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Abstract: Falls in older people are a major health concern as the leading cause of disability and the
second most common cause of accidental death. We developed a rapid fall risk assessment based on
a combination of physical performance measurements made with an inertial sensor embedded in a
smartphone. This study aimed to evaluate and validate the reliability and accuracy of an easy-to-use
smartphone fall risk assessment by comparing it with the Physiological Profile Assessment (PPA)
results. Sixty-five participants older than 55 performed a variation of the Timed Up and Go test
using smartphone sensors. Balance and gait parameters were calculated, and their reliability was
assessed by the (ICC) and compared with the PPAs. Since the PPA allows classification into six levels
of fall risk, the data obtained from the smartphone assessment were categorised into six equivalent
levels using different parametric and nonparametric classifier models with neural networks. The
F1 score and geometric mean of each model were also calculated. All selected parameters showed
ICCs around 0.9. The best classifier, in terms of accuracy, was the nonparametric mixed input data
model with a 100% success rate in the classification category. In conclusion, fall risk can be reliably
assessed using a simple, fast smartphone protocol that allows accurate fall risk classification among
older people and can be a useful screening tool in clinical settings.

Keywords: fall risk; smartphone; inertial sensors; Physiological Profile Assessment; smartphone;
inertial sensors; Timed Up and Go

1. Introduction

Falls in older people are a significant health concern since their incidence is higher
than 30% in people older than 65 and twice as high in people over the age of 80 [1]. In fact,
falls are the leading cause of disability in older people and the second most common cause
of accidental death [2]. The early detection of fall risk is crucial for prevention; thus, many
fall risk assessment methods and tools have been developed in the last few decades. Most
are based on single or combined observations derived from questionnaires and functional
performance measurements.

Questionnaires are used to evaluate risk factors such as previous falls, a fear of falling,
physical or cognitive issues, and comorbidities [3] and usually result in a classification
often reduced to binary discrimination between “fallers” and “nonfallers”. However, fall
risk may be more accurately modelled as a continuum with fuzzy boundaries between
multiple risk categories [4].

Performance measurements objectively quantify the capacity to respond to physical
and cognitive demands, whose decline is directly related to the risk of falling during
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daily activities. These associations have been demonstrated in gait disturbances, body
balance, lower limb strength, and reaction time [5,6]. Tests such as the Timed Up and Go
(TUG) [7], sit-to-stand (STS) [8], the Tinneti balance scale [9], the Berg balance scale [10], the
Short Physical Performance Battery (SPPB) [11], and the Physiological Profile Assessment
(PPA) [12] have shown an excellent ability to predict falls and physical function in older
people [13].

Simple tests are more appropriate for clinical settings because of the practitioner’s
workload. However, they do not always provide a general overview of the clinical problems,
and those using combined measurements can be time consuming [14]. This could explain
why regular screenings are performed by only one-quarter of general practitioners [15] and
could motivate further research, leading to fall risk assessment techniques that overcome
implementation barriers, such as duration and complexity.

Sensor technology may reduce the burden of measuring, and over the last few years,
many instrumented versions of performance assessments have been developed and tested,
especially on wearable devices [16]. The main advantage of instrumented protocols is that
the results are less dependent on the interpretation of the evaluators, as already shown by
Weiss and colleagues, who concluded that reliability increased from 63% to 87% [17] when
the TUG was assessed in an instrumented procedure.

Previous studies have investigated the effectiveness of different sophisticated systems
designed to assess fall risk in older adults. These systems (i.e., pulse-Doppler radar, Kinect,
ultrasound, time-of-flight sensors, and web cameras [18]), individually or in combination,
can even be installed in the user’s house, providing unobtrusive, continuous quantitative
activity and gait assessment. The data collected using this technology can provide a reliable
balance and functional assessment that the clinician or researcher can use to calculate a
patient’s fall risk. Thus, this technology offers a great advantage for older adults’ fall
detection, e.g., with regard to fall risk assessment and its real-time changes [19,20].

However, although noteworthy results have been obtained using this type of technol-
ogy, transferring these procedures to clinical practice for general population assessments
has been difficult because of the challenge of continuously monitoring users [18], which
requires intensive work in the clinical context, where human resources are usually scarce.
Therefore, accurate, easy-to-use, and affordable fall risk prediction approaches usable in
the clinical setting are needed. For this purpose, other types of sensors have also been
investigated, such as force, pressure, and inertial sensors, for use on an ad hoc basis in the
clinical setting. An advantage of the latter is that it can be used in instrumented functional
assessment tests, such as the TUG, without requiring large facilities or complex calibrations.

