
Citation: Huang, W.; Zhang, G.

Bearing Fault-Detection Method

Based on Improved Grey Wolf

Algorithm to Optimize Parameters of

Multistable Stochastic Resonance.

Sensors 2023, 23, 6529. https://

doi.org/10.3390/s23146529

Academic Editor: Luca De Marchi

Received: 21 June 2023

Revised: 14 July 2023

Accepted: 17 July 2023

Published: 19 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Bearing Fault-Detection Method Based on Improved Grey Wolf
Algorithm to Optimize Parameters of Multistable
Stochastic Resonance
Weichao Huang 1,2,* and Ganggang Zhang 2

1 Shannxi Key Laboratory of Complex System Control and Intelligent Information Processing,
Xi’an University of Technology, Xi’an 710048, China

2 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China;
zgg@stu.xaut.edu.cn

* Correspondence: huangwc@xaut.edu.cn

Abstract: In an effort to overcome the problem that the traditional stochastic resonance system cannot
adjust the structural parameters adaptively in bearing fault-signal detection, this article proposes an
adaptive-parameter bearing fault-detection method. First of all, the four strategies of Sobol sequence
initialization, exponential convergence factor, adaptive position update, and Cauchy–Gaussian
hybrid variation are used to improve the basic grey wolf optimization algorithm, which effectively
improves the optimization performance of the algorithm. Then, based on the multistable stochastic
resonance model, the structure parameters of the multistable stochastic resonance are optimized
through improving the grey wolf algorithm, so as to enhance the fault signal and realize the effective
detection of the bearing fault signal. Finally, the proposed bearing fault-detection method is used to
analyze and diagnose two open-source bearing data sets, and comparative experiments are conducted
with the optimization results of other improved algorithms. Meanwhile, the method proposed in
this paper is used to diagnose the fault of the bearing in the lifting device of a single-crystal furnace.
The experimental results show that the fault frequency of the inner ring of the first bearing data
set diagnosed using the proposed method was 158 Hz, and the fault frequency of the outer ring of
the second bearing data set diagnosed using the proposed method was 162 Hz. The fault-diagnosis
results of the two bearings were equal to the results derived from the theory. Compared with the
optimization results of other improved algorithms, the proposed method has a faster convergence
speed and a higher output signal-to-noise ratio. At the same time, the fault frequency of the bearing
of the lifting device of the single-crystal furnace was effectively diagnosed as 35 Hz, and the bearing
fault signal was effectively detected.

Keywords: multistable stochastic resonance; adaptive parameter; improved grey wolf algorithm;
bearing fault detection

1. Introduction

The failure rate of rolling bearings accounts for about 30% of all rotating machinery
failures, which is the main reason affecting the operating efficiency, productivity, and
life of mechanical equipment. Almost all rolling bearing fault signals are in a very noisy
environment, resulting in early weak faults that are difficult to find. Therefore, how to
enhance the signal-to-noise ratio of fault signals under extreme conditions has become a
key issue in the direction of fault diagnosis. At the same time, monitoring the status of
rolling bearings, promptly identifying faults, and conducting equipment maintenance are
of great practical significance for ensuring the smooth working of rotating machinery sys-
tems [1]. Nowadays, the main methods used for rolling bearing fault detection are: wavelet
decomposition [2], empirical mode decomposition [3], variational mode decomposition [4],
principal component analysis [5], stochastic resonance [6], etc. The stochastic resonance
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algorithm overturns the view that noise is harmful for a long time. It uses the resonance
principle to transfer noise energy to the fault signal, thus improving the detection and
diagnosis of the fault signal, and opening up a new method and idea for weak bearing
fault-signal detection submerged in strong noise.

Benzi raised the concept of stochastic resonance (SR) in 1981 when studying the
changes of the Earth’s ice ages [7]. After 40 years of development, SR theory has been
widely used in fault diagnosis [8], optics [9], medicine [10], image denoising [11], and
other fields, and has achieved many remarkable results. The SR algorithm makes use
of the synergy generated by the joint excitation of nonlinear systems, input signals, and
noise to make Brownian particles oscillate, improve the output signal-to-noise ratio, and
effectively detect the measured signal, which is a typical method to enhance the measured
signal. Therefore, it is widely concerned with the domain of signal detection [12]. Classical
bistable and monostable SR models have been extensively used in the study of signal
detection [13]. However, for the signal to be measured with ultra-low amplitude, due to
the potential function structure constraints, particles are often unable to effectively jump
between potential wells, and SR-detection methods for bistable and monostable models are
also powerless. When studying multistable stochastic resonance systems, Li et al. found
that the multistable model can better enhance the output signal-to-noise ratio and improve
the noise utilization ratio than the bistable and monostable models [14]. Therefore, more
and more scholars have carried out relevant research on multistable SR [15]. For example,
Zhang et al. proposed a piecewise unsaturated multistable SR (PUMSR) method which
overcomes the weakness of tri-stable SR output saturation and enhances the ability of weak
signal detection [16].

However, whether it is a monostable, bistable, or multistable SR algorithm, it is in-
evitably difficult to select model parameters in practical applications. Mitaim et al. [17]
put forward the adaptive SR theory to enhance useful signals by automatically adjusting
the structural parameters of nonlinear systems. But, the adaptive SR method, which takes
a single parameter of the system as the optimization object, often ignores the interaction
between the parameters of the system. With the rise of the swarm intelligence optimization
algorithm, finding the global optimal solution through the swarm intelligence algorithm
can solve the limitations of traditional adaptive SR systems, and this concept has been
extensively used in the domain of bearing fault detection [18]. However, in the existing
research results, the adaptive selection of SR model parameters still depends on the per-
formance of intelligent optimization algorithms, so there are generally issues such as a
low solving accuracy and being prone to falling into local optima [19]. Therefore, the
feasible method to effectively enhance the parameter performance of adaptive selection
of SR systems is to improve the defects of the intelligent optimization algorithm, so that
it can more quickly and accurately optimize the parameters of the SR system. The grey
wolf optimization algorithm can find the optimal solution by simulating the tracking,
encircling, pursuit, and attack stages of the group predation behavior of the grey wolf.
With few parameters and a simple structure, it is easy to integrate with other algorithms
for improvement, but there are also the problems that it is easy to fall into local optimal
solutions and low computational efficiency [20]. Therefore, it is of great research value
to improve the basic grey wolf algorithm and improve its optimization performance [21].
Vasudha et al. proposed a multi-layer grey wolf optimization algorithm to further achieve
an appropriate equivalence between exploration and development, thereby improving the
efficiency of the algorithm [22]. Rajput et al. proposed an FH model based on the sparsity
grey wolf optimization algorithm, which helps to minimize the computational overhead
and improve the computational accuracy of the algorithm [23].

