Stepping Beyond Counts in Recovery of Total Hip Arthroplasty: A Prospective Study on Passively Collected Gait Metrics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Walking Speed
3.2. Step Length
3.3. Asymmetry Percentage
3.4. Double Limb Support Percentage
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ponzio, D.Y.; Rothermel, S.D.; Chiu, Y.-F.; Stavrakis, A.I.; Lyman, S.; Windsor, R.E. Does Physical Activity Level Influence Total Hip Arthroplasty Expectations, Satisfaction, and Outcomes? J. Arthroplast. 2021, 36, 2850–2857. [Google Scholar] [CrossRef] [PubMed]
- Sašek, M.; Kozinc, Ž.; Löfler, S.; Hofer, C.; Šarabon, N. Objectively Measured Physical Activity, Sedentary Behavior and Functional Performance before and after Lower Limb Joint Arthroplasty: A Systematic Review with Meta-Analysis. J. Clin. Med. 2021, 10, 5885. [Google Scholar] [CrossRef] [PubMed]
- Hammett, T.; Simonian, A.; Austin, M.; Butler, R.; Allen, K.D.; Ledbetter, L.; Goode, A.P. Changes in Physical Activity After Total Hip or Knee Arthroplasty: A Systematic Review and Meta-Analysis of Six- and Twelve-Month Outcomes. Arthritis Care Res. 2018, 70, 892–901. [Google Scholar] [CrossRef] [Green Version]
- Ponzio, D.Y.; Chiu, Y.-F.; Salvatore, A.; Lee, Y.-Y.; Lyman, S.; Windsor, R.E. An Analysis of the Influence of Physical Activity Level on Total Knee Arthroplasty Expectations, Satisfaction, and Outcomes: Increased Revision in Active Patients at Five to Ten Years. J. Bone Jt. Surg. 2018, 100, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Tucker, J.M.; Welk, G.J.; Beyler, N.K. Physical activity in U.S.: Adults compliance with the Physical Activity Guidelines for Americans. Am. J. Prev. Med. 2011, 40, 454–461. [Google Scholar] [CrossRef]
- Van der Walt, N.; Salmon, L.J.; Gooden, B.; Lyons, M.C.; O’Sullivan, M.; Martina, K.; Pinczewski, L.A.; Roe, J.P. Feedback from Activity Trackers Improves Daily Step Count After Knee and Hip Arthroplasty: A Randomized Controlled Trial. J. Arthroplast. 2018, 33, 3422–3428. [Google Scholar] [CrossRef] [PubMed]
- Naal, F.D.; Impellizzeri, F.M. How Active are Patients Undergoing Total Joint Arthroplasty?: A Systematic Review. Clin. Orthop. Relat. Res. 2010, 468, 1891–1904. [Google Scholar] [CrossRef] [Green Version]
- Stratford, P.W.; Kennedy, D.M. Performance measures were necessary to obtain a complete picture of osteoarthritic patients. J. Clin. Epidemiol. 2006, 59, 160–167. [Google Scholar] [CrossRef]
- Paxton, R.J.; Forster, J.E.; Miller, M.J.; Gerron, K.L.; Stevens-Lapsley, J.E.; Christiansen, C.L. A Feasibility Study for Improved Physical Activity After Total Knee Arthroplasty. J. Aging Phys. Act. 2018, 26, 7–13. [Google Scholar] [CrossRef]
- Toogood, P.A.; Abdel, M.P.; Spear, J.A.; Cook, S.M.; Cook, D.J.; Taunton, M. The monitoring of activity at home after total hip arthroplasty. Bone Jt. J. 2016, 98-B, 1450–1454. [Google Scholar] [CrossRef]