This study presents a new inertial sensor-based fall risk assessment protocol in which
a combination of physical performance measurements is continually recorded with an
inertial sensor embedded in a smartphone. The aim of this protocol was to evaluate the
reliability of this new fall risk assessment method and its validity by comparing its results
to the results obtained by Physiological Profile Assessment (PPA). This protocol gathers
information equivalent to various functional tests with minimum complexity and time
consumption. It includes measurements based on key factors related to fall risk, such as
balance, reaction time, gait, and lower limb strength.

Furthermore, we aimed to determine the most accurate classification model for pre-
dicting different fall risk levels by comparing the accuracy of parametric and nonparametric
models using neural networks and raw signal data [21]. These models extract features
automatically and detect the relevant characteristics in the classification process. The results
were compared with the classification scoring obtained by the PPA and a battery of physical
and sensory tests based on vision, reaction time, leg strength, proprioception, and balance.
These have been proven valid and reliable tools that can predict the risk of falls and are
widely used in research and clinical practice [12].
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2. Materials and Methods
2.1. Participants

The assessments were conducted at the Health Centre of Alcudia (Valencia, Spain).
All participants provided written informed consent, and the procedures were performed in
accordance with the principles of the World Medical Association’s Declaration of Helsinki.
The Experimental Research Ethics Committee of the Universitat Politècnica de València
approved the protocol (P4211016).

The inclusion criteria were 55 years and older and the ability to walk at least 10 metres
without any walking aid. The exclusion criteria were the presence of motor alterations
after neurological disorders that interfered with mobility, severe uncorrected visual or
auditory disorders preventing the tests from being conducted, and inability to understand
instructions (Mini-Mental State Examination < 23 points).

Sixty-five participants were recruited for the study, and they were rated as “very low
fall risk”, “low fall risk”, “mild fall risk”, “moderate fall risk”, “high fall risk”, and “very
high fall risk” according to their PPA score. They were also rated as “low” (values below 1
or “low fall risk”) or “high” (above 1 or “high fall risk”) according to their PPA score [22]
for a higher sample size in each group. A priori sample size calculation was performed
using a type I error of 0.05 and a power of 80%, taking into account “medial – lateral
displacement” outcome results from previous studies and including two groups (i.e., fallers
and nonfallers) [23].

2.2. Experimental Procedure

The mobility assessment was performed using the FallSkip® application (Biome-
chanical Institute of Valencia, Valencia, Spain), a Java App running on a smartphone
(Xiaomi Redmi 4 x Model MAG138). The app processes the data recorded at 100 Hz by
the smartphone-embedded 3D inertial sensor (High-Performance 6-Axis MEMS Motion
TrackingTM) composed of a 3-axis gyroscope, 3-axis accelerometer, and Digital Motion
ProcessorTM (TDK-ICM-20689; TDK, Tokyo, Japan). The smartphone was attached with
a hook-and-loop fastener on a strap around the waist of the participants, just below the
iliac crest point near the centre of mass (Figure 1). Furthermore, previous studies have
determined that the kinematics of the lower lumbar region provide information on energy
consumption during gait [24].
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An application was used to capture the raw data from the mobile sensors and to guide
the researcher throughout the assessment using on-screen indications and audio signals.
The materials required to conduct the test (a variation of the TUG test) were a 3-metre free
aisle and an armless chair and were validated in previous studies [25–27]. The participants
were placed standing up 3 metres away from the chair. The instructions to perform the
test were:

t0. Stand with trunk straight and arms along the body for 30 s (t0);
t1. When an audio signal is emitted by the smartphone (30 s after the beginning of the test),
walk straight at a normal pace toward the chair (t2–t1);
t2. Stop for 2 s in front of the chair;
t3. Turn and sit down (t4–t3);
t4. Wait for 2 s;
t5. Start to stand up;
t6. Stand up (t6–t5);
t7. Walk straight at a normal pace to the starting point (t8–t7);
t8. Finish the test.

Each participant repeated the test 3 times, with a resting time of 1 min between
repetitions. After the three repetitions, a trained physiotherapist assessed the participants’
fall risk using the PPA.