This article takes bearing fault-signal detection as the research object. Aiming at the
problem of difficult parameter selection of multistable SR systems, a bearing fault-detection
method based on an improved grey wolf algorithm to optimize multistable SR parameters
is raised. This method improves the basic grey wolf optimization algorithm. Firstly,
considering the quality of the initial solution, a Sobol-sequence initialization population
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strategy is proposed to make the distribution of the initial grey wolf population more
uniform. Secondly, a convergence-factor adjustment strategy based on exponential rules
is proposed to coordinate the global exploration and local development stages of the
algorithm. Meanwhile, an adaptive position-update strategy is proposed to improve the
accuracy of the algorithm, and Cauchy–Gaussian mixture mutation is used to enhance the
algorithm’s ability to escape from local optima. Experimental verification is conducted
on the performance of the improved grey wolf algorithm using fifteen benchmark test
functions from the CEC23 group of commonly used test functions. The verification results
display that the multi-strategy improved grey wolf optimization algorithm (MSGWO)
has a faster convergence speed and a higher convergence accuracy. Then, on the basis
of the model of the multistable SR system, the parameters of the multistable SR system
are optimized through the MSGWO, so as to enhance the fault signal and realize the
effective detection of the bearing fault signal. Finally, the bearing fault-detection method
raised in this article is used to analyze and diagnose a bearing data set from Case Western
Reserve University (CWRU) and a bearing data set from the Mechanical Fault Prevention
Technology Association (MFPT), and is compared with the optimization results of other
improved algorithms. Meanwhile, the method raised in this article is used to diagnose the
fault of the bearing of the lifting device of a single-crystal furnace. The test results display
that the bearing fault-detection method raised in this article has a fast convergence speed
and a large output signal-to-noise ratio, and can detect bearing fault signals accurately
and efficiently.

The rest of this article is arranged as below: The Section 2 introduces the specific cases
of bearing failure in rotating machinery in different industries. The Section 3 introduces
the basic principle of multistable SR. The Section 4 introduces the principle of the basic
grey wolf optimization algorithm and the MSGWO, and compares it with some basic
optimization algorithms and improved optimization algorithms, respectively. At the same
time, the population diversity and the exploration and development stage of the MSGWO
are analyzed. The Section 5 introduces the bearing fault-diagnosis method based on the
MSGWO to optimize the multistable SR parameters, and uses the proposed method to
analyze and diagnose the bearing data sets from CWRU and the MFPT. Meanwhile, the
raised method is used to diagnose the bearing fault of the monocrystal furnace lifting
device. The Section 6 is the summary.

2. Specific Cases of Bearing Failure

Due to the diverse working environments of bearings during the operation of rotating
machinery, they are easily affected by wear, corrosion, and other factors, making it easy for
various faults to occur. For example, in June 1992, during the overspeed test of a 600 MW
supercritical active generator set at the Kansai Electric Power Company Hainan Power
Plant in Japan, the bearing failure of the unit and the critical speed drop caused strong
vibration of the unit, resulting in a crash accident and economic losses of up to JPY 5 billion.
From September 2003 to October 2004, the China Railway Beijing–Shanghai Line, Shitai
Line, and Hang-gan Line had a total of five traffic incidents. According to relevant statistics,
four of these accidents were caused by train bearing-fatigue fracture, with a total economic
loss of up to CNY 2 billion. In April 2015, China Dalian West Pacific Petrochemical Co.,
LTD., due to the serious distortion and fracture of the inner ring of the driving end bearing
and the serious wear and deformation of the bearing ball, the seal of the bottom pump of
the stripping tower of a hydrocracking unit quickly failed, and the medium leaked, which
caused a fire. The accident caused three pumps, the frame above the pump, and a small
number of meters and power cables to set fire; a local pipeline to crack; and direct economic
losses of CNY 166,000. In 2018, the US Navy’s “Ford” aircraft carrier had to return to the
shipyard for maintenance due to a thrust bearing failure during a mission. In August
2019, when a drone was spraying pesticides at a farm in Hebei, China, its motor rolling
bearing failed, causing the drone to lose control, and a large amount of pesticides were
spilled into the river, causing serious pollution. In December 2021, there were two recessive



Sensors 2023, 23, 6529 4 of 24

cracks in the bearing of unit #33 of a wind farm in Liaoning, China. Due to the limited
installation position, the appearance inspection could not find them. As a result, the shaft
cracks were promoted by the wind wheel’s alternating load during operation, resulting in
a spindle fracture and the impeller’s overall fall. Therefore, the research on fault-diagnosis
technology of rolling bearings is very necessary and has great practical significance.

3. Basic Principles of Multistable SR
3.1. The Basic Theory of Multistable SR

The principle of SR is that weak characteristic signals can be enhanced and detected
by noise transfer mechanism under the action of nonlinear system. In general, when
interpreting the SR model, we should first consider Langevin’s dynamic equation [24],
which is as follows:

d2x
dt2 +

dx
dt

= −U′(x) + s(t) + n(t) (1)

where x is the system response of SR, U(x) is a class of nonlinear multistable potential
function, s(t) is the external incentive, n(t) is the noise excitation, m is the mass of the
particle, and k is the drag coefficient.

