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Abstract: Guesswork is an information–theoretic quantity which can be seen as an alternate security
criterion to entropy. Recent work has established the theoretical framework for guesswork in the
presence of quantum side information, which we extend both theoretically and experimentally.
We consider guesswork when the side information consists of the BB84 states and their higher-
dimensional generalizations. With this side information, we compute the guesswork for two different
scenarios for each dimension. We then performed a proof-of-principle experiment using Laguerre–
Gauss modes to experimentally compute the guesswork for higher-dimensional generalizations of
the BB84 states. We find that our experimental results agree closely with our theoretical predictions.
This work shows that guesswork can be a viable security criterion in cryptographic tasks and is
experimentally accessible in a number of optical setups.

Keywords: quantum information; quantum optics; quantum cryptography

1. Introduction

Guesswork is an information–theoretic measure of security and uncertainty of an
information source [1,2], similar to entropy. In its simplest form, it can be understood as
a game between two agents, Alice and Bob. Alice picks an element x from an alphabet
X with prior probability pX(x). Bob’s task then is to guess Alice’s choice x while being
allowed to ask questions in the form of “Is X = x?”. The guesswork, G(X), is the average
number of guesses Bob needs until Alice answers with “yes”. This is in contrast to entropy,
where the same game is played, except that Bob is allowed to ask questions in the form of
“Is X ∈ X̃?”, where X̃ is a subset of the alphabet X [3].

Guesswork also has real-world applicability. Consider that one’s account on an online
portal is subjected to a brute-force hacking attack. A malicious agent is only allowed a
certain number of guesses of the password before being locked out. The average number of
guesses, i.e., the guesswork, would be the operational criterion of security in such a situa-
tion. Furthermore, guesswork takes on richer behavior when Bob possesses some quantum
correlations with Alice, also known as side information. The theoretical framework for this
problem has been laid out and studied recently [4–9]. For a general quantum ensemble,
guesswork was shown to be computable by a semidefinite program [4,5]. Closed-form
expressions for certain special cases of the guesswork exist, in particular, ensembles of qubit
states [6–8], and the extension of guesswork to the study of classical-quantum channels
has been recently initiated in Ref. [9]. However, experimental verification of the guesswork
with quantum side information is yet an unexplored avenue.

Recently, spatially structured beams of light have been used extensively for multiple
applications, such as 3D surface imaging, quantum cryptography, remote sensing, and cor-
related imaging [10–21]. Among them, the Laguerre–Gauss (LG) modes are particularly
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important, as they possess orbital angular momentum (OAM) [22,23] and allow the con-
struction of OAM modes of light. OAM modes enable the construction of orthonormal
bases of light in any arbitrary finite dimension. OAM also enables the construction of a mu-
tually unbiased basis of azimuthal angle (ANG) [24–26]. These two properties allow for the
generation of the qubit BB84 states [27], as well as their higher-dimensional generalizations,
which are especially important in quantum cryptography.

In this work, we perform a proof-of-principle experiment in which we use spatial
modes of light to experimentally calculate and verify the value of guesswork for several
physically and cryptographically relevant examples involving the BB84 states. We extend
the work of Refs. [5,6], both theoretically and experimentally, to higher-dimensional gener-
alizations. Generalizing to higher dimensions allows for an enlarged alphabet and, thus,
a more versatile and secure protocol, which is especially attractive considering that the
same beams of light are used. We find excellent agreement between our experimental
results and theoretical predictions. In each of the cases considered, we find that there is a
“quantum” gap in the guesswork between the standard basis measurement and the optimal
projective measurement. Our work shows that guesswork can be a viable security criterion
in cryptographic tasks, and is experimentally accessible from optical setups.

2. Theory

First, we introduce the theoretical framework of guesswork with quantum side in-
formation. Guesswork with quantum side information can be viewed as a multi-round
two-party game, as shown in Figure 1. The guesser, Bob, has a classical system or, more
generally, a quantum system B, which is correlated with Alice’s random variable X. In this
work, we consider the latter (and more general) case where Bob possesses quantum side
information. This scenario is fully characterized by a classical quantum state ρXB shared by
Alice and Bob, where Alice’s symbols and their associated probabilities are captured in the
classical register X, and Bob’s quantum side information is present in the quantum system
B. In the guessing game picture of guesswork, Alice picks an element x ∈ X and sends Bob
the corresponding quantum state ρx

B. Bob then performs quantum measurements on his
side information state ρx

B, the results of which inform his guessing strategy. In general, Bob
performs a quantum instrument before each guess. A quantum instrument yields both a
classical measurement outcome and a post-measurement quantum state. This ensures that
after each round, Bob has classical information used to make a guess, and also a quantum
state for future rounds of the guessing game.

