Automatic Recognition Reading Method of Pointer Meter Based on YOLOv5-MR Model
Abstract
:1. Introduction
2. Related Works
2.1. Object Detection
2.2. YOLOv5 Network Architecture
3. YOLOv5-MR Network Architecture
3.1. Multi-Scale Feature Detection
3.2. Loss Function
3.3. Transposed Convolution
3.4. Recognition and Reading of Dial Numbers
4. Experimental and Results Analysis
4.1. Recognition and Reading of Dial Numbers
4.2. Dataset
4.3. Results of the YOLOv5-MR Reading Model
4.4. Experimental Results
4.5. Ablation Studies
4.6. Comparative Experiment
5. Disscussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alegria, E.C.; Serra, A.C. Automatic calibration of analog and digital measuring instruments using computer vision. IEEE Trans. Instrum. Meas. 2000, 49, 94–99. [Google Scholar] [CrossRef]
- Yue, G.Y.; Li, B.S.; Zhao, S.T. Intelligence identifying system of analog measuring instruments. J. Sci. Instrum. 2003, 24, 430–431. [Google Scholar]
- Sun, F.J.; An, T.J.; Fan, J.Q.; Yang, C.P. Study on the Recognition of Pointer Position of Electric Power Transformer Temperature Meter. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. 2007, 27, 70–75. [Google Scholar]
- Belan, P.A.; Araújo, S.A.; André, F. Segmentation-free approaches of computer vision for automatic calibration of digital and analog instruments. Measurement 2013, 46, 177–184. [Google Scholar] [CrossRef]
- Chi, J.N.; Liu, L.; Liu, J.W.; Jiang, Z. Machine vision based automatic detection method of indicating values of a pointer gauge. Math. Probl. Eng. 2015, 2015, 283629. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Ming, Z.Q.; Zhou, Y.F.; Li, H.Y. Meter recognition algorithm for equipment inspection robot. Autom. Instrum. 2013, 28, 10–14. [Google Scholar]
- Huang, J.; Wang, J.Z.; Tan, Y.H.; Wu, D.; Cao, Y. An automatic analog instrument reading system using computer vision and inspection robot. IEEE Trans. Instrum. Meas. 2020, 69, 6322–6335. [Google Scholar] [CrossRef]
- Gao, H.; Yi, M.; Yu, J.; Li, J.; Yu, X. Character segmentation-based coarse-fine approach for automobile dashboard detection. IEEE Trans. Ind. Inform. 2019, 15, 5413–5424. [Google Scholar] [CrossRef]
- Ma, Y.F.; Jiang, Q. A robust and high-precision automatic reading algorithm of pointer meters based on machine vision. Meas. Sci. Technol. 2019, 30, 7–21. [Google Scholar] [CrossRef]
- Dongjie, C.; Wensheng, Z.; Yang, Y. Detection and recognition of high-speed railway catenary locator based on Deep Learning. J. Univ. Sci. Technol. China 2017, 47, 320–327. [Google Scholar]
- Du, S.Y.; Du, P.; Ding, S.F. A malicious domain name detection method based on CNN. J. Univ. Sci. Technol. China 2020, 50, 1019–1025. [Google Scholar]
- Luo, H.L.; Tong, K.; Kong, F.S. The progress of human action recognition in videos based on deep learning: A review. Acta Electron. Sin. 2019, 47, 1162–1173. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Berkeley, CA, USA, 21–26 July 2017; pp. 2961–2969. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Ithaca, NY, USA, 8 April 2018; pp. 126–134. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Jocher, G. YOLOv5 by Ultralytics, Version 7.0.; CERN: Meyrin, Switzerland, 2020. [CrossRef]
- Ou, X.; Wu, M.; Tu, B.; Zhang, G.; Li, W. Multi-Objective unsupervised band selection method for hyperspectral images classification. IEEE Trans. Image Process. 2023, 32, 1952–1965. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; Ke, Y. A detection and recognition system of pointer meters in substations based on computer vision. Measurement 2020, 152, 107333. [Google Scholar] [CrossRef]
- Wang, L.; Wang, P.; Wu, L.; Xu, L.; Huang, P.; Kang, Z. Computer vision based automatic recognition of pointer instruments: Data set optimization and reading. Entropy 2021, 23, 272. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Shi, X.; Jiang, Y.; Gong, J. A high-precision automatic pointer meter reading system in low-light environment. Sensors 2021, 21, 4891. [Google Scholar] [CrossRef]