The definition formula of the nonlinear multistable potential function is:

U(x) =
a
2

x2 − 1 + a
4b

x4 +
c
6

x6 (2)

In the formula, a, b, and c are parameters of the nonlinear multistable model, and
they are all greater than 0. The potential function model image of the multistable system is
displayed in Figure 1.
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Substitute the potential function of the multistable model into Formula (1), add noise
with intensity D in the system, and then obtain the Langevin equation of the nonlinear
multistable system as follows:

dx
dt

= −ax +
1 + a

b
x3 − cx5 + s(t) +

√
2Dn(t) (3)

When periodic signal and noise signal are used as excitation simultaneously, the
inclination of potential well in the multistable system will increase. In addition, the
periodic signal will also make the potential well depth of the three potential wells of
the multistable potential function change periodically, and can guide the noise signal to
switch synchronously. When the signal, noise, and multistable SR system reach a certain
matching relationship, particles can make periodic transitions between potential wells, so
that the components of the system output with the same frequency as the input signal
are strengthened.
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3.2. System Parameters’ Range

The fourth order Runge–Kutta formula was used to solve the multistable SR model.
The specific calculation formula is:

k1 = h(−ax(n) + 1+a
b x3(n)− cx5(n) + s(n))

k2 = h(−a(x(n) + k1
2 ) +

1+a
b (x(n) + k1

2 )
3
− c(x(n) + k1

2 )
5
+ s(n))

k3 = h(−a(x(n) + k2
2 ) +

1+a
b (x(n) + k2

2 )
3
− c(x(n) + k2

2 )
5
+ s(n))

k4 = h(−a(x(n) + k3) +
1+a

b (x(n) + k3)
3 − c(x(n) + k3)

5 + s(n))
x(n + 1) = x(n) + 1

6 (k1 + 2k2 + 2k3 + k4)

(4)

where x(n) is the nth sampling value of the system output, s(n) is the nth sampling value
of the noise-added input signal, h is the sampling step, and ki(i = 1, 2, 3, 4) is the slope of
the output response at the relevant integration point.

Normally, due to noise, particles jump over higher barrier heights by accumulating
energy, so b, c, and h take the real numbers of [0, 10]. As the target signal is relatively weak,
the interval in [25] is quoted; the range of a is set to [0, 0.5].

4. Multi-Strategy Improved Grey Wolf Optimization Algorithm
4.1. The Primary Theory of Grey Wolf Optimization Algorithm

Grey Wolf Optimizer (GWO) is a new intelligent swarm optimization algorithm
proposed by Mirjalili et al. [26], whose main ideas are the leadership hierarchy and group
hunting mode of grey wolf groups. The grey wolf population has a strict hierarchy. The
head of the population is α, which represents the most coordinated individual in the wolf
pack, and is mainly responsible for the decision-making affairs of the group’s predation
behavior. The β wolf is second only to α in the population, and its role is to serve the α
wolf to make decisions and deal with the behavior of the population. The third rank in
the population is the δ wolf, which obeys the instructions issued by the α and β, but has
command over other bottom individuals. The lowest individual in the group, known as ω,
is submissive to the instructions of other higher-ranking wolves and is primarily responsible
for balancing the relationships within the group. GWO defines the three solutions with
the best fitness as α, β, and δ, while the remaining solutions are defined as ω. The hunting
process (optimization process) is guided by α, β, and δ to track and hunt the prey (position
update), and finally complete the hunting process, that is, obtain the optimal solution. Grey
wolf groups gradually approach and surround their prey through several formulas:

D =
∣∣C · Xp(t)− X(t)

∣∣ (5)

X(t + 1) = Xp(t)− A · D (6)

where t represents the number of iterations, X(t) and Xp(t) represent the position vector
between the wolf and its prey, A and C represent the cooperation coefficient vector, and D
is the distance between the individual wolf pack and the target. The formula for calculating
coefficient vectors A and C is:

A = 2 f · r1 − f (7)

C = 2 · r2 (8)

where, as the number of iterations increases, f decays linearly from 2 to 0. To enable some
agents to reach an optimal position, r1 and r2 take values between [0, 1].

When hunting, GWO thinks that α, β, and δ are better at predicting the location of
prey. Therefore, individual grey wolves will judge the distance Dα, Dβ, and Dδ between
themselves and α, β, and δ; calculate their moving distances X1, X2, and X3 toward the
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three, respectively; and finally move within the circle of the three. The moving formula is
shown in Equation (9). 

Dα = |C1 · Xα − X(t)|
Dβ =

∣∣C1 · Xβ − X(t)
∣∣

Dδ = |C1 · Xδ − X(t)|
(9)


X1 = Xα − A · Dα

X2 = Xβ − A · Dβ

X3 = Xδ − A · Dδ

(10)

X(t + 1) = (X1 + X2 + X3)/3 (11)

4.2. Multi-Strategy Improved Grey Wolf Optimization Algorithm
4.2.1. Sobol-Sequence Initialization Population Strategy

In the swarm intelligence algorithm, whether the initial population distribution is
uniform will have a great impact on the optimization performance of the algorithm. GWO
initializes the population randomly, resulting in the distribution of the initial population
being extremely scattered, which will have a great impact on the algorithm’s solving speed
and optimization accuracy. Therefore, this paper initializes population individuals through
the Sobol sequence. The Sobol sequence is a kind of low difference sequence [27], which is
based on the smallest prime number, two. To produce a random sequence X ∈ [0, 1], an
irreducible polynomial of the highest order k in base two is first required to produce a set
of predetermined directional numbers V = [V1, V2, · · · , Vk], and then the index value of the
binary sequence i = (· · · i3i2i1)2 is required; then, the nth random number generated by
the Sobol sequence is:

Xi = i1V1 ⊕ i2V2 ⊕ · · · i = (· · · i3i2i1)2 (12)

The distribution of individuals with the same population size in the same dimensional
space is shown in Figure 2. From Figure 2, it can be seen that the distribution of the
population initialized using the Sobol sequence is more uniform than that generated
randomly, which enables the population to traverse the entire search space better.
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4.2.2. Exponential Rule Convergence-Factor Adjustment Strategy

The parameter A is an important parameter regulating global exploration and local
development in GWO, which is mainly affected by convergence factor f . In GWO, when
|A| > 1, the grey wolf population searches the entire search domain for potential prey, and
when |A| ≤ 1, the grey wolf population will gradually surround and capture prey.