2.3. Sensor Data Analysis

Data from the smartphone-embedded sensors were collected at a fixed sampling rate
of 100 HZ, and the raw signals were analysed as in a previous study by our research
group [22,26–28]. An interpolation of the recorded signal was performed to ensure that
the data points were evenly distributed in time and that no information was missing
between consecutive samples [28], and a fourth-order Butterworth low-pass filter with zero
lag at 20 Hz was applied. Finally, the test phases described below were identified using
characteristic local peaks of the accelerometer and orientation signals.

Calculating the dependent variables began by determining the sensor’s orientation
from the accelerations and angular velocities using Favre’s method [29]. These orientations,
expressed in Euler angles (Roll, Pitch, and Yaw), were used during the segmentation process
of the test phases (balance, gait, turn to sit, sit to stand, and gait) by identifying the instants
where changes of direction (turn to sit) occurred.

The sensor position was calculated analytically in the frequency domain by the double
integration of the acceleration signal using the Fourier transform and its inverse, as in [30],
to avoid cumulative drift caused by the integration process.

The following balance, gait, and functionality parameters were extracted from the
position signals in different phases of the test: (i) Anterior–posterior and medial–lateral
displacement of the centre of masse (CoM) during the 30 s standing (APDisp, MLDisp),
calculated as 90th percentile of the double integration of the accelerometer signal and an
inverted pendulum model [31]; (ii) Vertical and medial–lateral excursion of CoM while
walking (t2–t1 and t8–t7) (VRange, MLRange), calculated in the same way as in [32];
(iii) Average power of turning–sitting movements (t4–t3) and standing up (t6–t5) (PTurnSit,
PStand), estimated by the trajectory of the CoM, the weight of the participant, and the
time it takes for stand-to-sit and sit-to-stand [33]; (iv) Range of anterior–posterior jerk
of CoM during turning–sitting movement and standing up (APJerkSit, APJerkStand);
(v) Reaction time (Reaction_Time), measured as the time elapsed between the ringing of
the audio signal and detecting walking motion (t1–t0); (vi) Total motion time (Total_Time),
computed as the sum of the split of walking (t2–t1 and t8–t7) and sit (t4–t3) to stand
times (t6–t5).

2.4. Statistical Analysis

The analysis was conducted using the R package for statistical computing in RStudio
(R Foundation for Statistical Computing, version 3.5.3). Classical statistical methods were
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used to obtain the mean as a measure of central tendency and the standard deviation
(SD) as a measure of dispersion. Before carrying out the inferential analysis, we checked
for extreme values and the assumptions of normality (using the Shapiro–Wilk test) and
homoscedasticity (using the Levene test). In the case of noncompliance with any of the
assumptions, nonparametric tests were considered.

For the inferential analysis, the intraclass correlation coefficient for the average of
random measures (ICC)(2,1) was calculated to assess the reliability of the eight test variables.
The results were averaged over the different repetitions for each subject. Moreover, a
between-groups Student t-test was performed to determine whether there were differences
between the groups (fallers and nonfallers) on the variables cited above (APDisp, MLDisp,
VRange, MLRange, PTurnSit, PStand, APJerkSit, APJerkStand, APJerkSit, APJerkStand,
Reaction_Time, and Total_Time). The type I error was set at 5% (p ≤ 0.05), and the power
was set at 0.8.

2.5. Classification Models

Different classification models were generated from parametric models that used the
abovementioned variables and from nonparametric models that directly used the raw
signals for the classification. Two versions were generated from all models, the first with
two levels of fall risk classification (faller and nonfaller) [22] and the second that was
classified into six levels of fall risk (very low (level 1), low (level 2), mild (level 3), moderate
(level 4), high (level 5), and very high (level 6)), according to the risk levels defined by the
PPA [12].

2.5.1. Parametric Models

All parametric models we compared were available in the Sklearn library [34] for
Python 3.7.x [35]. To process and prepare the input data, a pipeline was generated by
(i) normalising the variables using the StandardScaler, which transforms the data to a mean
equal to 0 and an SD of 1 [34], (ii) recursive feature elimination (RFE), which recursively
selects the variables with the best classification results (in this step, we established a maxi-
mum value for the six parameters because we had few observations for the high number
of predictors [36]), and (iii) by implementing the models of Logistic Regression, Ridge
Classifier, LASSO, K Neighbours, Gaussian Naive Bayes, Linear Discriminant Analysis,
Decision Tree, Perceptron, Multilayer perceptron, Stochastic Gradient Descent, Gradient
Boost, XGBoost, Support Vector Machine, Random Forest, and AdaBoost.