- Twiggs, J.; Salmon, L.; Kolos, E.; Bogue, E.; Miles, B.; Roe, J. Measurement of physical activity in the pre- and early post-operative period after total knee arthroplasty for Osteoarthritis using a Fitbit Flex device. Med. Eng. Phys. 2018, 51, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Güler, T.; Sivas, F.; Yurdakul, F.G.; Çelen, E.; Utkan, A.; Başkan, B.; Bodur, H.; Özkurt, B. Early improvement in physical activity and function after total hip arthroplasty: Predictors of outcomes. Turk. J. Phys. Med. Rehabil. 2019, 65, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Höll, S.; Blum, A.; Gosheger, G.; Dieckmann, R.; Winter, C.; Rosenbaum, D. Clinical outcome and physical activity measured with StepWatch 3™ Activity Monitor after minimally invasive total hip arthroplasty. J. Orthop. Surg. Res. 2018, 13, 148. [Google Scholar] [CrossRef] [Green Version]
- Lebleu, J.; Poilvache, H.; Mahaudens, P.; De Ridder, R.; Detrembleur, C. Predicting physical activity recovery after hip and knee arthroplasty? A longitudinal cohort study. Braz. J. Phys. Ther. 2019, 25, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Kwon, S.-Y.; Lee, Y.-M.; Hong, J.; Yu, J.; Kim, J.; Kim, S.-G.; Lee, D. Influence of the Hawthorne effect on spatiotemporal parameters, kinematics, ground reaction force, and the symmetry of the dominant and nondominant lower limbs during gait. J. Biomech. 2023, 152, 111555. [Google Scholar] [CrossRef]
- Farhan, S.; Avalos, M.A.; Rosenblatt, N.J. Variability of Spatiotemporal Gait Kinematics During Treadmill Walking: Is There a Hawthorne Effect? J. Appl. Biomech. 2023, 39, 151–156. [Google Scholar] [CrossRef]
- Malchow, C.; Fiedler, G. Effect of observation on lower limb prosthesis gait biomechanics: Preliminary results. Prosthet. Orthot. Int. 2016, 40, 739–743. [Google Scholar] [CrossRef]
- Fujita, K.; Makimoto, K.; Tanaka, R.; Mawatari, M.; Hotokebuchi, T. Prospective study of physical activity and quality of life in Japanese women undergoing total hip arthroplasty. J. Orthop. Sci. 2013, 18, 45–53. [Google Scholar] [CrossRef]
- Kuhn, M.; Harris-Hayes, M.; Steger-May, K.; Pashos, G.; Clohisy, J.C. Total hip arthroplasty in patients 50 years or less: Do we improve activity profiles? J. Arthroplast. 2013, 28, 872–876. [Google Scholar] [CrossRef] [Green Version]
- Pfeufer, D.; Gililland, J.; Böcker, W.; Kammerlander, C.; Anderson, M.; Krähenbühl, N.; Pelt, C. Training with biofeedback devices improves clinical outcome compared to usual care in patients with unilateral TKA: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2018, 27, 1611–1620. [Google Scholar] [CrossRef]
- Nagariya, S.; Bhargava, P.; Shrivastava, P. Assessment of changes in gait parameters and vertical ground reaction forces after total hip arthroplasty. Indian J. Orthop. 2007, 41, 158–162. [Google Scholar] [CrossRef]
- McCrory, J.L.; White, S.C.; Lifeso, R.M. Vertical ground reaction forces: Objective measures of gait following hip arthroplasty. Gait Posture 2001, 14, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Miki, H.; Sugano, N.; Hagio, K.; Nishii, T.; Kawakami, H.; Kakimoto, A.; Nakamura, N.; Yoshikawa, H. Recovery of walking speed and symmetrical movement of the pelvis and lower extremity joints after unilateral THA. J. Biomech. 2004, 37, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Talis, V.; Grishin, A.; Solopova, I.; Oskanyan, T.; Belenky, V.; Ivanenko, Y. Asymmetric leg loading during sit-to-stand, walking and quiet standing in patients after unilateral total hip replacement surgery. Clin. Biomech. 2008, 23, 424–433. [Google Scholar] [CrossRef]