In GWO, the value of convergence factor f decreases linearly from 2 to 0 with the
increase in the number of iterations, which cannot accurately reflect the complex random
search process in the actual optimization process. In addition, in the process of algorithm
iteration, the same method was used to calculate the enveloping step length for grey wolf
individuals with different fitness, which did not reflect the differences among individual
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grey wolves. Therefore, this paper introduces an updated mode of convergence factor
based on exponential rule changes, whose equation is as follows:

f ′ = 2e−t/T (13)

The curves of the linear convergence factor and exponential regular convergence factor
proposed in this paper with the number of iterations are shown in Figure 3. As can be seen
from Figure 3, the convergence factor f in GWO decreases linearly with the increase in
iterations, resulting in incomplete prey searches in the early stage and slow convergence
in the later hunting process. The convergence factor f ′, which varies exponentially, can
thoroughly search for prey in the early stages of the algorithm, thereby enhancing its global
optimization performance.
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4.2.3. Adaptive Location-Update Strategy

In GWO, the initializing α, β, and δ solutions are recorded and retained until they are
replaced by a better-fitting individual in the iterative process. In other words, if there is no
better α, β, and δ solution in the population than that recorded in the t generation, the new
population will still update its position toward wolves α, β, and δ. But when these three
are in the local optimal area, then the whole population cannot obtain the optimal solution.
Moreover, the average value of X1, X2, and X3 in GWO cannot show the importance of α, β,
and δ. Therefore, a new adaptive location-update strategy is proposed, which is expressed
as follows: 

W1 = |X1|
|X1|+|X2|+|X3|+ε

W2 = |X2|
|X1|+|X2|+|X3|+ε

W3 = |X3|
|X1|+|X2|+|X3|+ε

(14)

g =
T − t

T
(ginitial − g f inal) + g f inal (15)

where g is the inertia weight. The mathematical expression of grey wolf position update is
shown in Equation (16).

X(t + 1) =
W1X1 + W2X2 + W3X3

3
g + X1

t
T

(16)

4.2.4. Cauchy–Gaussian Hybrid Mutation Strategy

In order to avoid the local optimization of the basic GWO algorithm, this paper
introduces the Cauchy–Gaussian hybrid mutation strategy combining Cauchy and Gaus-
sian distribution, and gives the best individuals the Cauchy–Gaussian perturbation. The
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Cauchy–Gaussian operator can generate a large step length to avoid the algorithm falling
into local optimality, and its expression is as follows:

X∗new(t) = X∗(t) · (1 + λ1cauchy(0, 1) + λ2Gauss(0, 1)) (17)

λ1 = 1− t2

T2
max

(18)

λ2 =
t2

T2
max

(19)

where X∗new(t) is the value obtained using Cauchy–Gaussian perturbation, cauchy(0, 1) is
the Cauchy operator, and Gauss(0, 1) is the Gaussian operator.

The pseudocode of MSGWO is shown in Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 25 
 

 

 

Figure 4. The pseudocode of MSGWO. 

4.3. Improved Performance Test of Grey Wolf Optimization Algorithm 

CEC23 sets of commonly used test functions are important examples of testing algo-

rithm performance [28]. In an effort to test the performance of the MSGWO raised in this 

article, fifteen test functions in the CEC23 group of commonly used test functions were 

selected for verification, in which F1 to F7 were single-peak benchmark functions, F8 to F13 

were multi-peak benchmark functions, and F14 to F15 were fixed-dimensional multi-peak 

test functions. The computing platform performance was based on IntelI CITM) i5-6500 

CPU, 3.20 GHz main frequency, and 8 GB memory. The details of the test function are 

shown in Table 1. 

Table 1. Benchmark functions. 

Function Dim Range Optima 

2

1
1

( )
n

i
i

F x x
=

=  30 [−100, 100] 0 

2
1 1

( )
nn

i i
i i

F x x x
= =

= +   30 [−10, 10] 0 

2

3
1 1

( )
n i

j
i j

F x x
= −

 
=   

 
   

30 [−100, 100] 0 

 4
( ) max ,1

i i
F x x i n=  

 30 [−100, 100] 0 

1
2 2 2

5 1
1

( ) 100( ) ( 1)
n

i i i
i

F x x x x
−

+
=

 = − + − 
 

30 [−30, 30] 0 

Figure 4. The pseudocode of MSGWO.

4.3. Improved Performance Test of Grey Wolf Optimization Algorithm

CEC23 sets of commonly used test functions are important examples of testing algo-
rithm performance [28]. In an effort to test the performance of the MSGWO raised in this
article, fifteen test functions in the CEC23 group of commonly used test functions were
selected for verification, in which F1 to F7 were single-peak benchmark functions, F8 to F13
were multi-peak benchmark functions, and F14 to F15 were fixed-dimensional multi-peak
test functions. The computing platform performance was based on IntelI CITM) i5-6500
CPU, 3.20 GHz main frequency, and 8 GB memory. The details of the test function are
shown in Table 1.
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Table 1. Benchmark functions.

Function Dim Range Optima

F1(x) =
n
∑

i=1
x2

i
30 [−100, 100] 0

F2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | 30 [−10, 10] 0

F3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
30 [−100, 100] 0

F4(x) = maxi{|xi |, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) =
n−1
∑

i=1

[
100(xi+1 − x2

i )
2
+ (xi − 1)2

]
30 [−30, 30] 0

F6(x) =
n
∑

i=1
([xi + 0.5])

2
30 [−100, 100] 0

F7(x) =
n
∑

i=1
ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

F8(x) =
n
∑

i=1
−xi sin(

√
|xi |) 30 [−500, 500] −418.98 × Dimn

F9(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 30 [−5.12, 5.12] 0

F10(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 30 [−32, 32] 0

F11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

F12(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 + xi+1
4

u(xi , a, k, m) =

 k(xi − a)m xi > a
0 − a < xi < a

k(−xi − a)m xi < −a

30 [−50, 50] 0

F13(x) = 0.1
{

sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]

}
+

n
∑

i=1
u(xi , 5, 100, 4)

30 [−50, 50] 0

F14(x) =

 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6


−1

2 [−65, 65] 1

F15(x) =
11
∑

i=1

[
ai −

x1(b2
i +b1x2)

b2
i +b1x3+x4

]2
4 [−5, 5] 0.1484

4.3.1. Comparison Experiment between MSGWO and Standard Optimization Algorithm

In an effort to objectively verify the performance of MSGWO, the population size was
set to 30 times, the maximum number of iterations was set to 500 times, and each algorithm
was run independently 30 times. Algorithms to be compared in the experiment included
the bat optimization algorithm (BOA) [29], whale optimization algorithm (WOA) [30],
grey wolf optimization algorithm (GWO), gravity search algorithm (GSA) [31], particle
swarm optimization algorithm (PSO) [32], and artificial bee colony algorithm (ABC) [33].
The parameters of all the comparison algorithms in the experiment were the same as
those recommended in the original literature. The mean value and standard deviation of
the optimal value of the simulation results were taken as the evaluation indexes of the
algorithm performance, and the results are shown in Table 2. The test results shown in bold
black in Table 2 are the best for comparison.