(1)

(2) (3)

Bob Alice

Did you 

pick x?

Yes

No

Success

Bob 

repeats (2)
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Figure 1. Guesswork can be understood via this guessing game played by Alice and Bob. Alice picks
a classical symbol x and sends Bob the corresponding quantum state. Bob guesses Alice’s symbol with
the help of his quantum state ρx

B. In each round of the game, Bob performs a quantum measurement
and uses the classical outcome to make a guess. He repeats this process until he guesses correctly.

However, it was shown in Ref. [5] that Bob can do just as well if he performs a single
quantum measurement to decide his guessing order; that is, the typical sequential guessing
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strategy can be reduced to a single-round guessing strategy. This divides the guessing game
into two parts: an initial step involving a quantum measurement, followed by a purely
classical guessing game between Alice and Bob. Such an equivalence makes a trade-off
between time and space, in the sense that Bob needs more spatial resources and fewer
temporal resources than the sequential guessing game.

A simple and yet instructive example of guesswork with quantum side information is
that involving the four BB84 states [27]. In this case, Alice first picks one of four classical
letters x1 through x4 with equal probability, and then sends the corresponding BB84 states
{|0〉 , |1〉 , |+〉 , |−〉} to Bob. Therefore, Bob’s side information is hidden in his quantum
state. Bob’s task is to use his received quantum state to guess which classical letter Alice
chose. Suppose that the projective measurement is characterized by the two orthogonal
states {|ψ(θ)〉 , |ψ(π/2− θ)〉} where |ψ(θ)〉 := cos θ |0〉+ sin θ |1〉. Alice’s states constitute
mutually unbiased bases, and Bob’s naive strategy would to be to measure in one of them.
This would correspond to measuring in the {|0〉 , |1〉} basis, or the standard basis as it is
known. Measuring in this basis offers the scenario most similar to a classical or digital
measurement and yields the average number of guesses as 1.75 (See Appendix A). However,
there exists an optimized projective measurement which leads to a smaller guesswork. This
optimal measurement is characterized by θ = 1/2 arctan(1/3). This measurement can be
shown to achieve a guesswork of 1.709 [5,6].

It was shown in Ref. [6] that for this case, and in general for any qubit ensemble
with uniform probability distribution, a projective measurement suffices to attain the
guesswork. Corollary 2 of Ref. [6] provides a closed-form expression for the guesswork

applicable in this case, which evaluates the guesswork to be 5
2 −

√
5
8 = 1.709, which, for the

above-discussed BB84 example, is indeed the value obtained by the optimized projective
measurement characterized above by θ = 1/2 arctan(1/3). Projective measurements
achieve the minimum guesswork only in the d = 2 case, and are not sufficient in higher
dimensions [6].

From the above simple example, we see a clear separation of guesswork when using
the optimal projective measurement compared to a “standard” basis measurement. Such a
separation can be interpreted as a quantum gap, or quantum advantage, as an optimized
quantum measurement results in lesser number of guesses as compared to a standard basis
measurement (resembling a classical/digital measurement). Such a “quantum” separation
of the guesswork can also be obtained in higher-dimensional generalizations of the BB84
example; that is, we consider the side information system in the d-dimension BB84 general-
ization. Alice will pick one of the 2d classical symbols with equal probability, each of which
is correlated with one of the 2d side information states. These 2d states are divided into
two mutually unbiased bases of d states each. The states are as follows:

{|0〉 , |1〉 , . . . , |d− 1〉 , |0̃〉 , |1̃〉 , . . . , |d̃− 1〉} (1)

where | j̃〉 = 1√
d ∑d−1

k=0 ei2πkj/d |k〉 and | 〈i| j̃〉 |2 = 1/d ∀ i, j ∈ {0, 1, . . . , d− 1}. In this case,
a standard basis measurement by Bob means that he projects his state onto the basis
{|0〉 , |1〉 , . . . , |d− 1〉}. When outcome |k〉 is obtained, Bob can eliminate the d− 1 standard
basis states that are orthogonal to |k〉. His best strategy, in this case, is then to guess outcome
k first, then 0̃ through d̃− 1, and finally the remaining labels in any order. The guesswork
in this case is (d + 5)/4. We provide more details of this calculation in Appendix A.

