
Citation: Tomažič, S.; Škrjanc, I.

Halfway to Automated Feeding

of Chinese Hamster Ovary Cells.

Sensors 2023, 23, 6618. https://

doi.org/10.3390/s23146618

Academic Editor: Yuan Yao

Received: 26 June 2023

Revised: 14 July 2023

Accepted: 21 July 2023

Published: 23 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Halfway to Automated Feeding of Chinese Hamster Ovary Cells
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Abstract: This paper presents a comprehensive study on the development of models and soft sensors
required for the implementation of the automated bioreactor feeding of Chinese hamster ovary (CHO)
cells using Raman spectroscopy and chemometric methods. This study integrates various methods,
such as partial least squares regression and variable importance in projection and competitive
adaptive reweighted sampling, and highlights their effectiveness in overcoming challenges such as
high dimensionality, multicollinearity and outlier detection in Raman spectra. This paper emphasizes
the importance of data preprocessing and the relationship between independent and dependent
variables in model construction. It also describes the development of a simulation environment
whose core is a model of CHO cell kinetics. The latter allows the development of advanced control
algorithms for nutrient dosing and the observation of the effects of different parameters on the growth
and productivity of CHO cells. All developed models were validated and demonstrated to have a
high robustness and predictive accuracy, which were reflected in a 40% reduction in the root mean
square error compared to established methods. The results of this study provide valuable insights
into the practical application of these methods in the field of monitoring and automated cell feeding
and make an important contribution to the further development of process analytical technology in
the bioprocess industry.

Keywords: spectroscopy; Raman; modelling; soft sensor; variable selection; outliers; simulator;
kinetic model

1. Introduction

Chemometrics, which deals with the application of various mathematical and statisti-
cal methods, could be described by a broad definition in which the most important part
is the application of a multivariate data analysis to data relevant to chemistry [1]. The
multivariate statistical data analysis is a powerful tool for analysing and structuring data
sets obtained from different measurement systems and for building empirical mathematical
models that can predict, for example, the values of important properties that cannot be
measured directly [2,3]. Multivariate calibration is often used in the industry for the rapid
online determination of important process parameters and critical quality characteristics
and enables non-destructive measurements, online monitoring and process control.

In analytical chemistry, molecular spectroscopic methods, including infrared, near-
infrared and Raman spectroscopy, are widely used to determine the molecular structure of
various substances [4–6]. These methods work by assessing the radiant energy that is either
absorbed or scattered when excited by a high intensity monochromatic beam that induces
a transient energy state in the molecule. The process of Raman scattering occurs when the
material under investigation is exposed to monochromatic light, causing a tiny percentage
of the light to be inelastically scattered at wavelengths other than the incident light.

Raman spectroscopy is an optical method that enables the non-destructive investiga-
tion of molecular structures and chemical compositions. However, due to its low intensity,
the study of Raman scattering requires the use of sophisticated instruments [7]. The data
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obtained from spectroscopy contain thousands of wavenumbers (variables) and measure-
ments (observations), which requires multivariate analysis to determine the relationship
between these variables [8,9]. Modern Raman instruments usually use a laser as the illu-
mination source because of its high-intensity monochromatic properties. The wavelength
of this laser can range from the UV (λ = 200 nm) to the near-infrared (λ = 1064 nm),
but for pharmaceutical or biological applications, near-infrared wavelengths (λ = 785 or
λ = 830 nm) are usually preferred to minimise fluorescence interference.

In bioprocess literature, spectroscopic sensors are sometimes referred to as soft sen-
sors [10] because the spectroscopic data are modelled in software programmes that provide
information analogous to that of hardware sensors. It is critical that data analysis models
are used to extract the optimal amount of information from Raman spectra, an area that has
received much attention in research [11]. The complexity and difficulties associated with
interpreting results from Raman and IR spectroscopy can be mitigated by applying various
data mining methods required for a more comprehensive understanding. These methods
must be able to manage large multidimensional data sets while exploring the totality of
spectral information [12].

Chemometric techniques, including the commonly used Partial Least Squares
(PLS) [13,14] method, exploit the transformation capabilities of the principal component
analysis (PCA). In this technique, the attributes of a data set are transformed into uncorre-
lated principal components, which allows a reduction in data dimensions with minimal
loss of information. PCA-based techniques complemented by machine learning methods
such as decision trees [15], Support Vector Machine (SVM) [16] and artificial neural net-
works (ANN) [17,18] allow for an even finer analysis. Additional preprocessing steps can
be implemented, including normalisation and smoothing via k-th order Savitzky–Golay
derivative [19], while model accuracy can be assessed by the standard error of calibration,
factors used and coefficient of determination (R2).

The inherent complexity of spectral data derived from vibrational spectroscopic tech-
niques, including IR, NIR and Raman, has sparked debates on the topic of variable selection
in PLS regression models [20,21]. This complexity arises from the interference caused by
the scattering of diffuse light, instrumental noise and overlapping absorption bands. Given
this complexity, variable selection strategies focus either on single wavelengths (e.g., vari-
able importance in projection [22]) or on informative spectral intervals (such as interval
PLS [23]). These methods help to eliminate superfluous information, a concept intro-
duced by Spiegelman et al. [24]. More recently, the technique of the Competitive Adaptive
Reweighted Sampling (CARS) has proven its effectiveness in processing NIR and RAMAN
spectra [25,26].

Certain Raman spectra obtained from the same sample may differ from the group
due to factors such as instrumental artefacts and variations in the sample. These spectra
are often referred to as unwanted spectra or outliers. Omitting these spectra is considered
crucial before applying multivariate techniques to obtain the desired results.

Raman spectroscopy, known for its precise spectral features that correlate with the
molecular structure of a sample, has demonstrated its strengths in a non-destructive
analysis and its ability to work with aqueous systems. These properties make it particularly
suitable for the study of cell cultures and tissues [27]. It is widely used for the study of
polysaccharides, amino acids, alcohols and metabolites and has secured its position as
an important process analytical technology (PAT) in the bioprocess industry [18,28,29].
The ability of inline Raman spectroscopy to monitor and adjust critical parameters in real
time ensures consistent drug production.

Although mammalian cell cultures are widely used in the pharmaceutical industry
to produce biological products such as antibodies and growth factors, the full potential of
advances in process monitoring and control has not yet been realised [10,27]. Conventional
methods, often based on offline sampling and manual calculations, are still widely used.
In particular, mammalian cells are mainly used for the production of protein therapeutics,
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which account for 60–70% of biopharmaceuticals. These processes usually involve the
delivery of glucose to CHO cells [30–33].