It can be seen from the data in Table 2 that MSGWO obtained the optimal mean and
variance in functions F1–F4, F7, F9–F13, and F15. In the function F5, MSGWO obtained the
best average value, but its stability was worse than BOA. In the function F6, MSGWO
obtained the best average value, but its stability was worse than WOA and GWO. In the
function F8, MSGWO achieved the best average, but its stability was the worst. In the
function F14, MSGWO obtained the best average value, but its stability was worse than that
of the ABC algorithm. It can be seen that MSGWO obtained the optimal average value in
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all the selected test functions. Although the stability of the algorithm was worse in some
individual functions than that of some comparison algorithms, MSGWO still had better
optimization performance on the whole.

Table 2. The compared results of MSGWO and standard optimization algorithms.

F Index WOA GWO BOA GSA PSO ABC MSGWO

F1
mean 4.97 × 10−74 1.04 × 10−27 4.06 × 10−4 98.91 11.65 3.54 0

std 2.49 × 10−73 1.37 × 10−27 8.97 × 10−5 106.42 5.28 1.26 0

F2
mean 2.46 × 10−52 9.51 × 10−17 4.54 × 10−9 4.46 11.69 0.16 0

std 5.61 × 10−52 7.47 × 10−17 1.26 × 10−9 4.47 3.64 0.05 0

F3
mean 3.87 × 104 3.15 × 10−5 1.25 × 10−11 1.31 × 103 7.25 × 102 3.37 × 104 0

std 1.48 × 104 9.68 × 10−5 8.97 × 10−13 4.14 × 102 5.27 × 102 5.45 × 103 0

F4
mean 59.16 7.78 × 10−7 6.15 × 10−9 10.07 6.73 51.08 0

std 23.48 8.85 × 10−7 4.28 × 10−10 1.71 1.26 5.48 0

F5
mean 27.90 28.44 28.94 3.26 × 102 1.87 × 103 1.40 × 105 27.08

std 0.48 0.82 0.03 2.51 × 102 1.15 × 103 6.78 × 104 0.42

F6
mean 0.42 0.90 5.75 52.25 9.89 3.96 0.35

std 0.48 0.38 0.72 60.45 3.57 0.98 0.54

F7
mean 2.54 × 103 2.07 × 103 1.39 × 103 1.36 0.68 0.25 6.58 × 10−5

std 2.30 × 10−3 7.10 × 10−4 7.65 × 10−4 2.63 0.33 0.08 6.62 × 10−5

F8
mean −1.04 × 104 −5.70 × 103 −3.77 × 104 −2.48 × 103 −2.22 × 103 −4.98 × 103 −5.47 × 1058

std 1.73 × 103 1.18 × 103 3.80 × 102 5.29 × 102 5.89 × 102 3.55 × 102 1.81 × 1059

F9
mean 0.15 3.63 6.72 38.94 92.15 2.33 × 102 0

std 0.83 4.07 36.10 10.12 16.83 15.05 0

F10
mean 5.51 × 10−15 1.03 × 10−13 5.81 × 10−9 0.55 5.43 1.89 8.88 × 10−16

std 2.77 × 10−15 2.23 × 10−14 7.12 × 10−10 0.61 1.18 0.57 0

F11
mean 0.03 3.02 × 10−3 5.22 × 10−12 1.01 × 103 0.45 1.02 0

std 0.09 5.70 × 10−3 2.40 × 10−12 11.85 0.12 0.03 0

F12
mean 0.05 0.07 0.66 3.12 4.40 17.54 0.05

std 0.13 0.27 0.16 1.10 1.98 8.64 0.10

F13
mean 0.51 0.71 2.91 27.43 22.29 1.49 × 104 0.43

std 0.29 0.24 0.18 10.75 16.15 2.36 × 104 0.14

F14
mean 2.90 4.53 1.68 6.66 2.05 1.69 1.55

std 3.20 4.03 0.94 4.61 1.63 0 0.70

F15
mean 6.13 × 10−4 2.47 × 10−3 4.39 × 10−4 1.17 × 10−2 6.15 × 10−4 7.04 × 10−4 3.46 × 10−4

std 3.04 × 10−4 6.00 × 10−3 1.73 × 10−4 6.30 × 10−3 4.65 × 10−4 5.80 × 10−4 1.69 × 10−4

The simulation results show that MSGWO had better optimization performance under
different benchmark test functions. This shows that compared with GWO, MSGWO
enhances the local search ability, thus increasing the solution accuracy, and for multi-modal
test functions, MSGWO has a strong local optimal avoidance ability, and can better find the
optimal solution. When other algorithms have low optimization accuracy or even cannot
converge, MSGWO still has high solving accuracy.

In order to explore the influence of improvement strategies on the algorithm conver-
gence speed, the convergence curves of each algorithm under 15 benchmark test functions
are shown in Figure 5. As can be seen from Figure 5, MSGWO has high precision and
the fastest convergence rate of the optimal solution in the comparison algorithm, which
effectively saves the optimization time.

4.3.2. Comparison Experiment between MSGWO and Improved Optimization Algorithm

In an effort to further test the performance of the MSGWO, the population size was set
to 30 times, the maximum number of iterations was set to 500 times, and each algorithm was
independently run 30 times. Comparative experimental analysis was conducted between
MSGWO and GWO, MEGWO [34], mGWO [35], IGWO [36], and MPSO [37]. The mean
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value and standard deviation of the optimal value of the simulation results were taken as
the evaluation indexes of the algorithm performance, and the results are shown in Table 3.
The test results shown in bold black in Table 3 are the best for comparison.
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Table 3. Comparison of experimental results between MSGWO and improved algorithms.

