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Abstract: Meter reading is an important part of intelligent inspection, and the current meter reading
method based on target detection has problems of low accuracy and large error. In order to improve
the accuracy of automatic meter reading, this paper proposes an automatic reading method for
pointer-type meters based on the YOLOv5-Meter Reading (YOLOv5-MR) model. Firstly, in order
to improve the detection performance of small targets in YOLOv5 framework, a multi-scale target
detection layer is added to the YOLOv5 framework, and a set of Anchors is designed based on the
lightning rod dial data set; secondly, the loss function and up-sampling method are improved to
enhance the model training convergence speed and obtain the optimal up-sampling parameters;
Finally, a new external circle fitting method of the dial is proposed, and the dial reading is calculated
by the center angle algorithm. The experimental results on the self-built dataset show that the Mean
Average Precision (mAP) of the YOLOv5-MR target detection model reaches 79%, which is 3% better
than the YOLOv5 model, and outperforms other advanced pointer-type meter reading models.

Keywords: deep learning; meter reading; object detection; substation patrol

1. Introduction

Pointer-type meters are widely used in power systems, manufacturing systems, mil-
itary, and aerospace due to their simple structure, low design and manufacturing costs,
strong anti-interference ability, and high reliability. The traditional manual method of
periodically checking meter readings is not only inefficient and inaccurate, but also cannot
provide real-time readings. The traditional method requires a significant amount of human
and material resources, and in certain extreme environments, such as those characterized
by high temperature, high pressure, and radiation, manual reading of pointer instruments
can be inconvenient. Currently, meter reading models are mainly based on traditional
image processing techniques, which fail to effectively address challenges such as uneven
illumination, complex backgrounds, tilted pointers, and blurred images in each image. As a
result, the processing is cumbersome, the accuracy is low, and the error is significant. Thus,
there is a pressing need to adopt deep learning technology to develop a meter reading
model for pointer-type instruments.

In early research, both domestic and international researchers used a series of traditional im-
age processing techniques to process pointer-type instrument panels. Alegria et al. [1] were the
first to use image processing and computer vision techniques to automatically read pointer-
type instrument readings for data communication interfaces. In recent years, Yue et al. [2]
implemented automatic reading of pointer-type instruments based on machine vision
technology, proposing a distance discrimination method based on the distance from the
pointer to the adjacent scale line on the left, for scale line and pointer positioning. However,
this method required two clearer images for subtraction to extract the pointer, and was
not robust against strong external lighting changes and other interferences. Sun et al. [3]
proposed using the concentric ring search method to determine the deflection angle of the
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instrument pointer, which had higher accuracy for reading pointer-type instruments. In
order to achieve automatic reading of meters, Belan et al. [4] used a method combining
radial projection with the Bresenham algorithm to identify the position of the pointer in the
instrument panel, thereby obtaining the meter reading. Liu et al. [5] proposed a machine
vision-based an automatic meter reading method that used a region-growing algorithm
to locate the center of the dial, and extracted the pointer through contour fitting; it can
automatically read instruments with evenly or unevenly distributed scale lines, and has
good accuracy. Fang et al. [6] used the SIFT algorithm to match the instrument dial area,
and then used algorithms such as the Hough transform to further process the instrument
pointer, calculating the deflection angle of the pointer to achieve automatic reading of the
pointer-type instrument. Huang et al. [7] proposed an instrument detection algorithm for
multiple instrument types, and a single-camera visual pointer reconstruction algorithm
to accurately read the scale of the pointer-type instrument. Gao et al. [8] extracted the
connected components of the pointer by analyzing the contour of the instrument, and
proposed using the support vector machine and histogram gradient method to recognize
the numbers on the instrument panel. They then used Newton interpolation linear rela-
tionships to determine pointer errors and achieved an automatic reading of the instrument.
Ma et al. [9] proposed a method based on symmetric binarization thresholds to segment
the pointer region, and an improved random sample consistency algorithm to identify
the pointer, which had high adaptability to background interference and pointer shadow
issues in complex environments. The research on automatic reading of pointer-type instru-
ments has gradually matured both domestically and internationally, with strong robustness
against factors such as lighting and background interference, but most algorithms still have
poor robustness and accuracy.