By using non-invasive real-time measurements PAT in conjunction with closed-loop
feedback control, feeding strategies can be optimised to improve yield [29,34,35]. Raman
spectroscopy plays an important role in this, as it enables in-situ measurements and pro-
cess control in real time. In situ Raman measurements, first presented by [36], allow the
simultaneous measurement of total cell density (TCD), viable cell density (VCD) and con-
centrations of glucose, glutamate, lactate and ammonia. This method has proven successful
in monitoring mammalian cell cultures in bioreactors. Several successful examples can be
found in recent literature [18,34,36]. Subsequent studies have extended this application
from developmental scales of 3 to 15 L [27,34] to clinical production scales of 2000 L [37],
demonstrating the scaling potential of this approach.

This manuscript represents a significant advance in the field of bioprocess technology
by providing a comprehensive PLS model construction procedure for Raman spectroscopy
that incorporates data preprocessing and outlier removal, thereby improving the under-
standing and control of bioprocess behaviour. In addition, the development of a simulator
that incorporates CHO cell kinetics is an important contribution to the field. It paves
the way for the development of a model predictive control system for the automated
feeding of CHO cells, revolutionising the way we approach the automation and control
of bioprocesses.

The paper is organized as follows. Sections 2 and 2.1 describe the process of data
acquisition and introduce the process of spectra processing, which is the initial step of data
analysis. Section 2.2 explains the development of the PLS models for soft sensor design
and different methods for variable selection in spectroscopic multivariate calibration. This
subsection also discusses the process of identifying and removing outlier spectra to improve
the robustness and accuracy of the PLS model. Section 3 discusses the CHO cell kinetics
model required to develop an advanced simulation environment. Section 4 presents the
results of the model construction and simulator implementation. Sections 5 and 6 provide
the discussion and concluding remarks.

2. Materials and Methods
2.1. Spectra Processing

The extensive research began with the systematic compilation of measurements and
data obtained from the cultivation of CHO cells in a stainless steel bioreactor. The local
pharmaceutical company, which was in charge of designing the experiment, played an
important role. Our task, on the other hand, was to analyse the collected data, create the
necessary models and establish a suitable simulation environment, which is described in
this paper.

The cultivation of the CHO cells took place in a bioreactor with a volume of 10 L.
To collect measurements (Raman spectra), the probe of a Kaiser RamanRXN2 spectrometer
was inserted into the bioreactor. The RamanRXN2 spectrometer is a sophisticated analytical
device that uses laser light with a wavelength of 532 nm. The resulting Raman spectrum
is collected over a period of at least 30 min, a measure that improves the signal-to-noise
ratio. It is important to note that Raman scattering, which is essentially inelastic photon
scattering, is a rather small fraction compared to its elastic counterpart.

For data storage, a desktop computer with a Windows operating system was used,
which was directly connected to the Raman spectrometer. Four different experiments
were performed to grow the cells in the bioreactor, with each batch lasting about two
weeks. The bioreactor contained CHO-S cell lines. This cell line is a sub-line of the original
CHO-K1, with adaptations for suspension culture. CHO-S cells are commonly used in the
industrial production of therapeutic proteins.

To maintain the optimal environment of the bioreactor, the pH and temperature were
strictly controlled and nutrient dosing (glucose and glutamine) was conducted manually
on a daily basis using reference measurements. A Roche Cedex Bio Analyzer, known
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for its reliability and precision, was used to record these reference measurements daily.
This allowed for the accurate monitoring of parameters such as glucose and glutamine
concentration, viable cell count and others.

The development of useful models depends on appropriate methods, but even more
important is the selection of appropriate data. In our case, the raw data consist of the
Raman spectra shown in Figure 1. For a first experiment, the choice between regression
methods such as principal component regression, partial least squares or an artificial
neural network may not be so important [27]. However, it is important that the selected
independent variables (x-data) have a strong relationship with the dependent variables
(y-data) to be modelled [38]. The choice of method then depends on the type and amount
of data available.

Raman Shift (cm−1)

Figure 1. Spectra obtained with Raman spectroscopy (from four different batches where only spectra,
which are used for training and validation, are shown).

In cases where the x-data for objects represent time series or digitised data from a
continuous spectrum (e.g., Raman spectra, see Figure 1), possible pre-processing strate-
gies could include smoothing or a transition to a first or second derivative. Smoothing
attempts to reduce random noise by eliminating sharp peaks in the spectrum, while dif-
ferencing brings relevant data to light despite noise amplification. The first derivative
achieves alignment of spectra with different absorbance values that are shifted in parallel
by cancelling out an additive baseline. A second derivative removes a constant and linear
baseline. Each object vector, referred to as xi, undergoes separate processes of smoothing
and differentiation.

For both differentiation and smoothing, the Savitzky–Golay method is used. This is
a method widely used in chemistry. This technique, a local polynomial regression using
the method of least linear squares, requires x-values that are both exact and uniformly
distributed. For each point, symbolised as j with value xj, a linear combination is used
to calculate the weighted sum of the neighbouring values. These weights determine
whether smoothing or a derivative calculation is performed. Factors such as the number of
neighbours and the polynomial order determine the strength of the smoothing. Choosing
the right polynomial order is crucial, as incorrectly chosen higher order polynomials could
misinterpret significant Raman bands as mere background. In the Savitzky–Golay method,
a vector component xj is transformed by

x∗j =
1
N

k

∑
h=−k

chxj+h, (1)

where x∗j is the new value (of a smoothed curve or a derivative), N is the normalisation
constant, k is the number of neighbouring values (determining the size of the moving
window) on each side of j and ch are the coefficients, which depend on the degree of the
polynomial used and the objective (smoothing, first or second derivative). For example, if a
second order polynomial is fitted through a window of five points (k = 2), the following
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coefficients c−2, c−1, c0, c1, c2 can be used for smoothing: −3, 12, 17, 12, −3, the first
derivative: −2, −1, 0, 1, 2, and the second derivative: 2, −1, −2, −1, 2 [19]. Figure 2 shows
the Raman spectra to which the Savitzky–Golay filtering was applied.

Raman Shift (cm−1)

Figure 2. Raman spectra to which Savitzky–Golay filtering has been applied.