F Index GWO MEGWO mGWO IGWO MPSO MSGWO

F1
mean 1.04 × 10−27 4.30 × 10−64 1.04 × 10−18 1.33 × 10−209 2.61 × 10−26 0

std 1.37 × 10−27 2.09 × 10−63 2.97 × 10−18 0 1.12 × 10−25 0

F2
mean 9.50 × 10−17 1.70 × 10−43 2.65 × 10−12 6.12 × 10−21 1.40 × 10−16 0

std 6.40 × 10−17 5.77 × 10−43 1.99 × 10−12 6.67 × 10−21 2.86 × 10−16 0

F3
mean 3.15 × 10−5 0.23 0.68 2.73 × 10−5 9.63 × 102 0

std 9.68 × 10−5 0.48 0.81 9.57 × 10−5 4.81 × 102 0

F4
mean 7.78 × 10−7 2.06 × 10−5 0.68 2.93 × 10−7 2.05 × 10−10 0

std 8.85 × 10−7 5.68 × 10−5 0.85 1.78 × 10−7 4.81 × 10−10 0

F5
mean 28.44 27.94 27.92 27.64 88.91 27.08

std 0.82 9.97 0.58 0.32 1.89 × 102 0.42

F6
mean 0.90 0.49 0.41 0.43 0.41 0.36

std 0.38 1.14 0.25 0.19 0.22 0.54

F7
mean 2.07 × 10−3 1.01 × 10−3 4.68 × 10−3 2.80 × 10−3 1.68 × 10−3 6.58 × 10−5

std 7.10 × 10−4 9.10 × 10−4 1.90 × 10−3 1.10 × 10−3 8.87 × 10−4 6.62 × 10−5

F8
mean −5.70 × 103 −1.26 × 104 −5.33 × 103 −8.28 × 103 −8.12 × 103 −5.47× 1058

std 1.18 × 103 2.15× 10−12 1.11 × 103 1.69 × 103 1.12 × 103 1.81 × 1059

F9
mean 3.63 0 37.94 27.09 23.92 0

std 4.07 0 30.01 22.81 22.64 0

F10
mean 1.03 × 10−13 5.27 × 10−15 1.26 × 10−10 6.25 × 10−14 6.22 × 10−15 8.88× 10−16

std 2.23 × 10−14 1.50 × 10−15 9.69 × 10−11 8.96 × 10−15 7.38 × 10−15 0

F11
mean 3.02 × 10−3 0 3.83 × 10−3 3.37 × 10−3 0 0

std 5.70 × 10−3 0 9.40 × 10−3 6.00 × 10−3 0 0

F12
mean 0.07 0.05 0.05 6.58 × 10−2 0.42 0.05

std 0.27 0.56 0.04 2.00 × 10−3 0.73 0.10

F13
mean 0.71 0.46 0.63 0.66 0.45 0.43

std 0.24 0.15 0.22 0.16 0.25 0.13

F14
mean 4.53 1.78 2.00 1.70 1.99 1.55

std 4.03 2.91 2.76 0.76 0.36 0.71

F15
mean 2.47 × 10−3 3.07 × 10−4 1.04 × 10−3 8.62 × 10−4 5.68 × 10−4 3.46 × 10−4

std 6.00 × 10−3 3.42 × 10−15 3.60 × 10−3 3.00 × 10−3 3.36 × 10−4 1.69 × 10−4

It can be seen from the data in Table 3 that for the optimization accuracy of the
algorithm, MSGWO obtained the optimal average value in the function F1–F15. In terms of
algorithm stability, the stability of the MSGWO was worse than that of the IGWO algorithm
in F5; worse than those of the GWO, mGWO, IGWO, and MPSO algorithms in F6; the worst
in F8; worse than those of the mGWO and IGWO algorithms in F12; worse than that of the
MPSO algorithm in F14; and worse than that of MEGWO in F15. However, in the other nine
test functions, its stability was better than the comparison algorithm, so the overall stability
was still the best.

The convergence curves of the MSGWO algorithm and improved algorithms under
15 benchmark functions are shown in Figure 6. It can be seen from the convergence curves of
each test function in Figure 6 that MSGWO has better local extreme value escape ability, overall
optimization coordination, and convergence performance than the comparison algorithm.
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Figure 6. The convergence curves are compared between MSGWO and the improved algorithm.
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4.3.3. Wilcoxon Rank Sum Test

In order to verify whether there were significant differences between MSGWO and
other comparison algorithms, the Wilcoxon rank sum test was used for statistical analysis
of the experimental data. For each test function, the results of 30 independent optimiza-
tions of MSGWO were compared with the 30 independent optimizations of the standard
optimization algorithms (WOA, GWO, BOA, GSA, PSO, ABC) and improved optimiza-
tion algorithms (MEGWO, mGWO, IGWO, MPSO) using the Wilcoxon rank sum test at
a significance level of 5%. The population size of all algorithms was set to 30, with 500
iterations. The p value of the test result was less than 0.05, indicating that there were
significant differences between the comparison algorithms. The symbols “+”, “−”, and “=“
of R indicate that the performance of MSGWO was better than, worse than, and equivalent
to the comparison algorithm, respectively, and N/A indicates that a significance judgment
could not be made. The test results are shown in Tables 4 and 5, respectively.

Table 4. Wilcoxon rank sum test results for MSGWO and standard algorithms.

F Index MSGWO–WOA MSGWO–GWO MSGWO–BOA MSGWO–GSA MSGWO–PSO MSGWO–ABC

F1
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F2
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F3
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F4
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F5
P 1.06 × 10−4 2.88 × 10−6 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F6
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 7.69 × 10−6 1.73 × 10−6 9.37 × 10−3

R + + + + + +

F7
P 2.13 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F8
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F9
P 1.73 × 10−6 2.53 × 10−6 1.82 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F10
P 2.57 × 10−6 1.61 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F11
P 2.57 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F12
P 1.73 × 10−6 1.73 × 10−6 1.97 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F13
P 1.73 × 10−6 1.73 × 10−6 0.0021 1.73 × 10−6 1.92 × 10−6 0.0047
R + + + + + +

F14
P 1.73 × 10−6 1.73 × 10−6 4.45 × 10−5 4.86 × 10−5 1.92 × 10−6 0.0023
R + + + + + +

F15
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

Table 5. Wilcoxon rank sum test results for MSGWO and improved algorithms.

F Index MSGWO–GWO MSGWO–MEGWO MSGWO–mGWO MSGWO–IGWO MSGWO–MPSO

F1
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +
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Table 5. Cont.

F Index MSGWO–GWO MSGWO–MEGWO MSGWO–mGWO MSGWO–IGWO MSGWO–MPSO

F2
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F3
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F4
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F5
P 2.88 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−3

R + + + + +

F6
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 9.37 × 10−3 1.73 × 10−6

R + + + + +

F7
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F8
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F9
P 2.53 × 10−6 0.012 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + = + + +

F10
P 1.61 × 10−6 3.99 × 10−7 1.73 × 10−6 1.47 × 10−6 1.01 × 10−7

R + + + + +

F11
P 1.73 × 10−6 0.012 1.22 × 10−4 7.8 × 10−3 0.012
R + = + + =

F12
P 1.73 × 10−6 0.012 1.22 × 10−4 1.73 × 10−6 2.9 × 10−3

R + = = + +

F13
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F14
P 1.73 × 10−6 3.59 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F15
P 1.73 × 10−6 1.73 × 10−6 1.7 × 10−3 3.11 × 10−5 1.73 × 10−6

R + + + + +

As can be seen from Table 4, comparing the optimization results of MSGWO with
those of WOA, GWO, BOA, GSA, PSO, and ABC on 15 test functions, the p values of
the test results are all less than 0.05, and the R values are all +, indicating that the opti-
mization results of MSGWO are significantly different from those of other six algorithms.
Additionally, MSGWO is significantly better, which shows the superiority of the MSGWO
algorithm statistically.