- Götze, C.; Sippel, C.; Rosenbaum, D.; Hackenberg, L.; Steinbeck, J. Objective measures of gait following revision hip arthroplasty. First medium-term results 2.6 years after surgery. Z. Fur Orthop. Und Ihre Grenzgeb. 2003, 141, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Kobsar, D.; Masood, Z.; Khan, H.; Khalil, N.; Kiwan, M.Y.; Ridd, S.; Tobis, M. Wearable Inertial Sensors for Gait Analysis in Adults with Osteoarthritis—A Scoping Review. Sensors 2020, 20, 7143. [Google Scholar] [CrossRef] [PubMed]
- Vienne-Jumeau, A.; Quijoux, F.; Vidal, P.-P.; Ricard, D. Wearable inertial sensors provide reliable biomarkers of disease severity in multiple sclerosis: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2020, 63, 138–147. [Google Scholar] [CrossRef]
- Mobbs, R.J.; Perring, J.; Raj, S.M.; Maharaj, M.; Yoong, N.K.M.; Sy, L.W.; Fonseka, R.D.; Natarajan, P.; Choy, W.J. Gait metrics analysis utilizing single-point inertial measurement units: A systematic review. Mhealth 2022, 8, 9. [Google Scholar] [CrossRef]
- Plummer-D’Amato, P.; Brancato, B.; Dantowitz, M.; Birken, S.; Bonke, C.; Furey, E. Effects of Gait and Cognitive Task Difficulty on Cognitive-Motor Interference in Aging. J. Aging Res. 2012, 2012, 583894. [Google Scholar] [CrossRef] [Green Version]
- Vogt, L.; Banzer, W.; Bayer, I.; Schmidtbleicher, D.; Kerschbaumer, F. Overground and walkway ambulation with unilateral hip osteoarthritis: Comparison of step length asymmetries and reproducibility of treadmill mounted force plate readings. Physiother. Theory Pract. 2006, 22, 73–82. [Google Scholar] [CrossRef]
- Carcreff, L.; Gerber, C.N.; Paraschiv-Ionescu, A.; De Coulon, G.; Newman, C.J.; Aminian, K.; Armand, S. Comparison of gait characteristics between clinical and daily life settings in children with cerebral palsy. Sci. Rep. 2020, 10, 2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef]
- Soangra, R.; Lockhart, T. Smartphone-Based Prediction Model for Postoperative Cardiac Surgery Outcomes Using Preoperative Gait and Posture Measures. Sensors 2021, 21, 1704. [Google Scholar] [CrossRef]
- Soangra, R.; Lockhart, T.E. Inertial Sensor-Based Variables Are Indicators of Frailty and Adverse Post-Operative Outcomes in Cardiovascular Disease Patients. Sensors 2018, 18, 1792. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Aoyama, T.; Mori, S.; Nishiguchi, S.; Okamoto, K.; Ito, T.; Muto, S.; Ishihara, T.; Yoshitomi, H.; Ito, H. Objective assessment of abnormal gait in patients with rheumatoid arthritis using a smartphone. Rheumatol. Int. 2012, 32, 3869–3874. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, S.; Ito, H.; Yamada, M.; Yoshitomi, H.; Furu, M.; Ito, T.; Shinohara, A.; Ura, T.; Okamoto, K.; Aoyama, T. Self-Assessment Tool of Disease Activity of Rheumatoid Arthritis by Using a Smartphone Application. Telemed. e-Health 2014, 20, 235–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Ye, B.; Zeng, N.; Chen, J.; Wu, F.; Du, M. A Novel Movement Monitoring System of Knee Osteoarthritis Using the Android System. J. Med. Imaging Health Inform. 2015, 5, 1575–1579. [Google Scholar] [CrossRef]