The process of pre-processing includes both filtering and normalisation, with the
latter playing an important role. The reason for this is that even spectra recorded for the
same material may demonstrate differences due to different recording times or unequal
instrument conditions such as laser power and alignment. These variations can lead to
different intensity values for spectra of the same material.

To compensate for these intensity differences, normalisation comes into play. This
process ensures a maximum similarity of the intensity of a given Raman band of a given
material when the spectra were taken under the same experimental parameters; however,
some conditions are slightly different. Various normalisation methods are explored in the
literature, including min-max normalisation, vector normalisation and Standard Normal
Variate (SNV) normalisation. Of these methods, SNV normalisation is the most commonly
used [39,40]. SNV normalisation works on the basis of the Equation (2), which can be
outlined as follows:

x̂∗j =
x∗j − x̄∗

σ
where σ =

√√√√ 1
N

N

∑
j=1

(x∗j − x̄∗)2 and j = 1, 2, ..., N. (2)

Figure 3 shows the Raman spectra for which SNV normalisation was performed in
addition to Savitzky–Golay filtering.

Raman Shift (cm−1)

Figure 3. Raman spectra to which Savitzky–Golay filtering and SNV normalization are applied.
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2.2. Model Construction

The construction of predictive models for bioprocesses, particularly for the cultivation
of CHO cells in bioreactors, has made significant progress through the application of
chemometric methods to Raman spectroscopic data [38]. These models can predict several
key variables such as the concentrations of glucose, glutamine, lactate and other biochemical
parameters, as well as cell growth metrics such as total cell count (TCC) and viable cell
count (VCC). Raman spectroscopy, a non-invasive, label-free technique, provides detailed
chemical information about the bioprocess by recording the molecular vibrations of the
components. The resulting Raman spectra serve as input data for the prediction model and
provide a comprehensive, high-dimensional data set.

Model construction begins with a calibration phase in which known samples are
analysed using Raman spectroscopy and appropriate laboratory tests. This process gener-
ates a set of reference data that includes Raman spectra and associated concentrations of
glucose, glutamine, lactate and cell counts. Another way to collect reference measurements
is to use a device such as Roche’s Cedex Analyzer. Once the reference data are prepared,
multivariate analysis techniques such as Partial Least Squares Regression (PLSR) are used
to build the predictive model. These methods work by identifying correlation patterns
within the Raman spectra and relating them to the biochemical parameters of interest.

For more complex data sets or non-linear relationships, machine learning techniques
such as Random Forest or SVM can be used. Advanced deep learning techniques such
as Convolutional Neural Networks (CNN) are particularly effective for processing high-
dimensional spectral data, as they can automatically extract meaningful features and
improve prediction accuracy [18]. However, one must be aware that such a method of
creating a model requires a large database, which is not always available.

This approach not only improves our understanding of the bioprocess, but also our
control over it. The real-time predictive capability of the model leads to optimised and
consistent bioproduction outcomes by enabling rapid, data-driven decision-making and
process adjustments, thereby increasing bioprocess performance, reducing costs and im-
proving product quality. The model is continuously refined as more data become available,
improving its predictive power over time.

2.2.1. Partial Least Squares

Partial Least Squares (PLS) is a statistical method that finds a linear regression model
by projecting the predicted variables and the observable variables onto a new space.
The method was first developed by Swedish statistician Herman Wold and has since
been widely used in fields such as chemometrics, neuroimaging, bioinformatics and social
sciences [41,42].

PLS simultaneously accounts for the covariance of both the independent variables
(predictors) and the dependent variables (responses). This approach is advantageous when
dealing with complex, multivariate data sets where the predictors are highly collinear or
where there are more predictors than observations. The method can handle noisy and
missing data, which makes it robust and flexible.

Partial Least Squares (PLS) regression is a multivariate technique that combines fea-
tures of principal component analysis (PCA) and multiple linear regression. Although PCA
is not explicitly used in the PLS method, the concept of extracting principal components or
latent variables is central to both methods. In PCA, the goal is to find a small number of
uncorrelated variables, called principal components, that explain most of the variation in
the data. Each principal component is a linear combination of the original variables and is
orthogonal to all other components. PLS works in a similar way, but instead of trying to
explain as much of the variance in the predictor variables as possible, PLS tries to extract
components that explain as much of the covariance between the predictor and response
variables as possible. Essentially, PLS looks for directions in which the predictors not only
explain a large part of their own variance (as in PCA), but are also highly correlated with
the response. PLS regression can be summarised in the following steps:
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• Standardisation of data: The first step in PLS regression is to standardise the predictor
and response matrices. This ensures that the model is not overly influenced by
variables that have large values or a large range of values.

• Extraction of PLS components: PLS decomposes the predictor and response matrices
into a set of orthogonal components. These are linear combinations of the original
variables that explain the maximum covariance between the predictors and the re-
sponses. The number of PLS components is chosen to optimise the predictive power
of the model.

• Estimation of the PLS model: The PLS regression coefficients are estimated by relating
the PLS components to the responses. These coefficients show the relationship between
the changes in the predictor variables and the changes in the response variables.

• Prediction and validation: The PLS model can then be used to predict responses for
new data. Cross-validation is often used to assess the predictive performance of the
model and to determine the optimal number of PLS components.

In terms of its statistical properties, PLS is a form of regularised regression. Like other
forms of regularisation, it can prevent overfitting by introducing some bias into the model,
but it reduces the variance of the model and thus improves its predictive performance.

PLS has been extended to handle different types of data and different modelling sce-
narios. The most popular versions of PLS include PLS-DA (PLS Discriminant Analysis) [43]
for classification problems and PLS-PM (PLS Path Modelling) [44] for structural equation
modelling. These extensions have made PLS a versatile and powerful tool for multivariate
analysis. When considering the use of PLS, it is important to understand its assumptions
and limitations. Although PLS does not assume that predictors are independent or nor-
mally distributed, it does assume a linear relationship between predictors and responses.
In addition, PLS may not work well with unrelated predictors because it attempts to use
all predictors in the model, which can lead to overfitting. It is recommended to evaluate
the performance of PLS against other multivariate methods such as principal component
regression (PCR) or ridge regression to ensure that it is appropriate for a particular data set
and research question.