As can be seen from Table 5, compared with the optimization results of the five
improved algorithms on 15 test functions, the p values of the test results of MSGWO are
all less than 0.05, and R is +/=, which indicates that the optimization results of MSGWO
are significantly different from the optimization results of the five improved algorithms,
and MSGWO is significantly better. This result shows the superiority of the MSGWO
algorithm statistically.

4.3.4. Population Diversity Analysis of MSGWO

In an effort to further illustrate the effectiveness of the proposed algorithm, the diver-
sity of population particles during evolution was analyzed. Population diversity measure-
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ments can accurately evaluate whether a population is being explored or exploited [38],
and the specific calculation formula is as follows:

IC(t) =

√√√√ N

∑
i=1

D

∑
d=1

(xid(t)− cd(t))
2 (20)

cd(t) =
1
D

N

∑
i=1

xid(t) (21)

where IC represents the dispersion between the population and the center of mass cd in
each iteration, and xid represents the value of the d dimension of the ith individual at the
time of iteration t.

A small population diversity measure indicates that particles converge near the pop-
ulation center, that is, develop in a small space. A large population diversity measure
indicates that the particles are far from the center of the population, that is, they explore
in a larger space. Unimodal function F1 and multi-modal function F15 of the commonly
used test functions of CEC23 were selected as representatives to analyze the population
diversity measurements of MSGWO and GWO, respectively. The experimental results are
shown in Figure 7a,b.
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As can be seen from Figure 7, the population diversity measure of the GWO algorithm
decreased at the fastest speed in F1 and F15, which is not conducive to sufficient space
exploration in the early stage and is easy to fall into local optimization. In F1, the MSGWO
algorithm maintained a high level of population diversity in the early stage of evolution,
fully satisfying the exploration of particles in the whole space, while the population di-
versity decreased rapidly in the middle and late stages of evolution, indicating that the
algorithm has a good development ability. In F15, MSGWO population diversity fluctu-
ated greatly and remained at a high level, indicating that the algorithm has a good global
exploration ability.

5. Bearing Fault Detection
5.1. Parameter Adaptive Multistable Stochastic Resonance Strategy

In SR performance measurement indicators, signal-to-noise ratio (SNR) is commonly
used and plays an important role. In this paper, the SNR is used as the target of optimization,
that is, the fitness function. The formula for calculating the SNR is as follows [39]:

SNR = 10 log10
At

N/2
∑

n=0
An

(22)
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where At is the amplitude of the target frequency, An is the amplitude of frequencies other
than the target frequency in the input signal, and N is the number of samples.

Based on the above analysis, the flow chart of the bearing fault-detection method
proposed in this paper is shown in Figure 8, and its specific steps are as follows:
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Step 1: Input noisy signals and initialize MSGWO parameters. The range of a is [0, 0.5];
the range of b, c, and h are [0, 10]. The maximum number of iterations is 200 and the
number of grey wolf populations is 30.

Step 2: Run the MSGWO, calculate the SNR according to Equation (22), then update
the individual position, iterate to the maximum number of iterations, and finally terminate
the iteration.

Step 3: Substitute the optimal solutions of a, b, c, and h into the SR system for operation,
and subject the output of the SR system to fast Fourier transform to obtain the frequency
domain. Then, analyze the output of the SR according to the frequency domain, and capture
the fault frequency.

5.2. CWRU Bearing Data Set

In an effort to verify the applicability of the raised method in actual fault-signal
detection, the open bearing-fault data set of CWRU was selected for the experiment [40],
and the driving end bearing model 6205-2RS was used. Since the rotating speed of the
bearing was 1750 rpm, the fault characteristic frequency of the inner ring was calculated
to be 158 Hz. In the experiment, the sampling frequency was set to 12 kHz, and the data
length of the signal was 12,000. The time domain and frequency domain waveforms of the
input signal are shown in Figure 9, and the output signal-to-noise ratio was SNR = −37.77.
As can be seen from Figure 9, the fault frequency of the original signal was difficult to
capture in its frequency domain due to the influence of environmental noise. In order to
ensure the accuracy of the experimental results, the average method of 30 experiments
was adopted. The optimal parameters optimized by MSGWO were as follows: a = 0.033,
b = 0.567, c = 0.082, and h = 0.086. We substituted the four parameters a, b, c, and h
into the SR system to obtain the frequency domain waveform of its output, as shown in
Figure 10. The output signal-to-noise ratio was SNR = −26.92, which was 10.85 dB higher
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than that of the input. According to the frequency domain waveform diagram in Figure 10,
it can be observed that there was a clear spike at the target frequency, and the amplitude of
the peak frequency was much larger than the amplitude of other surrounding frequencies.
It can be seen that the method in this paper can effectively detect the bearing fault signal.
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In the case of the same parameters, the raised method was compared with five bearing
fault-detection methods based on the improved algorithms to optimize the SR parameters.
In an effort to ensure the accuracy of the experimental results, the method of averaging
30 experiments was adopted. The comparison experiment results are shown in Table 6. The
test results shown in black bold in Table 6 are the best results for comparison.

Table 6. Comparison of experimental parameter results based on CWRU dataset.

GWO IGWO MEGWO mGWO MPSO MSGWO

a 0.077 0.080 0.065 0.101 0.055 0.033
b 4.197 6.581 6.305 6.571 8.418 0.567
c 7.206 2.830 6.028 7.417 6.160 0.082
h 0.755 0.888 0.792 0.757 0.763 0.086

Time 15.37 14.24 15.25 15.92 10.58 14.72
SNR −28.35 −28.51 −28.27 −28.37 −28.32 −26.92

According to the data in Table 6, compared with five bearing fault-detection methods
based on improved algorithms to optimize SR parameters, the raised method had the
highest SNR, but the convergence speed was slower than that of bearing fault-detection
methods based on IGWO and MPSO. Since the SNR was taken as the evaluation index in
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bearing fault detection, the proposed method had some advantages over the five bearing
fault-detection methods based on the improved algorithm to optimize the SR parameters.