However, like in the two-dimensional case, Bob can do better by carefully selecting
his quantum measurement. We briefly explain the strategy he can use and how it can be
optimized. Consider that Bob chooses to project onto an arbitrarily chosen orthonormal
basis {|ψ0〉 , . . . , |ψd−1〉}. If he obtains the outcome corresponding to |ψk〉, then he guesses
in decreasing order of the overlap between |ψk〉 and the 2d input states. We note again
here that the post-measurement guessing strategy is purely classical, and we obtain it by
invoking Massey’s observation [1] to minimize the guesswork by guessing in decreasing
order of the posterior probability of classical symbols.
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Since the rules of the game are decided beforehand, Bob finds and decides on his
optimal projective measurement via a numerical technique. We perform this optimization
for dimensions d = 3 and 4 using MATLAB. This optimization also yields the guessing
order to use with each of these measurements. Using this technique, we find that there is a
significant gap between the guesswork attained by standard basis measurements and that
attained by the optimized projective measurement. We summarize this gap in Table 1 and
provide more details in Appendix B. We note again that the optimized projective measure-
ment does not yield the minimum guesswork, as we are not optimizing over all POVMs, yet
does provide a lower guesswork than the standard basis measurement. Simulating these
projective measurements with twisted light can be done by using holograms generated by
a spatial light modulator (SLM), which is what we use in our experiment, described below.

Table 1. The guesswork for each of the scenarios considered.

Dimension Theoretical Value Experimental Value

Standard basis measurement
d = 2 1.75 1.7505± 0.0017
d = 3 2 1.9996± 0.0087
d = 4 2.25 2.2547± 0.0029

Optimized projective measurement
d = 2 1.709 1.7062± 0.0089
d = 3 1.9425 1.9439± 0.0084
d = 4 2.1429 2.1411± 0.0025

3. Experiment

We now proceed to describe the experimental apparatus and techniques used to
perform our experiment. The generalized BB84 states consist of two mutually unbiased
bases. The bases we use in our experiment are the OAM basis and the ANG basis, which
are mutually unbiased. Each mode of light in the OAM basis is characterized by an angular
momentum quantum number `. In principle, ` can be any integer and, therefore, the OAM
basis consists of an infinite number of orthogonal modes; thus, it is simple to generate an
orthonormal basis in arbitrary dimensions by selecting the appropriate values of `.

For example, if Alice generates the OAM basis consisting of qunatum numbers
` ∈ {−L,−L + 1, . . . , L − 1, L}, then we have a d = 2L + 1-dimensional OAM basis,

consisting of the states
{

Ψ`
OAM = ei`ϕ

}`=L

`=−L
.

The ANG basis corresponding to the OAM basis defined above also consists of 2L + 1
orthogonal states. Each ANG state is a superposition of each of the OAM states. The basis
is constituted by the following states:{

Ψn
ANG =

1√
d

`=L

∑
`=−L

e
2iπn`

d Ψ`
OAM

}n=L

n=−L

. (2)

Simple verification shows that the two bases are indeed mutually unbiased, i.e.,

|〈Ψl
OAM|Ψn

ANG〉|2 = 1/d. (3)

3.1. Experimental Setup

The schematic diagram of our experimental setup is depicted in Figure 2. Here, Alice
prepares quantum states of light which corresponds to her choice of symbol, and then
sends to Bob for further processing. In our experiment, Alice uses a spatial light modulator
(SLM) and computer-generated holograms to generate the LG modes required in our
experiment [28]. This technique enables us to generate spatial modes in the first-order
diffraction order of the SLM. This is sufficient to generate the OAM and ANG modes that
correspond to generalized BB84 states in higher dimensions. It is also a characteristic of
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using such spatial modes of light that the same results will hold when the input beams of
light consist of single photons, similar to the results of Ref. [29]. The generated modes are
filtered and sent to Bob using a 4f optical system. Bob then projects the spatial mode onto
a second SLM to perform a projective measurement. The specific holograms imprinted
on the SLM dictate the basis onto which the initial mode is projected. The beam reflected
by the second SLM corresponds to a post-measurement state, which is propagated to a
charge-coupled device (CCD). The spatial profile of the final beam is captured and analyzed.
This process is repeated for each of the measurement states to be projected on, and the
captured images are then used to compute the guesswork.