The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm is a common method
for calculating PLS components. The goal is to find a set of components (also called latent
vectors) that capture the covariance between the predictors and the responses. The algo-
rithm of the simplified NIPALS method can be summarised in the following five points:

• Initialization:
X ∈ Rn×m, Y ∈ Rn×p, (3)

where X is a predictor matrix and Y is a response matrix.
• Selection of an initial column vector. Typically, the first column of the Y matrix

represents the vector u:
u = Y[:, 1] (4)

• Iteratively compute the weights w and t until convergence:

w =
XTu
uTu

(5)

Normalize the weights:

w =
w
‖w‖ (6)

Compute the score vector:

t = Xw (7)
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Reassign u as:

u = YTt/tTt (8)

The iteration continues until the difference between the new and old score vectors
falls below a certain threshold, indicating convergence.

• Deflate X and Y:
Calculate the outer product of t and p (the loading vector for the X), then subtract it
from X. Do the same for Y with t and q (the loading vector for the Y):

p =
XTt
tTt

, q =
YTt
tTt

(9)

X = X− tpT , Y = Y− tqT (10)

The iterations end when X (or Y) can no longer be deflated or when the number of
extracted latent variables is enough to describe the data according to some criterion.

• Calculate the regression coefficients. Once all the latent vectors are extracted, the
regression coefficients B can be calculated as:

B = W(PTW)−1QT , (11)

where W is the matrix of weight vectors, P is the loading matrix of X.

The Root Mean Square Error of Cross-Validation (RMSECV), which is calculated
during the creation of the PLS model, can be used as a criterion to find the right number of
latent variables and prevent overfitting. For example, Figure 4 shows that in the case of a
PLS model for glucose concentration, the most appropriate number of latent variables is
four, as the RMSECV does not drop drastically after that.
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Figure 4. Finding the most appropriate number of latent variables in a PLS model.

2.2.2. Selection of Key Variables

To further improve the PLS models and reduce the possibility of overfitting, the
Variable Importance in Projection (VIP) and Competitive Adaptive Reweighted Sampling—
Partial Least Squares (CARS-PLS) methods were used.

Variable Importance in the Projection is a popular method for assessing the importance
of variables in a Partial Least Squares (PLS) regression model. PLS is a statistical approach
used in predictive modelling where the prediction of a set of dependent variables from a
set of independent variables is conducted through latent variable regression.

The VIP score for a variable is a measure of that variable’s contribution to the model,
taking into account both its contribution to explaining the dependent variable and its
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contribution to explaining the independent variable. A high VIP score indicates that the
variable is highly significant in the model (Figure 5 shows an example of selecting key
variables in a PLS model of glucose concentration). However, the VIP method also has
some disadvantages:

• Overemphasis on highly collinear variables: If variables are highly collinear, the VIP
score can overestimate the importance of those variables and result in a model that
may not be as accurate as possible. This can be problematic in areas where variables
may be highly correlated, such as genomics or metabolomics.

• Unreliable with small data sets: The VIP method can be unreliable with small data
sets because it depends on having enough data to estimate the PLS model accurately.

On the other hand, Competitive Adaptive Reweighted Sampling—Partial Least Squares
is a more recent technique used for variable selection in spectroscopic multivariate cal-
ibration. It has gained considerable attention in the field of chemometrics. CARS-PLS
was developed to overcome two major challenges in the analysis of spectroscopic data:
high dimensionality and multicollinearity. These problems can lead to overfitting of the
model, poor generalisation ability and difficulties in interpretation. The method CARS-PLS
consists of two main stages:

• Competitive Adaptive Reweighted Sampling: This is a Monte Carlo-based sampling
technique that helps identify relevant variables (wavelengths) for building the model.
Initially, CARS assigns equal weights to all variables. Then, a set of subsets of variables
is generated, each subset containing each variable with a probability proportional to
its weight. A PLS model is created for each subset and its performance is evaluated.
Based on the evaluation, the weights of the variables are updated—variables that
frequently contribute to good models are given higher weights, while those that
contribute to poor models are given lower weights. This process is repeated many
times (usually thousands of iterations) until the best subset of variables is found.

• Partial Least Squares (PLS): After identifying the best subset of variables with CARS, a
PLS model is built using only these selected variables (Figure 5). This model is simpler
and less prone to overfitting than a model built with all variables. Moreover, because
only relevant variables are included, the model is often easier to interpret.

0 500 1000 1500 2000 2500 3000 3500

Raman shift (cm−1)

VIP
CARS

Figure 5. Key variables determined with the methods VIP and CARS for the PLS model of glucose
concentration.

The CARS-PLS method has been used successfully in many areas where spectroscopic
data are used, such as pharmaceutical analysis, food quality control and environmental
monitoring. However, like all methods, it has its limitations and assumptions. It assumes
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that there is a linear relationship between predictors and responses, and it may not work
well if this assumption is not met. In addition, the performance of CARS-PLS may depend
on the initial weights of the variables and the number of Monte Carlo iterations. Therefore,
it is often advisable to make several runs of CARS-PLS with different initial settings and
determine the consensus of the results.

Compared to VIP, CARS offers the following advantages:

• Better handling of collinearity: In contrast to the method VIP, CARS can better handle
the problem of collinearity between variables.

• Simplicity and interpretability: CARS tends to lead to simpler and more interpretable
models, which is of great importance in practical applications.

• Better performance on small data sets: CARS is not as reliant on large data sets as VIP
and is therefore a more reliable method for variable selection on small data sets.

• More robustness: CARS is less prone to overfitting because it focuses on a subset of
particularly relevant variables instead of considering all variables in the model.

• Adaptive: CARS is an adaptive method, able to adjust its selection as more data
becomes available or the nature of the data changes.

2.2.3. Removal of Outlier Spectra

The PLS model can be further improved by searching for spectra representing outliers.
Therefore, a resampling method commonly used in statistics and machine learning was
used, which can also be referred to as Monte Carlo cross-validation or repeated random
sub-sampling validation. The outlier detection method consists of the following five steps:

• Partitioning: first, the original training dataset is randomly partitioned into a training
dataset and a test dataset. For example, the partitioning could be 4:1, i.e., 80% of the
data are used for training and 20% for testing. This partitioning is conducted many
times, which is characteristic of a Monte Carlo approach.

• PLS modelling and prediction: A Partial Least Squares (PLS) regression model is built
using the training data. This model is then used to make predictions for the test subset.

• Error calculation: The prediction errors for each spectrum in the test set are then
calculated. Each spectrum will occur multiple times in different test sets; thus, an
average error and standard deviation can be calculated for each spectrum across
all iterations.