2.5.2. Nonparametric Models

The nonparametric model was a multibranch neural network (Figure 2), with the raw
sensor signals in the time domain as the first input branch and the spectrogram image
(frequency domain) of the signals as the second input branch.

For the first input branch (i.e., raw signals), a 64-sample moving window of the ac-
celerometer and the gyroscope was conducted, with an input data structure of 64x6 being
the three channels of each sensor (x, y, z). The second input branch (i.e., the spectrogram),
a short-time Fourier transform (STFT) provided by the TensorFlow 2.9.1 framework, was
performed on the windows that entered the model through the first branch. To extract the
frequency information of each of the six signals individually, all the signals were combined
into a single signal of 384 samples (6 signals × 64 samples). A short-time Fourier transform
(STFT) was then performed on this new signal using frame length = 20 and frame step = 2 to
create a signal that was as square as possible. In order to enhance the visibility of amplitudes,
the logarithm of the absolute values obtained from the STFT function was taken.

As indicated above, the method involved two input branches. The first branch utilised
the raw signals’ sliding windows. The features were extracted through a series of 1D
convolutional and dropout layer concatenations with ReLu activation functions and 64, 128,
512, and 1024 filters, respectively. These features were then passed through two long- and



Sensors 2023, 23, 6567 6 of 14

short-term memory (LSTM) layers to obtain the sequential properties of the signals. Three
dense layers with ReLu activation functions were concatenated with the other branch.
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(accelerometer and gyroscope). This branch of the model comprises a series of convolutional and
dropout layers and LSTM to automatically extract the temporal characteristics of the signals. The
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The second branch used the spectrogram image of the signals. Three 2D convolu-
tional and dropout layers with a kernel size of 3 × 3 and activation function ReLu were
concatenated.

The top model employed two dense layers with 128 and 64 neurons with a Relu
activation function. The output layer used two or six neurons (depending on the model
version), one for each class, with a softmax activation, to obtain the percentage of belonging
to each class.

To compile the model, categorical cross-entropy was used as the loss measure and the
Adam optimiser. The evaluation metric “accuracy” was specified, and a batch size of 32 was
used for 100 training epochs to fit the model. The classification model was developed using
Keras API and Tensor Flow 2.0 in Python 3.7.x. The methodology presented in [37–39]
inspired this approach.

We employed a grid search methodology to systematically investigate various hyper-
parameter combinations, including learning rate, batch size, and number of epochs. The
model’s performance was assessed on the training and validation sets of each experiment.
By adjusting the hyperparameters based on the experiment results, we iteratively repeated
the process until reaching the optimal performance.

2.5.3. Validation and Comparison Models

The sample of 195 measurements (65 participants × 3 repetitions) was split into one
set for training and validation and another for testing the models, using an 80/20 stratified
proportion. To fit the models, a repeated stratified k-fold was performed with 10 splits and
10 replicates for a total of 100 cross validations.

To compare the results of different models, we calculated (i) the accuracy during
training, (ii) the mean accuracy of the stratified 10-fold cross validation, (iii) the accuracy
during testing, (iv) the geometric mean of the test sample, and (v) the F1-score as the
harmonic mean of precision and recall.
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3. Results
3.1. Participants

Sixty-five participants were recruited for the study. Their baseline characteristics are
presented in Table 1, and the differences between fall risk groups were consistent with
known fall risk factors (gender, age, obesity, and history of falls).

The distribution and reproducibility of the variables used in the model are summarised
in Table 1. All variables had ICC values between 0.74 and 0.93. Considering that normality
and homoscedasticity were assumed, t-tests were performed to compare the faller and
nonfaller groups, and significant differences (p value < 0.05) were found between groups
for all variables.

3.2. Comparison of Classification Models

The results of all implemented models are shown in Table 2. Most of the parametric
classification models with two levels of risk had an average accuracy of around 0.65 with
test data, decreasing to 0.6 when classifying the six fall risk levels. This suggests that our
model shows more possibilities to classify well into two than into six levels. The proposed
neural network-based classifier showed an accuracy of 0.99 and 0.98, respectively.