- Christensen, J.C.; Blackburn, B.E.; Anderson, L.A.; Gililland, J.M.; Peters, C.L.; Archibeck, M.J.; Pelt, C.E. Recovery Curve for Patient Reported Outcomes and Objective Physical Activity After Primary Total Knee Arthroplasty—A Multicenter Study Using Wearable Technology. J. Arthroplast. 2023, 38, S94–S102. [Google Scholar] [CrossRef] [PubMed]
- Fary, C.; Cholewa, J.; Abshagen, S.; Van Andel, D.; Ren, A.; Anderson, M.B.; Tripuraneni, K.R. Stepping beyond Counts in Recovery of Total Knee Arthroplasty: A Prospective Study on Passively Collected Gait Metrics. Sensors 2023, 23, 5588. [Google Scholar] [CrossRef]
- Ribeiro-Castro, A.L.; Surmacz, K.; Aguilera-Canon, M.C.; Anderson, M.B.; Van Andel, D.; Redfern, R.E.; Cook, C.E. Early post-operative walking bouts are associated with improved gait speed and symmetry at 90 days. Gait Posture 2023. [Google Scholar] [CrossRef]
- Sato, E.H.; Stevenson, K.L.; Blackburn, B.E.; Peters, C.L.; Archibeck, M.J.; Pelt, C.E.; Gililland, J.M.; Anderson, L.A. Recovery Curves for Patient Reported Outcomes and Physical Function After Total Hip Arthroplasty. J. Arthroplast. 2023, 38, S65–S71. [Google Scholar] [CrossRef] [PubMed]
- Stratford, P.; Kennedy, D.; Clarke, H. Confounding pain and function: The WOMAC’s failure to accurately predict lower extremity function. Arthroplast. Today 2018, 4, 488–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stratford, P.W.; Kennedy, D.M.; Maly, M.R.; MacIntyre, N.J. Quantifying Self-Report Measures’ Overestimation of Mobility Scores Postarthroplasty. Phys. Ther. 2010, 90, 1288–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, D.A.; Duwelius, P.J.; Sneller, M.A.; Morris, M.J.; Hurst, J.M.; Berend, K.R.; Lombardi, A.V. 2021 Mark Coventry Award: Use of a smartphone-based care platform after primary partial and total knee arthroplasty: A prospective randomized controlled trial. Bone Jt. J. 2021, 103 (Suppl. SA), 3–12. [Google Scholar] [CrossRef]
- Crawford, D.A.; Lombardi, A.V.; Berend, K.R.; Huddleston, J.I.; Peters, C.L.; DeHaan, A.; Zimmerman, E.K.; Duwelius, P.J. Early outcomes of primary total hip arthroplasty with use of a smartphone-based care platform: A prospective randomized controlled trial. Bone Jt. J. 2021, 103-B, 91–97. [Google Scholar] [CrossRef]
- Tripuraneni, K.R.; Foran, J.R.; Munson, N.R.; Racca, N.E.; Carothers, J.T. A Smartwatch Paired with A Mobile Application Provides Postoperative Self-Directed Rehabilitation Without Compromising Total Knee Arthroplasty Outcomes: A Randomized Controlled Trial. J. Arthroplast. 2021, 36, 3888–3893. [Google Scholar] [CrossRef]
- Measuring Walking Quality Through iPhone Mobility Metrics; Apple Inc.: Cupertino, CA, USA, 2022; pp. 8–12.