• Identification of outliers: Spectra that consistently produce high prediction errors
(based on their average error or a combination of average error and standard deviation)
can be considered outliers. These outliers represent spectra that are not well modelled
by the PLS and thus affect the accuracy of the model. In Figure 6, for example, it can
quickly be observed that the 25th and 58th spectra are outliers.

• Removal of outliers: The identified outlier spectra are removed from the original
dataset, hopefully improving the robustness and accuracy of the model.

• Iterating: This entire process can be repeated as needed, each time recalculating the
errors for each spectrum and identifying and removing outliers.

The advantage of this method is that it can help to increase the robustness of the PLS
models by removing outliers that would otherwise distort the model parameters. It is a
relatively simple and intuitive approach that combines the robustness of resampling with
the ability to identify and remove problematic data points. This method helps to further
reduce the Root Mean Square Error of Prediction (RMSEP) and thus improve the overall
performance of the model.

However, as with any method, it should be used judiciously. Removing outliers too
aggressively can lead to over-fitting, where the model becomes over-fitted to the “typical”
data points and performs poorly on new, unknown data. This method is most useful if
you have a large enough dataset so that removing some data points does not significantly
reduce the overall size of the dataset.
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Figure 6. The mean error and standard deviation for all spectra.

3. Simulator Construction

In order to develop a predictive control algorithm for automated nutrient feeding
in a bioreactor, a simulation environment based on a dynamic model was implemented.
The latter describes the kinetics of the growth of a CHO cell culture in a fed-batch bioreactor.
It is well known that the process parameters (temperature, pH, feeding, ammonia removal,
etc.) have a significant impact on cell growth and especially on the quality of the monoclonal
antibodies (mAbs) produced [45]. Therefore, the model is important not only for the
development of management algorithms, but also for the observation and identification
of the key factors (variables and parameters) that have the greatest influence on cell
productivity. This is particularly important from the point of view of optimising protein
production in a mammalian cell line.

3.1. Modelling CHO Cell Culture Kinetics

Chinese Hamster Ovary cells are the most commonly used mammalian hosts for the
industrial production of therapeutic proteins, due to their capacity to perform human-like
post-translational modifications. The growth kinetics of CHO cells can be studied using a
mechanistic model [32]. A mechanistic model is a type of model used to describe biological
processes based on underlying physiological mechanisms. These models allow us to
interpret, predict and simulate biological phenomena by using mathematical equations
to represent the interactions and transformations that occur in a system. In the context
of CHO cell growth kinetics, a mechanistic model would include at least the following
components. One of the most important mechanisms determining the growth kinetics of
CHO cells is cell division. The rate at which cells grow and divide depends on various
influencing factors such as the availability of nutrients, the accumulation of waste products
and the passage of time. Mathematical models such as the Gompertz model or the logistic
growth model are often used to represent these complicated dynamics of cell growth.
Another crucial determinant of cell growth is the assimilation and utilisation of nutrients
such as glucose and glutamine. The rate at which these nutrients are consumed can have
a significant impact on cell growth and is usually modelled using Monod or Michaelis–
Menten kinetics, which provides essential insights into cell metabolism and growth patterns.
As cells grow and metabolise nutrients, they inevitably generate waste products such as
lactate or ammonia. The accumulation of these waste products can have a suppressive
effect on cell growth. To quantify this inhibitory effect, mathematical models are used to
provide detailed insight into the relationship between the accumulation of waste products
and cell proliferation. The loss of cells through mechanisms such as apoptosis, nutrient
deprivation or the toxic effect of accumulated by-products is an inevitable aspect of cell
culture. Mathematical models are used to express the rate of cell death as a function of
various parameters, providing valuable insights into the factors that influence cell viability
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over time. Finally, the growth kinetics of CHO cells are significantly influenced by external
environmental factors such as temperature, pH and osmolality. These factors must be
carefully incorporated into the mechanistic model to ensure its relevance and accuracy.
These environmental influences represent an additional layer of complexity and require a
comprehensive understanding of their effects on cell growth and survival. Each of these
components is interconnected and forms a complex network of interactions that determine
the growth kinetics of CHO cells. Together, they form a robust mechanistic model that
allows the prediction, interpretation and simulation of the behaviour of CHO cells under
different conditions. A mechanistic model of CHO cell growth kinetics would typically be
a system of differential equations, where each equation represents a particular biological
process (such as cell growth, nutrient consumption, production of waste products, etc.).
These models can be quite complex and usually require a large amount of experimental
data for their parameterisation.

However, despite their complexity, mechanistic models can provide valuable insights
into the cell growth process and can be helpful in optimising cell culture conditions for
maximum productivity. Many authors [45–48] who have worked on modelling the kinetics
of CHO cell cultures have set up various dynamic models in the form of differential
equations based on steady-state analysis. In most cases, these simple models only describe
the variation of extracellular metabolite concentrations and the number of live/dead cells
during the cell cycle. The models differ in the number of factors considered (number
of variables and parameters), which are more or less relevant to describe what actually
happens in a mammalian cell line (in a bioreactor). However, in order to have a practical and
universally applicable simulator, a model was needed that took all the important variables
into account. An example of such a model was also developed by M. Ivarsson [48] in her
PhD thesis, as it takes into account the four phases of the cell cycle, temperature, glutamine
concentration, number of dead cells, etc., in addition to the number of living cells and
the concentrations of glucose, lactate and ammonia. For the development of a predictive
controller for automated feeding, only a model prediction of glucose concentration would
be required at this stage. However, as glucose concentration variations are also highly
dependent on other variables, these should also be considered in the model. As mentioned
above, the chosen dynamic model [48] describes four phases of the cell cycle: G0, G1, S and
G2/M and the number of cells per phase: XG0, XG1, XS and XG2/M:
G1 phase:

d(XG1V)

dt
= 2kG2/M−G1XG2/MV − kG1−SXG1V − kG1−G0XG1V − kdXG1V − FOUTXG1 (12)

S phase:

d(XSV)

dt
= kG1−SmstressXG1V − kS−G2/MXSV − kdXSV − FOUTXS (13)

G2/M phase:

d(XG2/MV)

dt
= kS−G2/MXSV − kG2/M−G1XG2/MV − kdXG2/MV − FOUTXG2/M (14)

G0 phase:

d(XG0V)

dt
= kG1−S(1−mstress)XG1V + kG1−G0XG1V − kdXG0V − FOUTXG0 (15)