In recent years, with the development of computer technology and artificial intelli-
gence [10,11], automatic meter reading based on deep learning has been widely developed.
Currently, most meter reading methods based on deep learning technology are imple-
mented based on object detection methods [12], and deep neural networks have become the
main method for object detection. The task of object detection is to find the regions of inter-
est in an image and determine their position, size, and category information. Existing deep
learning detection methods can be mainly divided into two categories. One category is the
two-stage detection model represented by R-CNN [13], SPP-NET [14], Faster R-CNN [15],
and Mask R-CNN [16]. These models have high accuracy but slow detection speed. The
other category is the one-stage detection model represented by the YOLO series [17] and
SSD [18], which is based on regression. These models have faster computation speeds
but lower detection accuracy. In 2016, Redmon et al. proposed the YOLOv1 [17] model,
which for the first time regressed the problem of object localization and classification as
a whole. The model divided the image into S × S grids and predicted two candidate
boxes of different sizes on each grid, and then used non-maximum suppression (NMS) to
eliminate duplicates and obtain the final prediction boxes. Although YOLOv1 had a fast
detection speed, its detection performance was poor due to the small number and fixed size
of predicted boxes on each grid. In 2017, Redmon et al. proposed the YOLOv2 [19] model,
which retained the idea of grid division in YOLOv1, and introduced the Anchor concept
from Faster R-CNN, greatly increasing the detection accuracy of the model. However,
the scale of Anchor in YOLOv2 was relatively single, and its detection performance for
multi-scale targets was not very good. In 2018, Redmon et al. [20] proposed the YOLOv3
model, which introduced the feature pyramid and achieved multi-scale object prediction. In
2020, Bochkovskiy et al. proposed the YOLOv4 [21] model, which combined the idea of the
cross-stage local network and improved the main network, achieving a dual improvement
in detection accuracy and speed. In 2020, the Ultralytics team proposed the YOLOv5 [22]
model, which has four versions of different sizes, from small to large: YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. The YOLOv5 models of different sizes have similar structures,
and only control the network layers and the number of input and output channels of each
layer through two parameters, depth and width, to obtain four models of different sizes.
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The entire YOLOv5 network can be divided into an input end, a backbone network, a Neck
network, and a prediction end. The backbone network is used to extract features, the Neck
network is used to fuse features, and the prediction end regresses the predicted results
based on the input features. Although YOLOv5 has not proposed a novel model system
for the YOLO series, it is a culmination of many optimization strategies and training tech-
niques, achieving the highest performance of YOLO series of object detection algorithms,
and providing a very convenient model training and deployment scheme.

Deep learning is a popular topic in computer vision [23], and studies have investigated
recognition reading algorithms for pointer meter. For example, Liu et al. [24] used Faster
R-CNN to locate the meter position and employed Hough transform for pointer detection
and reading. Similarly, Wang et al. [25] used Faster-RCNN to detect the target meter panel
area and proposed a Poisson fusion method to expand the dataset. They used image pro-
cessing methods for preprocessing and Hough transform for pointer centerline detection.
Wu et al. [26] proposed an automatic reading system based on computer vision, address-
ing issues of poor robustness, high training costs, inadequate compensation correction,
and low accuracy. They designed a meter image skew correction algorithm using binary
masks and improved Mask-RCNN for different types of pointer meters. Zou et al. [27]
used Mask-RCNN for pointer segmentation and achieved high-precision meter reading
recognition. Li et al. [28] presented a dial reading algorithm for inspection robots that
solved problems of uneven image illumination, complex backgrounds, and interference
through techniques like image enhancement, circle detection, pointer detection, and auto-
matic reading. However, most of these algorithms are based on the Faster-RCNN algorithm.
YOLOv5 has several advantages over Faster R-CNN. For instance, YOLOv5 has a faster
detection speed due to its new network structure, which can process input images more effi-
ciently. Moreover, YOLOv5 has a simpler network structure, making it easier to implement
and use. Additionally, YOLOv5 can run directly on a single GPU, while Faster R-CNN
requires multiple GPUs to achieve high-speed detection. Furthermore, YOLOv5 has higher
detection accuracy on some public datasets than Faster R-CNN, and supports multiple
input sizes to adapt to different image sizes. In terms of model deployment, YOLOv5
has smaller model files and can be deployed on low-power devices more easily, while
Faster R-CNN requires more custom code for deployment, which may increase deployment
difficulty and time.