- Zuo, L.; He, P.; Zhang, C.; Zhang, Z. A robust approach to reading recognition of pointer meters based on improved mask-RCNN. Neurocomputing 2020, 388, 90–101. [Google Scholar] [CrossRef]
- Li, D.; Li, W.; Yu, X.; Gao, Q.; Song, Y. Automatic reading algorithm of substation dial gauges based on coordinate positioning. Appl. Sci. 2021, 11, 6059. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 658–666. [Google Scholar]
- Zhang, Y.F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and efficient iou loss for accurate bounding box regression. Neurocomputing 2021, 506, 147–157. [Google Scholar] [CrossRef]
- Rukundo, O.; Cao, H.Q. Nearest neighbor value interpolation. Int. J. Adv. Comput. Sci. Appl. 2012, 3, 1–6. [Google Scholar]
- Shio, M.; Yanagisawa, M.; Togawa, N. Linear and Bi-Linear Interpolation Circuits using Selector Logics and Their Evaluations. In Proceedings of the IEEE International Symposium on Circuits and Systems, Melbourne, VIC, Australia, 1–5 June 2014; pp. 1436–1439. [Google Scholar]
- Aiazzi, B.; Baronti, S.; Selva, M.; Alparone, L. Bi-cubic interpolation for shift-free pan-sharpening. ISPRS J. Photogramm. Remote Sens. 2013, 86, 65–76. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Taylor, G.W.; Fergus, R. Adaptive Deconvolutional Networks for Mid and High Level Feature Learning. In Proceedings of the International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2018–2025. [Google Scholar]
- Guo, S.; Qiang, B.; Xie, W.; Zhai, Y.; Chen, R.; Zheng, H. Zhuang Characteristic Culture Detection Based on Improved YOLOV3-SPP Network. In Proceedings of the ICGEC 2021: Genetic and Evolutionary Computing, Jilin, China, 21–23 October 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 215–226, Lecture Notes in Electrical Engineering. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics; Version 8.0.0.; CERN: Meyrin, Switzerland, 2023; Available online: https://github.com/ultralytics/ultralytics (accessed on 11 June 2023).
Parameter Names | Parameter Values |
---|---|
Momentum | 0.937 |
Weight_decay | 0.0005 |
Batch_size | 4 |
Learning_rate | 0.01 |
Epochs | 600 |
Model | |
---|---|
YOLOv3 | 0.05 |
YOLOv3-SPP | 0.048 |
YOLOv5s | 0.046 |
YOLOv5m | 0.028 |
YOLOv5-MR | 0.022 |
Model | Recall (%) | mAP (%) | GFLOPS (s) | Weights (MB) |
---|---|---|---|---|
YOLOv5m | 75.2 | 76.4 | 53.8 | 44.8 |
YOLOv5m + Multi-scale feature detection | 76.2 | 77.6 | 94.6 | 49.0 |
YOLOv5m + EIoU Loss | 76.6 | 78.2 | 53.8 | 44.8 |
YOLOv5m + Transposed Convolution | 74.8 | 76.1 | 53.9 | 44.8 |
YOLOv5-MR | 78.2 | 79.7 | 94.9 | 49.1 |
Model | Recall (%) | mAP (%) | GFLOPS (s) | Weights (MB) |
---|---|---|---|---|
YOLOv3 | 74.6 | 75.0 | 158.1 | 125.4 |
YOLOv3-SPP | 74.5 | 75.9 | 159.0 | 127.0 |
YOLOv5s | 63.9 | 60.8 | 15.9 | 13.9 |
YOLOv5m | 75.2 | 76.4 | 53.8 | 44.8 |
YOLOv7s | 71.6 | 69.5 | 17.3 | 57 |
YOLOv8s | 72.4 | 68.4 | 19.3 | 58 |
YOLOv5-MR | 78.2 | 79.7 | 94.9 | 49.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, L.; Wang, K.; Wang, X.; Zhang, J.; Li, R.; Wu, Z. Automatic Recognition Reading Method of Pointer Meter Based on YOLOv5-MR Model. Sensors 2023, 23, 6644. https://doi.org/10.3390/s23146644
Zou L, Wang K, Wang X, Zhang J, Li R, Wu Z. Automatic Recognition Reading Method of Pointer Meter Based on YOLOv5-MR Model. Sensors. 2023; 23(14):6644. https://doi.org/10.3390/s23146644
Chicago/Turabian StyleZou, Le, Kai Wang, Xiaofeng Wang, Jie Zhang, Rui Li, and Zhize Wu. 2023. "Automatic Recognition Reading Method of Pointer Meter Based on YOLOv5-MR Model" Sensors 23, no. 14: 6644. https://doi.org/10.3390/s23146644
APA StyleZou, L., Wang, K., Wang, X., Zhang, J., Li, R., & Wu, Z. (2023). Automatic Recognition Reading Method of Pointer Meter Based on YOLOv5-MR Model. Sensors, 23(14), 6644. https://doi.org/10.3390/s23146644