HeNe
632 nm

Pinhole

Lens

SLM 1

SLM 2

Iris

CCD

Alice

Bob

Lens

Lens Lens

Iris

Lens
Lens

Figure 2. The schematic diagram of the setup used to demonstrate guesswork with quantum side
information. The experiment utilizes a He-Ne laser whose output spatial mode is first cleaned.
The higher-dimensional generalizations of the BB84 states are prepared by Alice using a spatial light
modulator (SLM). The prepared states are sent to Bob through a free-space communication channel,
a 4f system. Bob then performs his quantum measurement using a second SLM and a charged
coupled device (CCD) camera.

3.2. Experimental Determination of Guesswork

Our goal is to compute the guesswork for the generalized BB84 states for dimensions
d = 2, 3, and 4. For each dimension, the guesswork is computed for the standard basis
measurement, as well as the optimized projective measurement, which makes for a total
of six different scenarios. We remark here again that measuring in the standard basis,
in this case, one of the mutually unbiased bases comprising the input states, is most akin
to a classical measurement and the optimized projective measurement would represent a
quantum advantage.

In each iteration of the guessing game, Bob begins with a predecided guessing order
for each possible measurement outcome. For each state Alice sends, he projects onto each
of the basis states that characterize his measurement. This enables him to determine the
relative rate of the measurement outcomes and, hence, decide on the measurement outcome.
This holds for both the standard and optimized basis measurement. Once the guessing
order is decided, Bob simply sends Alice his guesses—this interaction yields the average
number of guesses for each input state. Averaging over input states yields the overall
guesswork. The post-processing of CCD images to compute the guesswork is performed
using MATLAB.

We perform a total of six experiments corresponding to six scenarios: this comprises
two sets of measurements for each of the three dimensions considered. The two mea-
surements are the standard basis measurement and the numerically determined optimal
projective measurement. In each case, we repeated the measurement ten times for each
input state. Overall, this is equivalent to playing the guesswork game ten times for each of
the six scenarios under consideration.
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In Table 1, we present our experimental results. The results are divided into two parts:
the guesswork when performing a standard basis measurement, and when performing
the optimized projective measurement. The errors reported correspond to the standard
deviation of our data across experimental iterations. We see that for all scenarios we
consider, the guesswork is within 1% of the theoretical prediction for both the standard
basis and optimal measurement.

We note here that for such a protocol to be deployed in a real-world setting, there
are other considerations that are to be taken into account. These include, but are not
limited to, the vulnerability of the protocol to side-channel attacks, such as fault attacks,
power analysis attacks, and even combined differential fault analysis and differential power
analysis. Specific countermeasures, such as fault detection architectures [30], error detection
schemes [31], or fault diagnosis schemes [32], will need to be built in to a security protocol
to guard against these attacks. Such a protocol could be implemented either on a field-
programmable gate array (FPGA), an application-specific integrated circuit (ASIC), or on an
ARM processor, to name a few. The side channel attack evaluation for each of these will be
slightly different, e.g., the difference between the results of Refs. [30,33]. The advent of post-
quantum cryptography schemes will also need to be considered, with implementations
such as those in Refs. [33,34].

Finally, we remark on the choice of specific OAM modes used for each dimension d.
OAM modes are, in principle, orthogonal to each other; thus, any combination of them
can be used to construct the desired orthonormal basis. However, due to the finite size
of the SLM pixels, they are not perfectly orthogonal in practice. We quantify the overlap
between the OAM modes under consideration using a cross-correlation matrix, shown in
Figure 3. To minimize overlap errors in our experiment, we choose ` values that are spaced
further apart from one another to generate our input states, instead of using consecutive
` values. For d = 2, we use the ` values {−3, 3}. Similarly, for d = 3 and d = 4, we use `
values {−3, 0, 3} and {−3,−1, 1, 3}, respectively. We note that this modification does not
alter any of the calculations for the guesswork itself, and is done only to reduce errors that
arise from non-zero overlap between nearby OAM modes. An illustrative demonstration
of the input modes used for d = 3, as well as some of the post-measurement states, are
provided in Appendix C.