In engineering applications of object detection, single-stage object detection models
are more widely used than two-stage models due to their high real-time requirements.
Among them, the YOLO series of models have become the most user-friendly object detec-
tion models with high accuracy, fast speed, and ease of deployment through continuous
development [21]. However, the YOLOv5 model still has shortcomings in detecting small
objects. The first reason for the poor detection of small objects by the YOLOv5 model is
that the sample size of small objects is small, and the down-sampling factor of the YOLOv5
model is relatively large, making it difficult for deeper feature maps to learn the feature
information of small objects. The second reason is that the Generalized Intersection over
Union (GIoU) [29] loss function used by YOLOv5 for small object detection is slow and un-
stable in convergence. The third reason is that the YOLOv5 model uses the nearest-neighbor
interpolation method for up-sampling, which requires manually designed up-sampling
parameters and is difficult to obtain optimal up-sampling parameters.

In this paper, a new pointer automatic meter reading model, named YOLOv5-MR,
is proposed and combined with a new method of fitting the dial outer circle to improve
the accuracy of meter reading. Compared with the original YOLOv5 model, YOLOv5-MR
adds detection to the C2 feature layer, which can extract more target features, especially
when improving the detection of small objects. In order to solve the problem of edge
length error amplification in the convergence process of the model, this paper uses the
Efficient Intersection over Union (EIoU) [30] loss function to improve the original GIoU
loss function, which makes the model convergence more stable. Meanwhile, in order
to learn better up-sampling parameters, this paper adopts the transposed convolution
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method instead of the fixed nearest neighbor interpolation method. Finally, this paper
proposes a new method to fit the outer circle of the dial to calculate the meter readings
using the circular angle algorithm. After experimental validation, the model performs
well in small object detection, while the introduced penalty term helps to avoid erroneous
length amplification, thus achieving faster and better model convergence. In addition, the
proposed method of fitting the dial outer circle outperforms existing object detection-based
meter reading methods in terms of accuracy, speed and robustness. We also present a new
dataset for lightning arrester meter reading named MR-Meter.

The paper is organized as follows. Section 2 presents related work in the field of
automatic meter reading. Section 3 describes the proposed YOLOv5-MR model, including
the improvement of the original YOLOv5 model and a new method for fitting the dial
outer circle. Section 4 presents the experimental results and analysis. Finally, Section 5
discusses the advantages of the model proposed in this paper over other models. Section 6
summarizes the paper and discusses future work.

2. Related Works
2.1. Object Detection

Deep object detection models can be categorized into two types: two-stage detectors
and one-stage detectors. Faster R-CNN [15] is a classic two-stage deep learning model that
uses a Region Proposal Network (RPN) to propose candidate object regions and performs
classification and refinement on these proposals. However, for small objects like watch
dials, it is difficult to match the size of the candidate regions with the size of the objects,
leading to inaccurate detection results.

One-stage detectors, YOLO [17,19–21] and SSD [18], are based on single-stage detec-
tion, and YOLO is simpler and easier to train and adjust, compared to SSD. To improve the
detection and recognition rates of YOLOv2 [19], YOLOv3 [20] also introduces a concept
called multi-scale prediction, where the model predicts objects at three different scales,
allowing it to detect small objects more accurately. YOLOv4 [21] builds upon the success of
previous YOLO versions and introduces various improvements such as a new backbone
network, a better neck network, and a new loss function. These improvements led to
state-of-the-art performance on the COCO dataset. YOLOv5 [22], on the other hand, is a
completely new architecture that uses a novel approach to object detection.

