Issues and Advantages: A Review. Energies 2021, 14, 6378. [Google Scholar] [CrossRef]
- Musumeci, S.; Barba, V. Gallium Nitride Power Devices in Power Electronics Applications: State of Art and Perspectives. Energies 2023, 16, 3894. [Google Scholar] [CrossRef]
- Miyazaki, H.; Sakurai, N.; Onda, K.; Tanaka, T.; Mori, M.; Wada, M.; Matsuzaki, H. A novel high voltage three-phase monolithic inverter IC with two current levels sensing. In Proceedings of the 3rd International Symposium on Power Semiconductor Devices and ICs, Baltimore, MD, USA, 22–24 April 1991; pp. 248–253. [Google Scholar] [CrossRef]
- Reiner, R.; Benkhelifa, F.; Moench, S.; Basler, M.; Waltereit, P.; Mikulla, M.; Quay, R.; Ambacher, O. Design of Low-Resistance and Area-Efficient GaN-HEMTs for Low-Voltage Power Applications. In Proceedings of the PCIM Europe 2021, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Online, 3–7 May 2021. [Google Scholar]
- Moench, S.; Reiner, R.; Benkhelifa, F.; Basler, M.; Waltereit, P.; Quay, R. A Three-Phase GaN-on-Si Inverter IC for Low-Voltage Motor Drives. In Proceedings of the PCIM Europe Digital Days 2021, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Online, 3–7 May 2021; pp. 1–7. [Google Scholar]
- Reiner, R.; Waltereit, P.; Weiss, B.; Wespel, M.; Meder, D.; Mikulla, M.; Quay, R.; Ambacher, O. Linear temperature sensors in high-voltage GaN-HEMT power devices. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016. [Google Scholar] [CrossRef]
- Basler, M.; Reiner, R.; Moench, S.; Waltereit, P.; Quay, R.; Haarer, J. Compact GaN Power ICs with Power HEMT, Gate Driver, Temperature Sensor, Current Sense-FET and Amplifier. In Proceedings of the 2023 35th IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD), Hong Kong, 28 May–1 June 2023; pp. 191–194. [Google Scholar] [CrossRef]
- Waltereit, P.; Preschle, M.; Müller, S.; Kirste, L.; Czap, H.; Ruster, J.; Dammann, M.; Reiner, R. A homogeneous and reproducible large-area, low dispersion GaN-on-Si normally-off 600 V transistor technology using selective GaN etching. In Proceedings of the 2018 76th Device Research Conference (DRC), Santa Barbara, CA, USA, 24–27 June 2018. [Google Scholar] [CrossRef]
- Weiss, B.; Reiner, R.; Waltereit, P.; Quay, R.; Ambacher, O.; Sepahvand, A.; Maksimovic, D. Soft-switching 3 MHz converter based on monolithically integrated half-bridge GaN-chip. In Proceedings of the 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, USA, 7–9 November 2016; pp. 215–219. [Google Scholar] [CrossRef]
- Weiss, B.; Reiner, R.; Polyakov, V.; Waltereit, P.; Quay, R.; Ambacher, O.; Maksimovic, D. Substrate biasing effects in a high-voltage, monolithically-integrated half-bridge GaN-Chip. In Proceedings of the IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October–1 November 2017; pp. 265–272. [Google Scholar] [CrossRef]
- Mönch, S. Switching Characteristics of Integrated GaN-on-Si Half-Bridge and Driver Circuits. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2021. [Google Scholar] [CrossRef]
- Moench, S.; Müller, S.; Reiner, R.; Waltereit, P.; Czap, H.; Basler, M.; Hückelheim, J.; Kirste, L.; Kallfass, I.; Quay, R.; et al. Monolithic Integrated AlGaN/GaN Power Converter Topologies on High-Voltage AlN/GaN Superlattice Buffer. Phys. Status Solidi (a) 2021, 218, 2000404. [Google Scholar] [CrossRef]
- Li, T.; Voigt, C.; Lindemann, A.; Boettcher, L.; Erhardt, E. An Embedded Power Section with GaN HEMTs. In Proceedings of the 2021 IEEE 12th Energy Conversion Congress & Exposition—Asia (ECCE-Asia), Singapore, 24–27 May 2021; pp. 26–31. [Google Scholar] [CrossRef]
- Nagai, S.; Yamada, Y.; Negoro, N.; Handa, H.; Hiraiwa, M.; Otsuka, N.; Ueda, D. A 3-Phase AC–AC Matrix Converter GaN Chipset With Drive-by-Microwave Technology. IEEE J. Electron Devices Soc. 2015, 3, 7–14. [Google Scholar] [CrossRef]
This Work | Power Stage (Multi-Switch) Only | One Transistor Only + Sensing | ||||
---|---|---|---|---|---|---|
GaN IC | 3-phase bridge + 3 senseFETs | 3-phase, no sensing | -matrix, no sensing | 1-phase, 3-level, no sensing | HEMT + senseFET | HEMT + shunt |
Operation voltage | 32 V | 100 V [25] | 150 V [26,71] | 300 V [27] | 48 V [35,64], 50 V [32], 200 V [33] | 10 V [39], 70 V [40] |
Sensor bandwidth | 7 MHz (52 ns) | no sensor | no sensor | no sensor | 43 MHz [32], 9.2 MHz (38 ns) [35] | 3.8 Mhz (90 ns) [40] |
Motor drive | yes (3-phase BLDC) | yes (3-phase BLDC) | no (pulsed switching) | no (1-phase inductive load) | no | no |
Efficiency | n/a | 93% [25] | n/a | n/a | n/a | n/a |
Integrated sense amplifier | no | no | no | no | no | yes (1 MHz) [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mönch, S.; Reiner, R.; Basler, M.; Grieshaber, D.; Benkhelifa, F.; Waltereit, P.; Quay, R. Three-Phase Motor Inverter and Current Sensing GaN Power IC. Sensors 2023, 23, 6512. https://doi.org/10.3390/s23146512
Mönch S, Reiner R, Basler M, Grieshaber D, Benkhelifa F, Waltereit P, Quay R. Three-Phase Motor Inverter and Current Sensing GaN Power IC. Sensors. 2023; 23(14):6512. https://doi.org/10.3390/s23146512
Chicago/Turabian StyleMönch, Stefan, Richard Reiner, Michael Basler, Daniel Grieshaber, Fouad Benkhelifa, Patrick Waltereit, and Rüdiger Quay. 2023. "Three-Phase Motor Inverter and Current Sensing GaN Power IC" Sensors 23, no. 14: 6512. https://doi.org/10.3390/s23146512
APA StyleMönch, S., Reiner, R., Basler, M., Grieshaber, D., Benkhelifa, F., Waltereit, P., & Quay, R. (2023). Three-Phase Motor Inverter and Current Sensing GaN Power IC. Sensors, 23(14), 6512. https://doi.org/10.3390/s23146512