- Emmerzaal, J.; Corten, K.; van der Straaten, R.; De Baets, L.; Van Rossom, S.; Timmermans, A.; Jonkers, I.; Vanwanseele, B. Movement Quality Parameters during Gait Assessed by a Single Accelerometer in Subjects with Osteoarthritis and Following Total Joint Arthroplasty. Sensors 2022, 22, 2955. [Google Scholar] [CrossRef]
- Luna, I.E.; Kehlet, H.; Wede, H.R.; Hoevsgaard, S.J.; Aasvang, E.K. Objectively measured early physical activity after total hip or knee arthroplasty. J. Clin. Monit. Comput. 2019, 33, 509–522. [Google Scholar] [CrossRef]
- Goeb, Y.L.; Krell, E.C.; Nguyen, J.T.; Carroll, K.M.; Jerabek, S.A.; Mayman, D.J.; Sculco, P.K.; Figgie, M.P. Early Recovery Outcomes in Patients Undergoing Total Hip Arthroplasty Through a Posterior Approach with Modified Postoperative Precautions. J. Arthroplast. 2021, 36, 2817–2822. [Google Scholar] [CrossRef]
- Boekesteijn, R.; Smolders, J.; Busch, V.; Keijsers, N.; Geurts, A.; Smulders, K. Objective monitoring of functional recovery after total knee and hip arthroplasty using sensor-derived gait measures. PeerJ 2022, 10, e14054. [Google Scholar] [CrossRef]
- Lyman, S.; Hidaka, C.; Fields, K.; Islam, W.; Mayman, D. Monitoring Patient Recovery After THA or TKA Using Mobile Technology. HSS J. 2020, 16 (Suppl. S2), 358–365. [Google Scholar] [CrossRef] [PubMed]
- Holm, B.; Thorborg, K.; Husted, H.; Kehlet, H.; Bandholm, T. Surgery-Induced Changes and Early Recovery of Hip-Muscle Strength, Leg-Press Power, and Functional Performance after Fast-Track Total Hip Arthroplasty: A Prospective Cohort Study. PLoS ONE 2013, 8, e62109. [Google Scholar] [CrossRef] [PubMed]
- Luna, I.E.; Kehlet, H.; Peterson, B.; Wede, H.R.; Hoevsgaard, S.J.; Aasvang, E.K.; Clement, N.D.; Bardgett, M.; Weir, D.; Holland, J.; et al. Early patient-reported outcomes versus objective function after total hip and knee arthroplasty. Bone Jt. J. 2022, 99-B, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Tolk, J.J.; Janssen, R.P.A.; Haanstra, T.M.; van der Steen, M.C.; Bierma-Zeinstra, S.M.A.; Reijman, M. The influence of expectation modification in knee arthroplasty on satisfaction of patients: A randomized controlled trial. Bone Jt. J. 2021, 103-B, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, I.; Soh, S.-E.; Harris, I.; Cashman, K.; Heath, E.; Lorimer, M.; Graves, S. Performance of the HOOS-12 and KOOS-12 instruments for evaluating outcomes from joint replacement surgery. Osteoarthr. Cartil. 2021, 29, 815–823. [Google Scholar] [CrossRef]
- Roos, E.M.; Toksvig-Larsen, S. Knee injury and Osteoarthritis Outcome Score (KOOS)—Validation and comparison to the WOMAC in total knee replacement. Health Qual. Life Outcomes 2003, 1, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terwee, C.B.; van der Slikke, R.M.; van Lummel, R.C.; Benink, R.J.; Meijers, W.G.; de Vet, H.C. Self-reported physical functioning was more influenced by pain than performance-based physical functioning in knee-osteoarthritis patients. J. Clin. Epidemiol. 2006, 59, 724–731. [Google Scholar] [CrossRef]
- Peer, M.A.; Lane, J. The Knee Injury and Osteoarthritis Outcome Score (KOOS): A Review of Its Psychometric Properties in People Undergoing Total Knee Arthroplasty. J. Orthop. Sports Phys. Ther. 2013, 43, 20–28. [Google Scholar] [CrossRef]
- Gandhi, R.; Tsvetkov, D.; Davey, J.R.; Syed, K.A.; Mahomed, N.N. Relationship between self-reported and performance-based tests in a hip and knee joint replacement population. Clin. Rheumatol. 2009, 28, 253–257. [Google Scholar] [CrossRef]