-5     -4       -3        -2      -1       0       1        2         3        4        5

-5

-4

-3

-2

-1

0

1

2

3

4

5

Detected Modes

In
pu

t M
od

es

Figure 3. The cross-correlation matrix representing the conditional probabilities between sent and
detected modes in the OAM basis. The off-diagonal elements in the figure indicate cross-talks between
adjacent modes. The experimental overlap of two adjacent OAM modes is small, indicating a good
selection of OAM modes for the experiment.

4. Conclusions

In summary, we showed how to use accessible spatial modes of light to experimentally
compute the guesswork in the presence of side information. We considered the side
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information to be higher-dimensional generalizations of the qubit BB84 states, and showed
that the experimentally calculated guesswork matches the theoretical predictions to within
an error of 1%.

This proof-of-principle work lays the ground for further experimental applications of
guesswork with quantum side information. Ref. [9] identifies a number of use-cases for
using the guesswork as an operational quantifier of information, such as in information–
disturbance relations and majorization theory. Experimental verification will be necessary
for theoretical results that address these problems. The avenues of research for future
experimental work also include identifying and performing the optimal measurement for
each scenario outside of projective measurements, performing vulnerability analysis for
various side channel attacks, and devising countermeasures to such attacks. We hope that
our work will serve as a starting point for more experimental uses of the guesswork as a
security criterion.
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Appendix A. Guesswork Calculation with a Standard Basis Measurement

Appendix A.1. d = 2

In the main text, we stated that when the side information consists of the four BB84
states, the average number of guesses is 1.75 when Bob performs a standard basis ({|0〉 , |1〉})
measurement.

This number can be understood as follows: if the measurement outcome is |0〉, then
the posterior probabilities of states {|0〉 , |1〉 , |+〉 , |−〉} are {1/2, 0, 1/4, 1/4}. Likewise,
for outcome |1〉, the posterior probabilities are {0, 1/2, 1/4, 1/4}. For outcome |0〉, Bob
guesses in the order (x1, x3, x4, x2) and for outcome |1〉, the guessing order is (x2, x4, x3, x1).
In each of these cases, the average number of guesses is 1 · 1/2 + 2 · 1/4 + 3 · 1/4 and, thus,
the guesswork G(X|B)ρ = 1.75.

Appendix A.2. General Dimension d

In the main text, we showed that for the higher-dimensional generalization of the
BB84 example, the guesswork when using a standard basis measurement is (d + 5)/4 for
dimension d ≥ 2. Here, we show how this is obtained.

We recall that, for dimension d, the 2d side information states are divided into two
mutually unbiased bases of d states each:

{|0〉 , |1〉 , . . . , |d− 1〉 , |0̃〉 , |1̃〉 , . . . , |d̃− 1〉}. (A1)

When Bob performs a standard basis measurement, it means that he projects his
state onto the basis {|0〉 , |1〉 , . . . , |d− 1〉}. We know from Massey’s criterion [1] that,
for optimizing the guesswork, Bob should guess in decreasing order of the posterior
distribution of measurement outcomes. When outcome |k〉 is obtained, Bob can eliminate
the d− 1 computational basis states that are orthogonal to |k〉.
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Given measurement outcome corresponding to |k〉, the posterior probabilities of the
states

{|0〉 , |1〉 , . . . , |k〉 , . . . , |d− 1〉 , |0̃〉 , |1̃〉 , . . . , |d̃− 1〉} (A2)

are {0, 0, . . . , 1/2, . . . , 0, 1/2d, 1/2d, . . . , 1/2d}. This means that Bob’s guessing order is
(xk, x0̃, . . . , x

d̃−1
, x0, . . . xk−1, xk+1, . . . xd−1). We note here that this guessing order is quite

flexible—all that is required is that the first guess by xk; the next d guesses correspond to
x0̃ through x

d̃−1
in any order, and the remaining standard basis symbols follow again in

any order.
The probability of Bob’s first guess being right is 1/2, which we read off the posterior

distribution. In case it is incorrect, then the probability of correctness of each of his next d
guesses is 1/2d. We can use this to compute the expected value of the number of guesses:

E[G(X|B)] = 1× 1
2
+ 2× 1

2d
+ · · ·+ (d + 1)× 1

2d
+ 0 + · · ·+ 0 (A3)

=
1
2
+

1
2d

(2 + 3 + · · ·+ (d + 1)) (A4)

=
1
2
+

1
2d

(
(d + 1)(d + 2)

2
− 1
)

(A5)

=
1

4d
(2d) +

1
4d

(
d2 + 3d

)
(A6)