Sensors 2023, 23, 6567 8 of 14

Table 1. Comparison of the variables calculated in the functional test and the reliability between the groups.

Variables Nonfallers (n = 40)
Mean (SD)

Fallers (n = 25)
Mean (SD)

Total (n = 65)
Mean (SD)

t-Test
p-Value ICC

Age 66.75 (6.87) 71.44 (6.83) 68.55 (7.18) 0.009 -

Weight (kg) 74.84 (10.73) 77.97 (15.57) 76.04 (12.78) 0.34 -
Height (m) 1.64 (0.08) 1.58 (0.08) 1.62 (0.09) 0.016 -

MLDisp (mm) 5.92 (2.34) 8.36 (4.73) 6.86 (3.63) 0.007 0.84
APDisp (mm) 16.88 (4.53) 21.12 (11.53) 18.51 (8.17) 0.041 0.74
Vrange (mm) 29.19 (4.77) 22.62 (5.31) 26.66 (5.90) <0.001 0.76

Mlrange (mm) 54.94 (17.08) 45.17 (15.18) 51.18 (16.94) 0.022 0.93
PTurnSit (W) 133.25 (44.21) 102.56 (31.35) 121.45 (42.26) 0.004 0.91
Pstand (W) 281.58 (137.77) 220.03 (68.05) 257.91 (119.22) 0.042 0.35

APJerkSit (m/s3) 18.79 (5.15) 15.39 (4.52) 17.49 (5.16) 0.009 0.85
APJerkStand (m/s3) 22.60 (5.89) 19.12 (6.42) 21.26 (6.28) 0.029 0.82

Reaction_Time (s) 0.82 (0.40) 1.21 (0.52) 0.97 (0.49) 0.001 0.93
Total_Time (s) 12.82 (2.39) 14.77 (3.44) 13.57 (2.97) 0.009 0.86

ICC—Intraclass Correlation Index of the three repetitions of the test; MLDisp—range of the medial–lateral displacement of the centre of mass (CoM) in balance phase; APDisp—range of
the anterior–posterior displacement of the CoM in balance phase; VRange—range of vertical displacement of the CoM in gait phase; MLRange—range of medial–lateral displacement of
the CoM in gait phase; PTurnSit—power of turn to sit; PStand—power to sit to stand; APJerkSi—anterior–posterior jerk to sit; APJerkStand—anterior–posterior jerk to sit and to stand.

Table 2. Comparison of the results of training and testing of classification models for two and six levels of fall risk.

Model
2 Fall Risk Levels (i.e., Fallers and Nonfallers) 6 Fall Risk Levels (i.e., Very Low, Low, Mild, Moderate, High, and Very High)

acc_Train 10fcv acc Test G_Mean F1-Score acc_Train 10fcv acc Test G_Mean F1-Score

Logistic Regression 0.838 0.786 0.692 0.673 0.69 0.623 0.409 0.41 0.617 0.41
Ridge Classifier 0.818 0.753 0.692 0.663 0.69 0.5 0.364 0.333 0.482 0.33

LASSO 0.838 0.773 0.718 0.704 0.72 0.565 0.364 0.333 0.508 0.33
K-nearest Neighbours 0.838 0.721 0.641 0.629 0.64 0.623 0.364 0.333 0.535 0.33

Naive Bayes 0.76 0.753 0.692 0.682 0.69 0.468 0.331 0.385 0.602 0.38
Linear Discriminant Analysis 0.818 0.753 0.692 0.663 0.69 0.597 0.396 0.436 0.626 0.44

Decision Tree 1 0.643 0.667 0.67 0.67 1 0.331 0.436 0.631 0.44
Perceptron 0.76 0.746 0.667 0.651 0.67 0.435 0.337 0.282 0.483 0.28

Multilayer Perceptron 1 0.76 0.667 0.651 0.67 1 0.422 0.462 0.657 0.46
Stochastic Gradient Descent 0.805 0.74 0.641 0.629 0.64 0.526 0.382 0.41 0.594 0.41

Gradient Boosting 1 0.772 0.641 0.629 0.64 1 0.434 0.41 0.639 0.41
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Table 2. Cont.