- Kennedy, D.; Stratford, P.; Pagura, S.M.; Walsh, M.; Woodhouse, L.J. Comparison of gender and group differences in self-report and physical performance measures in total hip and knee arthroplasty candidates. J. Arthroplast. 2002, 17, 70–77. [Google Scholar] [CrossRef]
- Mizner, R.L.; Petterson, S.C.; Clements, K.E.; Zeni, J.A.; Irrgang, J.J.; Snyder-Mackler, L. Measuring Functional Improvement After Total Knee Arthroplasty Requires Both Performance-Based and Patient-Report Assessments: A Longitudinal Analysis of Outcomes. J. Arthroplast. 2011, 26, 728–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizner, R.L.; Snyder-Mackler, L. Altered loading during walking and sit-to-stand is affected by quadriceps weakness after total knee arthroplasty. J. Orthop. Res. 2005, 23, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Stevens-Lapsley, J.E.; Schenkman, M.L.; Dayton, M.R. Comparison of Self-Reported Knee Injury and Osteoarthritis Outcome Score to Performance Measures in Patients After Total Knee Arthroplasty. PM&R 2011, 3, 541–549. [Google Scholar]
- Thomas, S.G.; Pagura, S.M.; Kennedy, D. Physical Activity and its Relationship to Physical Performance in Patients with End Stage Knee Osteoarthritis. J. Orthop. Sports Phys. Ther. 2003, 33, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Witvrouw, E.; Victor, J.; Bellemans, J.; Rock, B.; Van Lummel, R.; Van Der Slikke, R.; Verdonk, R. A correlation study of objective functionality and WOMAC in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2002, 10, 347–351. [Google Scholar]
- Dayton, M.R.; Judd, D.L.; Hogan, C.A.; Stevens-Lapsley, J.E. Performance-Based Versus Self-Reported Outcomes Using the Hip Disability and Osteoarthritis Outcome Score After Total Hip Arthroplasty. Am. J. Phys. Med. Rehabil. 2016, 95, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Fransen, B.L.; Pijnappels, M.; Butter, I.K.; Burger, B.J.; van Dieën, J.H.; Hoozemans, M.J.M. Patients’ perceived walking abilities, daily-life gait behavior and gait quality before and 3 months after total knee arthroplasty. Arch. Orthop. Trauma Surg. 2021, 142, 1189–1196. [Google Scholar] [CrossRef]
- Hino, K.; Lee, J.S.; Asami, Y. Associations between seasonal meteorological conditions and the daily step count of adults in Yokohama, Japan: Results of year-round pedometer measurements in a large population. Prev. Med. Rep. 2017, 8, 15–17. [Google Scholar] [CrossRef]
- Andrews, A.W.; Chinworth, S.A.; Bourassa, M.; Garvin, M.; Benton, D.; Tanner, S. Update on distance and velocity requirements for community ambulation. J. Geriatr. Phys. Ther. 2010, 33, 128–134. [Google Scholar]
- Klausmeier, V.; Lugade, V.; Jewett, B.A.; Collis, D.K.; Chou, L.-S. Is There Faster Recovery with an Anterior or Anterolateral THA? A Pilot Study. Clin. Orthop. Relat. Res. 2010, 468, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Lugade, V.; Wu, A.; Jewett, B.; Collis, D.; Chou, L.-S. Gait asymmetry following an anterior and anterolateral approach to total hip arthroplasty. Clin. Biomech. 2010, 25, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Reininga, I.H.; Stevens, M.; Wagenmakers, R.; Boerboom, A.L.; Groothoff, J.W.; Bulstra, S.K.; Zijlstra, W. Comparison of gait in patients following a computer-navigated minimally invasive anterior approach and a conventional posterolateral approach for total hip arthroplasty: A randomized controlled trial. J. Orthop. Res. 2012, 31, 288–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, D.T.H.; Begg, R.K.; Palaniswami, M. Computational Intelligence in Gait Research: A Perspective on Current Applications and Future Challenges. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Boekesteijn, R.J.; Smolders, J.M.H.; Busch, V.J.J.F.; Geurts, A.C.H.; Smulders, K. Independent and sensitive gait parameters for objective evaluation in knee and hip osteoarthritis using wearable sensors. BMC Musculoskelet. Disord. 2021, 22, 242. [Google Scholar] [CrossRef]