2.2. YOLOv5 Network Architecture

In the YOLOv5 model, the Neck network is responsible for feature enhancement by
processing the features extracted from the backbone network to improve the accuracy of
predictions. The original Feature Pyramid Network (FPN) structure used in YOLOv5’s Neck
network employs a top-down feature fusion method to address the multi-scale variation
problem in object detection, which has been widely used in many models. However, if only
the FPN structure is used to fuse contextual information, communication between upper-
level and lower-level information cannot be achieved. Therefore, the YOLOv5 model adds
a Path Aggregation Network (PAN) structure on top of the FPN to introduce a bottom-up
information flow, which fully integrates the top-down and bottom-up information flows
to enhance the detection ability of the network. This results in the PANet network, which
has been shown to improve performance in object detection tasks. The PANet network
structure is shown in Figure 1:

The bottom-up structure enhances the information transfer between different feature
maps by fusing shallow features with rich position information to deeper features. This
method accurately preserves spatial information and effectively improves the detection
capability of the network for large and medium-sized objects. As shown in Figure 2, in the
YOLOv5 model, the image is first divided into S × S grids, and the center coordinates of
each grid are denoted as Cx and Cy, and the width and height are denoted as tw and th,
respectively. In each grid, the corresponding predicted values for the center coordinates
(σ(tx), σ(ty)) and relative width tw and height th are output, and the final predicted box
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(corresponding to the orange solid line) is obtained based on the actual position, width,
and height of the grid. The dashed box in Figure 2 represents the prior box, where pw and
ph are the width and height of the prior box. For example, in the grid located at the second
row and second column in Figure 2, the center point position (bx, by) and width (bw) and
height (bh) of the predicted box are obtained based on Equation (1).

Figure 1. PANet architecture.

bx = 2× σ(tx)− 0.5 + cx
by = 2× σ

(
ty
)
− 0.5 + cy

bw = pw(σ(tw)× 2)2

bh = ph(σ(th)× 2)2

(1)

Figure 2. Illustration of the predicted bounding box.

The final values used in the calculation of the loss function include the width, height,
and center point position of the predicted box, the confidence score of the predicted box,
and the classification information. The confidence score of the predicted box refers to the
Intersection over Union (IoU) between the predicted box and the annotated box. Generally,
predicted boxes with IoU > 0.7 are considered positive examples, meaning successfully
predicted targets, while those with IoU < 0.3 are considered negative examples, meaning
background. Ignoring other predicted boxes, the loss function is calculated using positive
and negative examples, while attempting to maintain a balance between the numbers of
positive and negative examples. The classification information refers to the probability that
the predicted box contains a target of a certain category. The IoU is shown in Equation (2).
The values used in the computation of the loss function for object detection include the
width, height, and center point position of the predicted box, the confidence score of the
predicted box, and the classification information. The confidence score of the predicted
box is defined as the IoU between the predicted box and the ground truth box. Generally,
a predicted box with an IoU greater than 0.7 is considered a positive example, meaning
that the target object has been successfully detected. Objects with an IoU less than 0.3 are
considered negative examples, representing the background. The loss function is calculated
using only positive and negative examples while striving to maintain a balance between
the two classes. The classification information refers to the probability that the predicted
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box contains an object of a certain category. The IoU is defined as shown in Equation (2),
where Box1 represents the predicted box and Box2 represents the ground truth box.

IoU =
Box1 ∩ Box2

Box1 ∪ Box2
(2)

The YOLOv5 model’s loss function consists of three components: classification loss,
localization loss, and object confidence loss. YOLOv5 employs the GIoU [29] as the bound-
ing box regression loss function. The GIoU method overcomes the shortcomings of IoU
while fully utilizing its advantages. Let A be the predicted box and B be the ground truth
box, and let Ac represent the minimum convex hull containing both A and B. The GIoU
loss function is calculated as shown in Equation (3):

GIoU = IoU− Ac −U
Ac

(3)

During the training phase, binary cross-entropy (BCE) loss is used as the classification
loss. Therefore, the complete loss function consists of three components: bounding box
regression loss (first term), object confidence prediction loss (second and third terms), and
class prediction loss (fourth term). The loss function is formulated as shown in Equation (4):

Loss(obj) = GloUloss

+
S×S
∑

i=0

B
∑

j=0
1obj

ij [Ci log(Ci) + (1−Ci) log(1−Ci)]

+
S×S
∑

i=0

B
∑

j=0
1obj

ij [Ci log(Ci) + (1−Ci) log(1−Ci)]

−
S×S
∑

i=0

B
∑

j=0
1noobj

ij [Ci log(Ci) + (1−Ci) log(1−Ci)]

−
S×S
∑

i=0

B
∑

j=0
1noobj

ij [Ci log(Ci) + (1−Ci) log(1−Ci)]

(4)

In Equation (4), S is the grid scaling factor, B is the number of predicted boxes per grid
cell, C is the total number of classes, p is the class probability, and xi, yi, wi, hi represent
the center point coordinates, width, and height of the predicted box in the ith grid cell. The
weight coefficient for the bounding box coordinates is denoted as λcoord, and the penalty
coefficient for the objectness prediction is denoted as λnoobj.