=
d + 5

4
. (A7)

Appendix B. Guesswork Calculation with the Optimal Projective Measurement

First, we detail how we optimize over all projective measurements for arbitrary dimen-
sion d. To do so, we consider the basis {|ψ0〉 , . . . , |ψd−1〉} to arise from a parameterized
d× d unitary matrix [35]. The rows of the matrix correspond to the coefficients of each
state of the orthonormal basis. The guessing orders for each measurement outcome are
obtained by calculating the overlaps of each basis state with the generalized BB84 states
and then arranging the generalized BB84 states in descending order of their overlaps,
just like we described for the standard basis measurement in the preceding paragraph.
The optimization procedure to determine the optimal measurement is straightforward,
and is performed using the Global Optimization Toolbox in MATLAB. As an illustrative
example, we describe the details of this calculation for d = 3 below.

Appendix B.1. Guesswork Calculation for d = 3 with the Numerically Determined Measurement

In Table 1 of the main text, we stated that the guesswork for the d = 3 BB84 example
was 2 when using the standard basis measurement. This follows the (d + 5)/4 formula
that we derived just above in (A7). We also state that using a numerically predetermined
projective measurement, we can do better and attain a value of 1.9425. Here, we show how
this is achieved.

We recall that the six side information states are:

{|0〉 , |1〉 , |2〉 , |0̃〉 , |1̃〉 , |2̃〉} (A8)

whose corresponding classical symbols are x0, x1, x2, x0̃, x1̃, and x2̃.
Our numerical goal is to optimize the overall possible projective measurements with

the aim of minimizing the guesswork; thus, we consider an arbitrary orthonormal basis
{|ψ0〉 , |ψ1〉 , |ψ2〉} onto which we project.

Given an arbitrary basis {|ψ0〉 , |ψ1〉 , |ψ2〉}, the first step is to calculate the overlaps of
each of the six side information states (A8) with the three states given above. For each of
|ψ0〉, |ψ1〉, and |ψ2〉, we arrange the side information states in decreasing order of overlap.
This gives us the optimal guessing order corresponding to each measurement outcome,
and the overlaps for each measurement outcome yield the posterior distribution of the
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correct answer; thus, the average number of guesses for each measurement outcome can
be calculated.

Further, Bob’s state alone, before any measurement is done, is the maximally mixed
state. This can be seen by considering the states in (A8) and taking a uniformly distributed
mixture of them. This means that each measurement outcome, averaged over input states,
is equally likely. Therefore, the overall guesswork is the average of the number of guesses
for each measurement outcome.

So far, we have described how to calculate the guesswork corresponding to an arbi-
trarily chosen measurement basis {|ψ0〉 , |ψ1〉 , |ψ2〉}. All that remains is to optimize over all
such measurement bases. These states are parameterized by considering a parameterization
of a d× d unitary matrix given by Hedemann [35]. A 3× 3 unitary matrix is parameterized
by six complex parameters, a through f , in the following manner:

U =

 a bc bd
b∗e −a∗ce− d∗ f ∗ −a∗de + c∗ f ∗

b∗ f −a∗c f + d∗e∗ −a∗d f − c∗e∗

, (A9)

subject to the constraints |a|2 + |b|2 = 1, |c|2 + |d|2 = 1, and |e|2 + | f |2 = 1.
We, thus, have that:

|ψ0〉 = a |0〉+ bc |1〉+ bd |2〉
|ψ1〉 = b∗e |0〉+ (−a∗ce− d∗ f ∗) |1〉+ (−a∗de + c∗ f ∗) |2〉
|ψ2〉 = b∗ f |0〉+ (−a∗c f + d∗e∗) |1〉+ (−a∗d f − c∗e∗) |2〉 .

(A10)

We use MATLAB’s Global Optimization Toolbox to optimize over the six variables
and three constraints provided above, and calculate the optimal guesswork for this ex-
ample across all projective measurements. The optimal states are given by the following
coefficients:

|ψ0〉 = (0.7413− 0.6421i, 0.0118 + 0.1221i, −0.1085− 0.1067i) (A11)

|ψ1〉 = (−0.0919 + 0.1244i, 0.0688− 0.0060i, −0.8069− 0.5659i) (A12)

|ψ2〉 = (0.0676 + 0.0985i, 0.9847 + 0.1023i, 0.0634 + 0.0389i). (A13)

To calculate the guesswork from this, we construct the overlap table between the side
information states and the measurement states as follows:

Table A1. This table shows the overlap between each of the input states and each of the states charac-
terizing the measurement. Each row corresponds to an input state and each column corresponds to
one of the measurement states.