- Rosenlund, S.; Holsgaard-Larsen, A.; Overgaard, S.; Jensen, C. The Gait Deviation Index Is Associated with Hip Muscle Strength and Patient-Reported Outcome in Patients with Severe Hip Osteoarthritis—A Cross-Sectional Study. PLoS ONE 2016, 11, e0153177. [Google Scholar] [CrossRef] [Green Version]
- Colgan, G.; Walsh, M.; Bennett, D.; Rice, J.; O’brien, T. Gait analysis and hip extensor function early post total hip replacement. J. Orthop. 2016, 13, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Winther, S.B.; Foss, O.A.; Klaksvik, J.; Husby, V.S. Increased Muscle Strength Limits Postural Sway During Daily Living Activities in Total Hip Arthroplasty Patients. Am. J. Phys. Med. Rehabil. 2020, 99, 608–612. [Google Scholar] [CrossRef]
- Squitieri, L.; Bozic, K.J.; Pusic, A.L. The Role of Patient-Reported Outcome Measures in Value-Based Payment Reform. Value Health 2017, 20, 834–836. [Google Scholar] [CrossRef] [Green Version]
- Maly, M.R.; Costigan, P.A.; Olney, S.J. Determinants of Self-Report Outcome Measures in People with Knee Osteoarthritis. Arch. Phys. Med. Rehabil. 2006, 87, 96–104. [Google Scholar] [CrossRef]
- Hamilton, D.F.; Giesinger, J.M.; Macdonald, D.J.; Simpson, A.H.R.W.; Howie, C.R.; Giesinger, K. Responsiveness and ceiling effects of the Forgotten Joint Score-12 following total hip arthroplasty. Bone Jt. Res. 2016, 5, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, C.A.; Peabody, M.R.; Duncan, S.T.; Muchow, R.D.; Nunley, R.M.; ANCHOR Group; Clohisy, J.C.; Beaule, P.E.; Kim, Y.J.; Millis, M.B.; et al. Development of the HOOS (global) to Assess Patient-Reported Outcomes in Patients Undergoing Hip Preservation Procedures. Am. J. Sports Med. 2018, 46, 940–946. [Google Scholar] [CrossRef] [PubMed]
Number of Days | Gait Speed | Asymmetry | Double Support | Step Length |
---|---|---|---|---|
% | % | % | % | |
1 | 2.4% | 7.5% | 3.6% | 2.4% |
2 | 3.2% | 8.1% | 3.9% | 3.2% |
3 | 3.8% | 9.8% | 4.5% | 3.8% |
4 | 5.6% | 12.2% | 6.4% | 5.6% |
5 | 8.5% | 15.5% | 9.3% | 8.5% |
6 | 17% | 19.7% | 17.8% | 17% |
7 | 59.4% | 27.3% | 54.5% | 59.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fary, C.; Cholewa, J.; Abshagen, S.; Van Andel, D.; Ren, A.; Anderson, M.B.; Tripuraneni, K. Stepping Beyond Counts in Recovery of Total Hip Arthroplasty: A Prospective Study on Passively Collected Gait Metrics. Sensors 2023, 23, 6538. https://doi.org/10.3390/s23146538
Fary C, Cholewa J, Abshagen S, Van Andel D, Ren A, Anderson MB, Tripuraneni K. Stepping Beyond Counts in Recovery of Total Hip Arthroplasty: A Prospective Study on Passively Collected Gait Metrics. Sensors. 2023; 23(14):6538. https://doi.org/10.3390/s23146538
Chicago/Turabian StyleFary, Camdon, Jason Cholewa, Scott Abshagen, Dave Van Andel, Anna Ren, Mike B. Anderson, and Krishna Tripuraneni. 2023. "Stepping Beyond Counts in Recovery of Total Hip Arthroplasty: A Prospective Study on Passively Collected Gait Metrics" Sensors 23, no. 14: 6538. https://doi.org/10.3390/s23146538
APA StyleFary, C., Cholewa, J., Abshagen, S., Van Andel, D., Ren, A., Anderson, M. B., & Tripuraneni, K. (2023). Stepping Beyond Counts in Recovery of Total Hip Arthroplasty: A Prospective Study on Passively Collected Gait Metrics. Sensors, 23(14), 6538. https://doi.org/10.3390/s23146538