In order to solve low precision and large error of the current meter reading, we
present a novel pointer-type automatic meter reading model based on YOLOv5, which
aims to address the significant challenges of low accuracy and large errors in current object
detection-based meter reading methods.

3. YOLOv5-MR Network Architecture
3.1. Multi-Scale Feature Detection

To improve the detection ability of the model for small targets and detect more target
features, this paper proposes a new object detection model, YOLOv5-MR. The overall
structure of the YOLOv5-MR model is shown in Figure 3. The model is divided into the
input layer, feature extraction layer, feature fusion layer, and detection head. To enable
YOLOv5 to detect more small target features, we add the C2 target detection layer to detect
more shallow features. At the same time, a set of custom anchors are used on the C2 target
detection layer to better converge and fit small targets in the dataset. Secondly, the EIoU
loss function is used to make the model converge more stably and solve the problem of
error side length enlargement that may exist during the convergence process. Finally, the
paper uses transpose convolution to learn better up-sampling parameters.
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Figure 3. YOLOv5-MR network structure.

In the field of computer vision, detecting small objects has long been a challenge in
object detection, aiming to accurately detect objects with very few visual features (objects
with a size of 32 pixels × 32 pixels or smaller) in an image. In the deep feature extraction
process of neural networks based on the basic unit of CNN, the information on the feature
map decreases as the network deepens, through continuous convolution and pooling
operations. For example, Faster R-CNN use VGG16 as the backbone network, after the last
convolution operation, the height and width of the feature map become one-sixteenth of the
original image. Therefore, with continuous convolution, the information of small objects
on the feature map is constantly decreasing, which leads to the failure to detect some small
objects, and subsequently, the failure in classification and bounding box regression.

After continuous convolution and pooling operations, the information on the feature
map is constantly decreasing. In Figure 3, the C2 feature layer contains more object
information than the C3 feature layer. Therefore, this paper adds detection on the C2 feature
layer, which contains more feature information. In the original YOLOv5 algorithm, YOLOv5
uses the FPN original model, which only has three detection layers and corresponds to three
sets of initialized Anchor values. When the input image size is 640 × 640, the detection
layer size corresponding to C3 is 80 × 80, which can be used to detect objects larger than
8 × 8; the detection layer size corresponding to C4 is 40 × 40, which can be used to detect
objects larger than 16 × 16; the detection layer size corresponding to C5 is 20 × 20, which
can be used to detect objects larger than 32 × 32. To improve the model’s ability to detect
small objects; after the M3 layer, the feature map continues to be up-sampled and processed
to further expand the feature map. At the same time, the obtained feature map with a
size of 160 × 160 is concatenated with the C2 feature layer in the backbone network for
feature fusion, in order to obtain a larger feature map for small object detection. Therefore,
this paper adds the P2 detection layer in the feature fusion part, using four feature layers
(P2 P3 P4 P5) for detection.

The original YOLOv5 detection model uses default anchor boxes designed for the
COCO dataset, which generate nine anchors of different scales and aspect ratios to detect
small objects on large feature maps. The sizes of the anchors are (10 13 16 30 33 23),
(30 61 62 45 59 119) and (116 90 156 198 373 326).