The equations include transition factors k, where, e.g., kG1−S represents the transition
from the G1 phase to the S phase. The transition factors between subpopulations depend
mainly on the growth rate, which in turn is determined by the times (tG1, ts and tG2/M)
required for the completion of each cellular phase:

µ =
ln(2)

tG1 + tS + tG2/M
(16)
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The transition from the G1 to the G0 phase is determined by the transition factor
kG1−G0, which represents the temperature stress. However, the transition to phase G0 may
also cause metabolic stress mstress. The number of viable cells is calculated as the sum of the
cells from each phase, where V represents the current volume of material in the bioreactor:

d(XVV)

dt
=

d(XG0V)

dt
+

d(XG1V)

dt
+

d(XSV)

dt
+

d(XG2/MV)

dt
(17)

The volume varies depending on the nutrient dosage (FGlc and FGln) and the potential
sampling FOUT :

dV
dt

= FGlc + FGln − FOUT (18)

Glutamine concentration varies according to consumption factor QGln and degrada-
tion to ammonia Kdeg and potential dose FGln. Glutamine consumption depends on the cell
growth factor, the specific yield YGln and the limiting function fupt:

d(GlnV)

dt
= −QGlnXVV − KdegGlnV + FGlnGlnFeed − FOUTGln (19)

The ammonia concentration depends largely on changes in the glutamine concentra-
tion, since the ammonia concentration increases with glutamine consumption (factors YAmn
and Kdeg):

d(AmnV)

dt
= QGlnYAmn XVV + KdegGlnV − FOUT Amn (20)

The glucose concentration varies according to the consumption factor QGlc and the
minimum consumption to keep the cells alive mGlc, and the amount of glucose added FGlc.
The consumption factor QGlc is influenced by temperature and lactate as an inhibitor:

d(GlcV)

dt
= −QGlcXV(1− fG0)V −mGlcXV fG0V + FGlcGlcFeed − FOUTGlc (21)

The lactate concentration depends on the glucose consumption (QGlc and mGlc):

d(LacV)

dt
= YLacQGlcXV(1− fG0)V −YLacmGlcXV fG0V − FOUT Lac (22)

The change in monoclonal antibody concentration is determined by factors represent-
ing the productivity level (qG1/G0, qS and qG2/M) per cell phase:

d(mAbV)

dt
= µ[q G1

G0
(XG1 + XG0) + qSXS + q G2

M
X G2

M
]− FOUTmAb (23)

4. Results

In order to be able to monitor the process in the bioreactor in detail during the entire
batch, which usually takes about 14 days, seven PLS models were developed in the Matlab
environment. The latter models, which represent soft sensors, allow the monitoring of the
most important process variables in CHO cell cultivation. These variables are: Glucose
concentration, viable cell concentration (VCC), total cell count (TCC), glutamine, glutamate,
lactate and ammonium.

Data from four different batches were available to us for the development of PLS
models. Raman spectra were collected every half hour and reference measurements (offline)
were performed once or twice a day with Cedex Analyzer. Thus, the first step was to find
the pairs of spectra and reference measurements that matched best in terms of acquisition
time. The Raman measurement takes about half an hour to obtain a good signal-to-noise
ratio and to remove fluorescence interference.

As described in Section 2.1, two key initial steps in the development of PLS models are
the preprocessing of the Raman spectra with the Savitzky–Golay filter and the normalisation
with the Standard Normal Variate method (see Figures 2 and 3). Savitzky–Golay low-
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pass filtering was performed for all independent variables (Raman shift (cm−1)) of each
spectrum, with a quadratic function chosen for smoothing with the Savitzky–Golay filter
and the window length (smoothing) set to 15 samples. In addition, a normalisation or
Standard Normal Variate function is applied to the independent variables for all spectra,
resulting in spectra with a mean of zero and a standard deviation of one.

As described in Section 2.2 and illustrated in Figure 2, careful consideration is also
required in the selection of the parameter that determines the number of latent variables.
For each PLS model, the optimal number of latent variables is determined based on cross-
validation, aiming for the smallest RMSECV error. In general, it is preferred to keep the
number of latent variables as small as possible.

Characteristic independent variables of the spectrum (i.e., energy shifts) at which a
spike occurs can be extracted from the literature for individual observed variables. Taking
these characteristic energy shifts into account when calculating PLS models is therefore
considered useful as it further weighs the individual independent variables of the spectrum
and improves the model in this way. If these characteristic energy shifts are not known,
various methods are available to identify the more important independent variables and
take them into account to a greater extent.

The Variable Importance in the Projection method, described in Section 2.2.2, was
tested first. However, the prediction results were not improved by this simple method;
thus, alternative approaches to selecting key variables were investigated. Attempts to select
"key" intervals or several independent variables of the spectrum together also did not lead
to better results.

It turned out that the Competitive Adaptive Reweighted Sampling method, which
is also discussed in Section 2.2.2, gave the best results for selecting key variables when
building PLS models. As can be observed in Figure 5, the method CARS identifies fewer
key variables than the method VIP. Nevertheless, the validation results of the PLS model
(using glucose concentration as an example) were better when the method CARS was used,
as evidenced by the smaller Root Mean Square Error (see Figure 7 and Table 1).
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Figure 7. Validation of the PLS glucose model using VIP, CARS and outlier removal methods.

Table 1. Root Mean Square Error of glucose concentration prediction and the coefficient of determi-
nation (R2).

RMSE (g/L) R2

PLS 1.25 0.92
VIP 1.26 0.92

CARS 0.84 0.96
No outliers 0.75 0.97
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The reference values in Figure 7 represent offline measurements performed with the
Cedex Analyzer. In some cases of glucose measurement, the VIP method even leads to
worse results than not using a method, as shown in Table 1 (see RMSE).

Assuming that Cedex’s offline measurements are reliable, the training set was exam-
ined for spectra representing outliers that could affect the parameters of the PLS model
during the learning phase and consequently affect the prediction accuracy. Applying the
Monte Carlo sampling method and calculating the mean error and standard deviation
for each PLS model led to the identification of spectra within the dataset that represent
outliers, as shown in Figure 6 and discussed in Section 2.2.3. This process allowed a further
increase in the accuracy and robustness of the PLS models, as can be observed in Figure 7
and Table 1. In this case, the coefficient of determination for the PLS model for glucose is
R2 = 0.97, which means that the PLS model has been further improved compared to the
method CARS (where R2 = 0.96). An accurate prediction of glucose concentration can also
be observed in Figure 8, which shows a comparison of experimental and predicted values
using CARS and methods to remove outliers. Ideally, all points should lie on a straight line.