Model
2 Fall Risk Levels (i.e., Fallers and Nonfallers) 6 Fall Risk Levels (i.e., Very Low, Low, Mild, Moderate, High, and Very High)

acc_Train 10fcv acc Test G_Mean F1-Score acc_Train 10fcv acc Test G_Mean F1-Score

XGBoost 1 0.721 0.667 0.67 0.67 1 0.363 0.385 0.628 0.38
Support Vector Machine 0.903 0.74 0.615 0.598 0.62 0.662 0.402 0.359 0.491 0.36

Random Forest 1 0.798 0.615 0.598 0.62 1 0.429 0.385 0.584 0.38
AdaBoost 1 0.772 0.564 0.564 0.56 0.494 0.389 0.205 0.333 0.21

Multi-head CNN+LSTM 1 0.991 1 1 1 1 0.987 1 1 1

ICC—Intraclass Correlation Index of the three repetitions of the test; MLDisp—range of the medial–lateral displacement of the centre of mass (CoM) in balance phase; APDisp—range of
the anterior–posterior displacement of the CoM in balance phase; VRange—range of vertical displacement of the CoM in gait phase; MLRange—range of medial–lateral displacement of
the CoM in gait phase; PTurnSit—power of turn to sit; PStand—power to sit to stand; APJerkSit—anterior–posterior jerk to sit; APJerkStand—anterior–posterior jerk to sit and to stand.
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4. Discussion

In this study, we proposed a new method to assess the risk of falling in healthy older
adults using an inertial sensor embedded in a smartphone. The method was designed
taking into consideration the main requirements for use in clinical settings, the simplicity
and short-term administration, feasibility for older people, and portability [12,25–27]. The
validity and reliability have also been assessed to ensure its utility in fall risk detection. The
method developed was based on measurements widely used in other fall risk assessments,
such as balance, gait quality, reaction time to initiate gait, and time required to sit and get
up from a chair, performed in a unique test similar to the TUG [13,22].

The test–retest reliability was fair to excellent for all variables computed from the
assessment, with ICC ranging from 0.75 to 0.93. These ICC values were generally higher
than the ICCs obtained from the reliability assessment of the different tests included in
the PPA, whose ICC ranged between 0.50 and 0.97 [12]. When comparing our procedure
with the original TUG widely used in this population, we obtained similar ICCs for the
Total_Time variable and the time required to perform the complete TUG in community-
dwelling adults (ICC between 0.916 and 0.960) [40].

To validate the ability of the assessment procedure to classify fall risk severity, we
developed parametric and nonparametric models and assessed the accuracy of fall risk
classification. As our results show, parametric models, in which computed variables were
included, are appropriate for assessing fall risk in older people since they showed high
accuracy in classifying fall risk levels in the sample. Nevertheless, when the results of the
parametric models were compared with the nonparametric model using neural networks,
the qualitative leap in accuracy was quite relevant. Parametric models obtained an average
accuracy of 0.7, while the nonparametric one exceeded 0.9, regardless of being applied to the
dichotomous classification (i.e., fallers and nonfallers) or polytomous classification with six
fall risk categories corresponding to the PPA. In addition, it is worth noting that achieving
correct outcomes with parametric models is comparatively simpler when selecting from
two possibilities (50% chance for fallers and nonfallers) than from 1/6 probability of being
correct (17% chance for PPA levels).

These findings are similar to those obtained in previous research published by our
research group [21], which has already compared different types of classification models.
This current study demonstrates that a simple instrumented procedure and a neural net-
works analysis of the raw data could provide objective, reliable, and valid assessment,
avoiding the intrinsic problems of more complex laboratory assessments (i.e., long-lasting,
expensive, and complex evaluations). It could be argued that using another technology or
combining different devices for data recording (for example, having more than one inertial
sensor) could increase the precision of the clinical variables measured by a smartphone.
However, this may impact the usability and speed of assessments, which are essential in a
clinical context.

While many previous studies concentrated on evaluating fall risk by analysing gait
data rather than functional activities [41,42], recent studies have used smartphone applica-
tions to assess fall risk [43]. Nevertheless, the present study brings an innovative vision to
these classifiers, as it not only puts them into two customary classifications but also divides
them into six categories. This can allow clinicians to have a rapid, easy-to-use, and reliable
fall risk classification and, therefore, create a prevention programme to avoid future falls.