ψ0 ψ1 ψ2

|0〉 0.4809 0.0120 0.0071

|1〉 0.0075 0.0024 0.4901

|2〉 0.0116 0.4857 0.0028

|0̃〉 0.2574 0.1170 0.1257

|1̃〉 0.1347 0.1482 0.2171

|2̃〉 0.1079 0.2348 0.1572

For each measurement outcome, the number of guesses can be calculated by arranging
the corresponding column in descending order, and then taking an inner product of the
column with (1 2 3 4 5 6) . We then get that the average number of guesses for each of
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the measurement outcomes is 1.9344, 1.9423, and 1.951. Taking an average of these three
numbers yields:

G(X|B) = 1.9425. (A14)

Appendix B.2. Guesswork Calculation for d = 4 with the Numerically Determined Measurement

A similar procedure as above is followed for the case of d = 4. Just like we listed out
three different states for d = 3 in (A10), we have for four dimensions:

|ψ0〉 = a |0〉+ b∗g |1〉+ b∗h∗ j |2〉+ b∗h∗k |3〉
|ψ1〉 = bc |0〉+ (−a∗cg + d∗hl) |1〉+ (−a∗ch∗ j− d∗g∗ jl + d∗k∗m∗) |2〉

+ (−a∗ch∗k− d∗g∗kl − d∗ j∗m∗) |3〉
|ψ2〉 = bde |0〉+ (−a∗deg− c∗ehl + f ∗hm) |1〉

+ (−a∗deh∗ j + c∗eg∗ jl − c∗ek∗m∗ − f ∗g∗ jm− f ∗k∗l∗) |2〉
+ (−a∗deh∗k + c∗eg∗kl + c∗ej∗m∗ − f ∗g∗km + f ∗ j∗l∗) |3〉

|ψ3〉 = bd f |0〉+ (−a∗d f g− c∗ f hl − e∗hm) |1〉
+ (−a∗d f h∗ j + c∗ f g∗ jl − c∗ f k∗m∗ + e∗g∗ jm + e∗k∗l∗) |2〉
+ (−a∗d f h∗k + c∗ f g∗kl + c∗ f j∗m∗ + e∗g∗km− e∗ j∗l∗) |3〉 .

(A15)

We use the same optimization technique used for the d = 3 case and obtain the final
set of measurement states as follows:

|ψ0〉 = (−0.1116− 0.04115i, −0.0015 + 0.0131i, 0.1336− 0.0510i, 0.0069 + 0.9824i) (A16)

|ψ1〉 = (−0.6943 + 0.6951i, 0.05941 + 0.1301i, −0.081 + 0.0104i, −0.1084− 0.0490i) (A17)

|ψ2〉 = (−0.1347 + 0.0481i, 0.0138− 0.9824i, 0.1107 + 0.0435i, 0.0018− 0.0130i) (A18)

|ψ3〉 = (−0.0104 + 0.0080i, −0.0484 + 0.1086i, 0.6991 + 0.6902i, 0.1298− 0.0602i). (A19)

Following the same procedure for calculating the guesswork as we did for d = 3, we
get the guesswork in this case to be:

G(X|B) = 2.1429. (A20)

Appendix C. Alphabet of Input State Beams Used

As an illustration, we show the input beams used for one of the higher-dimensional
BB84 experiments below in Figure A1. It shows the six input states that are used for the
d = 3 case, where each row of images corresponds to one of the two mutually unbiased
bases that make up the six input states.

Further, in Figure A2, we show the profiles of the beams of Figure A1 when projected
onto the first basis state of the optimized projective measurement, i.e., Equation (A11).



Sensors 2023, 23, 6570 11 of 12

Figure A1. The alphabet of input states for the particular case of dimension d = 3. Each image is
the CCD image of one of the six input states used. The first row corresponds to OAM modes with
l = −3, l = 0, and l = 3. The second row corresponds to the corresponding ANG modes which are
created by performing uniform superpositions of the OAM modes in the first row.

Figure A2. The figure shows the six states in Figure A1 when projected onto the first state of the
optimized projective measurement basis, i.e., the state characterized by Equation (A11).
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