0 2 4 6 8 10 12 14 16

Experimental Glc (g/L)

0

2

4

6

8

10

12

14

16

P
re

d
ic

te
d
 G

lc
 (

g
/L

)

Figure 8. Validation of the PLS glucose model: comparison of experimental and predicted values
using CARS and outlier removal methods.

Table 2 shows the RMSE and coefficient of determination (R2) for the following
constructed PLS models in addition to the glucose PLS model: VCC, TCC, glutamine,
glutamate, lactate and ammonium. The results demonstrate that all PLS models developed
provide an accurate prediction of the main process variables (R2 > 0.8), and only the PLS
model for glutamine has a slightly worse prediction (R2 = 0.33). The reason for this lies in
the following fact. In Raman spectroscopy, glutamine and glutamate are related because
they have a similar molecular structure and similar active Raman vibrational modes that
produce similar spectral features. Glutamine and glutamate are structurally similar amino
acids, both containing a carboxyl group (-COOH) and an amine group (-NH2). The main
structural difference between them is that glutamate has an additional carboxyl group,
while glutamine has an amide group (-CONH2) instead. It is important to note that while
Raman spectroscopy is a powerful technique for identifying molecules, its resolution is
often insufficient to distinguish between similar molecules in a mixture. In such cases,
additional techniques, such as chromatographic separation or more sophisticated spectral
analysis methods, are required.
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Table 2. Root Mean Square Error and the coefficient of determination (R2) for all other constructed
PLS models.

RMSE R2

VCC 0.86 (106 cells/mL) 0.93
TCC 1.06 (106 cells/mL) 0.91

Glutamine 1.60 (g/L) 0.33
Glutamate 0.26 (g/L) 0.95

Lactate 0.10 (g/L) 0.99
Ammonium 1.16 (mmol/L) 0.83

Table 3 shows the best RMSE results for PLS models according to the existing liter-
ature [11,37]. A comparison with the data in Tables 1 and 2 shows that our method for
building PLS models excels at accurately predicting key variables from Raman spectra.
This comparison essentially underlines the effectiveness of our approach. It is particularly
noteworthy that our PLS models have an RMSE that is on average three times smaller than
the RMSE published in recent research [11,37].

Table 3. The best RMSE results for PLS models found in the literature [11,37].

RMSE

VCC 4.87 (106 cells/mL)
TCC 3.68 (106 cells/mL)

Glucose 1.13 (g/L)
Glutamate 1.18 (g/L)

Lactate 0.19 (g/L)
Ammonium 1.21 (mmol/L)

The learning process for the PLS models depended on a single offline measurement
(Cedex) of each variable (e.g., glucose) per day. Therefore, only the Raman spectroscopy
spectra that matched the offline measurements in time could be used. However, once
the PLS models were built, all spectra collected every half hour could be used, giving an
informative representation of the time course of each variable (see Figure 9). These data are
then used in the optimisation to determine the parameters of the dynamic model for the
CHO cell kinetics, as described in the Section 3.1. Careful examination of the time series
signal for glucose and glutamine concentrations in Figure 9 reveals a sawtooth pattern
due to the daily manual dosing of nutrients. This pattern is not conducive to the optimal
growth of the CHO cells.

The problem can be solved by implementing an automated feeding system that con-
tinuously doses the nutrients according to a predefined reference signal. However, such
a system requires not only the application of the previously developed soft sensors (PLS
models), but also a simulation environment. In this environment, a control algorithm can
be developed and different scenarios such as different feeding regimes, the removal of
inhibitors and the observation of important process variables can be investigated. The heart
of the simulator, represented by the Simulink schema in Figure 10, is a dynamic model
of CHO cell kinetics, which is explained in the Section 3.1. Figure 10 also shows the con-
troller and optimisation blocks, the details of which will be explained in more detail in
forthcoming scientific publications.

Based on known process parameters (temperature and pH) and time series signals
of the main process variables (VCC, glucose, glutamine, etc.), it is possible to perform the
optimisation of the parameters of the dynamic model of CHO cell kinetics (presented in
the Section 3.1). This optimisation aims at aligning the model results as much as possible
with the measurements of previous batches.



Sensors 2023, 23, 6618 17 of 22

0 2 4 6 8 10 12 14

Time (days)

0

2

4

6

8

10

12

G
lu

co
se

 (
g

/L
) 

/ 
V

C
C

 (
m

ill
io

n
s 

c
e

lls
/m

L
)

Glucose

VCC

Ammonium

Lactate

Glutamine

Figure 9. Signal reconstruction of key process variables via PLS models.
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Figure 10. Implementation of a simulator within the Simulink environment based on the CHO cell
kinetics model.

For the parameter optimisation, the particle swarm optimisation (PSO) method was
used, which makes it possible to find the global minimum of the chosen criterion function
while optimising a large number of parameters. In this case, the criterion function was
given as RMSE, with the final values presented in the Table 4.

Table 4. Root Mean Square Error and the coefficient of determination (R2) in the case of predicting all
important process variables using the CHO cell kinetics model.

RMSE R2

VCC 0.15 (106 cells/mL) 0.99
Glucose 0.18 (g/L) 0.99

Glutamine 0.20 (g/L) 0.98
Lactate 0.14 (g/L) 0.99

Ammonium 0.10 (mmol/L) 0.99

A comparison of glucose concentration measurements from one of the batches with a
glucose concentration prediction derived from a mechanistic model of CHO cell kinetics is
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shown in Figure 11. The results of the agreement were excellent in this case, with an RMSE
of 0.18 g/L and R2 = 0.99.
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Figure 11. Validation of the CHO cell kinetics model in the case of glucose concentration prediction
for the entire batch run.

Furthermore, Figure 12 shows the remarkable matching between the measurements
and the predicted values; ideally, all points should lie on a straight line. However, it is
important to note that the available data were limited to only four batches. If a larger
number of batches are included in the optimisation process, a slight deviation between the
individual batches and the process variables is to be expected. In the future, it would be
beneficial to combine the data from the individual batches based on the criterion of mutual
similarity and then determine the model parameters for the individual clusters.