When our accuracy results were compared with previous studies in which wearable
sensors were used to classify fall risk groups, similar results were obtained [44–46] but
using a less time-consuming protocol. A recent study has demonstrated that neural network
analysis is able to classify older adults as fallers and nonfallers using sensor data based
on the TUG test. Contrary to our study, their sample included different health conditions,
such as cognitive and physical impairments, and was thus more heterogeneous than
ours. Therefore, although the method followed in this study included safeguards to avoid
overfitting the model, the size and diversity of the sample might be insufficient to generalise
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the results. However, it is a good starting point for future studies with a larger sample size,
including fall risk classification for specific pathologies, as in previous studies [25,26].

In addition, the developed model allowed combining patient data and the sensor’s
raw signal data, providing a combination of raw data in the time and frequency domains.
Including an additional input branch to the model that considers the frequency aspect of the
signals may lead to an increase in accuracy of up to 99% and 98% for identifying two or six
fall risk levels, respectively. Future studies with larger samples may also test the inclusion
of the clinical variables as a third independent branch of the model since this approach has
shown very promising accuracy for classifying Parkinson’s disease stages [47].

The proposed model provides six levels of fall risk classification aligned with the
PPA [12]. PPA administration takes approximately 40 min since it includes various tests
involving vision, reaction time, leg strength, proprioception, and balance domains. In
contrast, the protocol proposed in this study using the inertial sensor device includes
elements of all these assessments embedded in a functional test (i.e., modified TUG). This
could enable clinicians to perform the evaluation in 105 s on average, including one minute
of initial explanation, making it 38 min shorter than the PPA protocol.

Given the ease of use of this type of system to conduct clinical assessments, previous
studies have developed and validated similar methods to assess fall risk in healthy and patho-
logical populations [48–50]. However, of those used in the older adult population, less than
half evaluated the validity, and less than 25% assessed the reliability of their applications [48].
Similar to the device used in this study, the smartphone systems tested in healthy older adult
populations are based on the performance of different functional tests, such as the sit-to-stand
test (with variables of time, peak force, rate of force development, and peak power [28]),
balance test (with variables of root mean square, peak accelerations, mean sway area, median
power of signal frequency, and total power of signal frequency [51–53]), or TUG test (with
variables of total time, jerk and maximum acceleration during sit to stand, step time, interstride
trunk autocorrelation, root mean square, and duration for separate elements [54,55]). The
innovative contribution of the present study, compared with previous work, is that it provides
the most accurate classification model to predict different levels of fall risk among parametric
and nonparametric models, these last using neural networks and raw signal data obtained
from a functional test (i.e., TUG). Furthermore, our system allows for the classification of fall
risk into six categories aligned with PPA.

Aiming to be more faithful to the reality of the daily activities of older people and to
increase the external validity of the study, different assessment approaches can be consid-
ered. Previous studies have used smartphones for the long-term monitoring of people’s
activity [44], including commercial systems for detecting sudden falls and generating alerts
when falls occur [56]. These systems are intended for use in continuous monitoring and
evaluation. The presented study offers a different approach: a quick and easy instrumented
functional assessment that can be performed in a clinical setting, such as the TUG or the
six-minute walk test. Future research should explore the feasibility of conducting the
assessment with the smartphone placed in the trouser pocket, opening the possibility for
continuous and real-world monitoring and evaluation of daily life activities.

Time saving, simplicity, and usability of the sensor tool and protocol are the major
advantages of the proposed method, allowing its use in a clinical setting. This is a good
start for future studies, which could focus on determining which part of the modified TUG
indicates the main cause of the risk of falling, allowing clinicians to individualise the fall
prevention programme. Moreover, it is known that continued registration can provide
accurate data about fall risks through real daily life activities [57]. This is why the device
used in this study evaluates a functional test (i.e., modified TUG), but in the end, it is
still evaluated in a laboratory. Therefore, future studies would be interesting to assess the
performance of this device in real-life activities.
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5. Conclusions

The fall risk assessment procedure developed in this study showed fair to excellent
reliability. It allowed the classification of fall risk severity into two categories (fallers and
nonfallers) and six ordinal categories according to PPA. When parametric and nonpara-
metric models of classification were compared, those in which neural networks were used
showed the highest accuracy. The proposed method has potential as a useful screening
tool that can be used in general clinical practice because of its simplicity, usefulness, and
quickness.
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