5.3. MFPT Bearing Data Set

In an effort to further verify the applicability of the raised method in actual fault-signal
detection, the bearing data set of the MFPT in the United States was selected as the research
object [41] to detect the outer-ring signal of the faulty bearing. The input shaft speed of
the selected outer ring fault signal was 25 Hz, the load was 25, and the fault characteristic
frequency was calculated to be 162 Hz. The time domain and frequency domain waveform
of the input signal are shown in Figure 11. According to Figure 11, due to the influence of
ambient noise, the fault frequency of the original signal was submerged in the noise and
was difficult to be captured in its frequency domain. In an effort to ensure the accuracy of
the experimental results, the average method of 30 experiments was adopted. The optimal
parameters optimized by MSGWO were as follows: a = 0.500, b = 9.571, c = 0.019, and
h = 0.409. We substituted the four parameters a, b, c, and h into the SR system to obtain
the frequency domain waveform of its output, as shown in Figure 12. According to the
frequency domain waveform diagram in Figure 12, it can be observed that the amplitude of
the target frequency was the largest in its frequency domain and was much larger than the
amplitude of other surrounding frequencies. This further proves that the raised method
can detect the bearing fault signal effectively.
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In the case of the same parameters, the raised method was compared with five bearing
fault-detection methods based on the improved algorithms to optimize the SR parameters.
In an effort to ensure the accuracy of the experimental results, the method of averaging
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30 experiments was adopted. The comparison experiment results are shown in Table 7.
The test results shown in black bold in Table 7 are the best results for comparison.

Table 7. Comparison of experimental parameter results based on MFPT dataset.

GWO IGWO MEGWO mGWO MPSO MSGWO

a 0.500 0.495 0.500 0.472 0.052 0.500
b 10.00 2.173 8.554 8.247 8.968 9.571
c 0.025 0.488 0.054 3.728 1.287 0.019
h 0.328 0.185 0.257 0.069 0.122 0.409

Time 21.51 25.35 35.52 34.79 22.91 19.95
SNR −26.56 −27.75 −26.82 −27.21 −27.62 −26.42

According to the data in Table 7, compared with five bearing fault-detection methods
based on the improved algorithms to optimize SR parameters, the method raised in this
article had a larger SNR and better time performance. Therefore, the method proposed in
this article has certain advantages over the comparative method.

5.4. Bearing-Fault Diagnosis of Crystal Growing Furnace

In this paper, the crystal lifting and rotating mechanism of a crystal growing furnace
was taken as the actual test object, as shown in Figure 13. The crystal growing furnace is
the major equipment for producing wafers. The mechanism is composed of two Mitsubishi
HG-KR73 servo motors, the crystal lift motor is used to lift the crystal upward, and the
crystal rotating motor is used to drive the crystal to spin during the growth process. Because
the stability of crystal rotating is an important factor to determine the crystal formation
and crystal quality, it is necessary to accurately monitor the fault of the crystal rotating
motor. The experiment object was the motor of a certain type of electronic-grade silicon
single-crystal growing furnace. The purpose was to detect the failure frequency of the
crystal rotating motor. A certain type of three-dimensional vibration sensor was used
in the experiment, and its connection with the motor is shown in Figure 14. As shown
in Figure 14, the vibration sensor was adsorbed on the motor, and information such as
vibration displacement, vibration speed, and vibration frequency can be collected. The
deceleration ratio of the crystal rotating system was 100:1, that is, when the crystal rotating
speed was 10 rad/min, the speed of the crystal rotating motor was 1000 rad/min.
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Figure 14. Vibration sensor installation position.

The vibration signal of the motor collected by the vibration sensor is shown in Figure 15.
As can be seen from Figure 15, the time domain signal of the actual motor fault collected by
the vibration sensor is very weak, completely submerged in the noise, and the frequency
domain signal cannot distinguish the fault frequency. The method proposed in this paper
was used to detect the fault frequency of the crystal rotating motor, and the test results are
shown in Figure 16. It can be seen from Figure 16 that the algorithm increased the frequency
domain amplitude of the fault signal and effectively detected that the fault frequency of
the crystal motor was 35 Hz.
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6. Conclusions

Taking bearing fault-signal detection as the research object, this paper proposes a
bearing fault-detection method based on an improved grey wolf algorithm to optimize mul-
tistable stochastic resonance parameters, aiming at the problems that multistable stochastic
resonance system parameters are difficult to select and basic grey wolf optimization algo-
rithm is prone to local optimization and low convergence accuracy. This method improved
the grey wolf optimization algorithm. Firstly, the Sobol sequence was used to initialize the
grey wolf population to improve the diversity of the population. Secondly, the exponential
rule convergence factor was used to balance the global search and local development stages
of the algorithm. At the same time, the adaptive position-update strategy was introduced
to improve the accuracy of the algorithm. Additionally, we used Cauchy–Gaussian hybrid
variation to improve the ability of the algorithm to escape from the local optimal area. The
performance of the proposed algorithm was verified using experiments with 15 benchmark
test functions in the CEC23 group of common test functions. The results show that the
multi-strategy improved grey wolf optimization algorithm has better optimization perfor-
mance. Then, the improved grey wolf optimization algorithm was used to optimize the
parameters of the multistable stochastic resonance algorithm, so as to realize the detection
of bearing fault signals. Finally, the bearing data sets of Case Western Reserve University
and the Association for Mechanical Fault Prevention Technology were analyzed and diag-
nosed with the proposed bearing fault-detection method, and the optimization results were
compared with other improved algorithms. At the same time, the method proposed in this
paper was used to diagnose the fault of the bearing of the lifting device of a single-crystal
furnace. The experimental results show that this method can be used to detect the bearing
fault signal and can effectively enhance the fault signal in the noise. Compared with other
optimized bearing fault-detection methods based on improved intelligent algorithms, the
proposed method has the advantages of fast convergence, high parameter optimization
accuracy, and strong robustness.

In the future, this paper will study the following two aspects: Firstly, the MSGWO
needs to be further improved to improve its stability due to its poor stability in individual
test functions. Secondly, the bearing fault-detection method proposed in this paper will be
applied to the bearing fault detection of rotating machinery in different industries, and the
corresponding improvement will be made according to the actual detection results, so as to
improve the applicability of the bearing fault-detection method proposed in this paper to
different industries.
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