The predictions for the other process variables, as shown in Table 4, prove satisfactory
when the CHO cell kinetics model is used. Only in the case of glutamine concentration
does a somewhat larger error occur, which has already been pointed out. The reason for
this is that when the PLS model predicts the time series signal for glutamine with less
accuracy, the variance of the “measurements” (derived from the soft sensor) increases.
Consequently, the time series signal of glutamine is predicted with lower accuracy by the
mechanistic model.
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Figure 12. Validation of the CHO cell kinetics model: comparison of experimental and predicted
glucose concentrations.
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5. Discussion

In developing models that allow the use of soft sensors to monitor key process vari-
ables (VCC, TCC, glucose, glutamine, glutamate, lactate and ammonium) in the bioreactor,
it was found that using the PLS method alone did not provide the required accuracy and
robustness of the models. In particular, with a limited data set (a few batches), the model
can be overfitted, leading to a sharp drop in predictive performance compared to what the
validation with limited data promises.

Since in our work only about 100 spectra with reference measurements were available
during the learning phase and Raman spectra contain more than 3000 components, the
phase of selecting key variables became crucial for model construction. By using the CARS
method, better handling of collinearity between variables was observed, as well as better
performance on small data sets and higher robustness compared to the VIP method. As a
result, the RMSE was reduced by up to 30%.

It was found that the VIP method further impaired the predictive ability of the models
in certain cases, indicating an overfitting problem, as the number of key variables selected
was significantly larger than required by the CARS method. The VIP method also had
stability problems, as the results may have become unstable with small samples. Minor
variations in the data can lead to significant shifts in the scores, making it difficult to
extrapolate the results to other data sets. When calculating the VIP scores based on the
weighted sum of squares of the PLS loadings, high variability was found in small data sets.

In Raman spectroscopy, it is important to understand that outlier spectra can occur,
influenced by various factors. For example, if the sample in the bioreactor is not evenly
mixed, this can lead to deviations in the spectra obtained. Raman spectroscopy derives its
readings from the average properties of the area illuminated by the laser. Therefore, a lack
of homogeneity in the sample can lead to inconsistent measurements.

Moreover, the components of the sample can play an important role. If components
fluoresce under the laser light of the Raman spectrometer, the resulting fluorescence could
overshadow the Raman signal and distort the spectra. Additionally, bubbles or parti-
cles in the bioreactor can cause scattering or absorption of the laser light, resulting in
unpredictable spectra.

Given these potential sources of error, it is important to carefully identify and remove
outlier spectra during the modelling phase, as described in Section 2.2.3. This step re-
duced the root mean square error (RMSE) by 10% (in addition to 30% reduction with the
method CARS).

The efficient growth and production of desired products by CHO cells requires specific,
strictly controlled conditions in the bioreactor. These conditions include the regulation
of pH and temperature, which affect cell metabolic rate, protein folding and expression
levels. Equally important is the careful control of nutrient content, especially glucose and
glutamine, according to a predetermined profile for the duration of the batch.

Another critical factor is the control of inhibitor concentrations. Metabolic by-products
such as ammonia and lactate can potentially inhibit cell growth and protein production
if they reach high concentrations. Since glucose is the primary source of energy, its con-
centration directly affects cell metabolism. Too little glucose can starve cells and inhibit
growth, while too much glucose can cause osmotic stress or trigger overproduction of
waste products such as lactate.

Given these complexities, the use of an automated bioreactor control system is essential
for CHO cell cultivation. Such a system offers several advantages, including maintaining
consistent conditions, real-time monitoring, reducing human error and improving efficiency
and scalability. Given the significant costs associated with realistic bioreactor experiments,
the development of a simulation environment is essential. This environment enables the
creation of control algorithms and the evaluation of the effects of different parameters on
cell growth and productivity.

The main reason for the lack of advanced automated control techniques in cell cul-
ture bioprocesses and bioreactor operations is that these techniques require robust and
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reliable measurement methods that are available on site. Concentrations of nutrients and
metabolites, cell densities and viability are not measured and are uncontrolled or are only
controlled manually with long sampling times (12–24 h, as shown in Figure 9). As a result,
possible process disturbances may only be detected after long delays, making it difficult to
take corrective action and increasing the risk of batch losses.

For the development of an advanced simulation environment, the choice of a CHO
kinetic model is also crucial. The chosen model should represent the complex kinetics of
CHO cells in sufficient detail. Simpler models based on the Monod equation, for example,
are often inadequate in this respect. More complex models, however, pose the challenge of
determining numerous parameters that can only be accurately determined with a suitable
optimisation method and sufficiently heterogeneous data. In our study, the parameters of a
dynamic model of CHO cell kinetics were successfully determined using the PSO method.

To enable the development of a predictive control algorithm, the complex kinetics
model will be simplified and linearised, and online adjustment of the (adaptive) model
parameters will be facilitated. This adjustment is made possible by an optimisation method
that uses the measurements of the current batch to facilitate the online parameterisation.

Future efforts include the development of a model predictive control algorithm based
on the simplified model of CHO cell kinetics. Subsequently, the monitoring and control
system will be integrated into a real bioreactor. Finally, a practical test of the implemented
system will be carried out.

6. Conclusions

This study demonstrates the significant advances in fully automated feeding of CHO
cells achieved through the development of advanced models, soft sensors and a novel
simulation environment. The research has required a thorough understanding of various
chemometric methods and demonstrated their context-specific application in combination
with Raman spectroscopy. It has demonstrated the effectiveness of CARS-PLS and an
outlier removal method in overcoming difficult challenges such as high dimensionality,
multicollinearity and outlier detection. The models created are versatile and scalable and
can be applied to a wide range of products, media and cell lines based on CHO host
cells. They can be conveniently scaled up for use in large pilot studies and extensive
manufacturing processes. However, the success of these methods depends not only on the
right choice of techniques, but also crucially on the quality of the input data. Therefore,
the preprocessing of the data to remove interfering signals is of the utmost importance.
Raman spectra have no inherent value, but when integrated with the appropriate models,
they allow for the creation of a sophisticated measurement system. This system, which
consists of soft sensors, is used for real-time monitoring and control of important process
variables. The measurements reconstructed with these soft sensors play a crucial role in
the design of the simulation environment, which significantly speeds up and cheapens
the development of control algorithms and thus the automated nutrient dosing system.
In essence, this study provides essential insights into the pragmatic application of Raman
spectroscopy and innovative methods that form a solid foundation for further research and
development in the field of automated cell feeding.
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