However, the anchor sizes in this set are designed based on the object sizes in the
COCO dataset and are not suitable for the MR-Meter dataset used in this paper. The
default anchor sizes in the network cannot converge well to fit small objects in the dataset.
Therefore, in consideration of the size characteristics of the meter objects in the MR-Meter
dataset, a new set of anchors with sizes of (5, 6, 8, 14, 15, 11) (smaller than the default
settings) was added to the network to detect small objects in the meter. During feature
extraction, larger feature maps contain more information about small objects. Thus, smaller
values are typically assigned to anchor sizes in larger feature maps, while larger values
are assigned to anchor sizes in smaller feature maps to detect larger objects. Additionally,
non-maximum suppression is used to eliminate redundant candidate regions. The new
small-size anchors are used in the newly added large-scale object detection layer C2 in
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Figure 3 to detect small objects in the C2 feature map. Therefore, during training, four sets
of 12 anchors are used, located in the C2, C3, C4, and C5 object detection layers, with sizes
of: (5 6 8 14 15 11), (10 13 16 30 33 23), (30 61 62 45 59 119) and (116 90 156 198 373 326).

3.2. Loss Function

The YOLOv5 model adopts the GIoU loss function [29] for bounding box regression.
Although the GIoU loss function addresses the gradient vanishing problem of the IoU
loss function, it is unstable and converges slowly. Therefore, this paper use the EIoU loss
function [30] for bounding box regression.

The EIoU loss function is an improvement upon the Complete Intersection over Union
(CIoU) loss function [29], which itself is an improvement upon GIoU. CIoU is defined by
Equation (5):

LCIoU = 1− IoU +
p2(b, bgt)

c2 + αV (5)

In Equation (5), c is the diagonal length of the box enclosing the two bounding
boxes, b and bgt represent the centers of the predicted and ground-truth bounding boxes
respectively, p(.) represents the Euclidean distance between the centers of the predicted
and ground-truth boxes, and α is a weight coefficient. V is defined by Equation (6):

V =
4
π2

(
arctan

wgt

hgt − arctan
w
h

)2

(6)

V
w

=
8
π2

(
arctan

wgt

hgt − arctan
w
h

)
h

w2 + h2 (7)

v
h
= − 8

π2

(
arctan

wgt

hgt − arctan
w
h

)
h

w2 + h2 (8)

There are two problems with CIoU. Firstly, CIoU uses the relative proportion of width
and height instead of their actual values. According to the definition of v, if the predicted
width and height satisfy w = kwgt, h = khgt∣∣kεR+ , then the penalty term added in CIoU
for the relative proportion will not be effective. Secondly, from Equations (7) and (8), we
can derive that v

w = − h
w

v
h , indicating that the gradients v

w and v
h for width and height

have opposite signs. This opposite sign poses a problem during the training process. When
one value of width or height increases, the other value must decrease, i.e., the two values
cannot increase or decrease together, which affects the convergence speed of the model.
As shown in Figure 4, GIoU uses the closure of the area minus the union of the area as
a penalty term, which leads to the problem of taking a detour to first expand the union
area and then optimize IoU, as shown in the first row of Figure 4. Additionally, in CIoU,
the width and height cannot increase or decrease simultaneously. This is demonstrated
in the second row of Figure 4. From the Figure 4, it can be seen that EIoU has the best
convergence effect.

Anchor is a bounding box whose width and height are both larger than the object
to be detected, but it still amplifies the width of the predicted box during optimization.
Compared to the two loss functions above, EIoU has a faster convergence speed. Based
on this phenomenon, EIoU proposes a loss function that directly penalizes the predicted
results of w and h, that is, Equation (9):

LEIoU = 1− IOU +
p2(b, bgt)

C2 +
p2(w, wgt)

C2
w

+
p2(h, hgt)

C2
h

(9)

In Equation (9), C is the diagonal length of the box surrounding the two bounding
boxes, Cw represents the width of the bounding box, Ch is the height of the bounding box,
b and bgt, respectively, represent the center of the prediction bounding box and the ground
live bounding box, w and wgt, respectively, represent the width of the prediction bounding
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box and the width of the real bounding box, h and hgt, respectively, represent the height of
the prediction bounding box and the height of the real bounding box, and p (.) represents
the Euclidean distance between the centers of the prediction bounding box and the ground
live bounding box.

Figure 4. The convergence of the three loss functions of GIoU, CIoU, EIoU at the same anchor
point and ground truth, where yellow box represents Ground Truth, black box represents the initial
position. The first row represents the convergence process of GIoU, the second row represents the
CIoU convergence process, and the third row represents the convergence process of EIoU. The pink
box, the brown box and the green box represent the convergence process of the three prediction box
from the 10th iteration to the 150th iteration, respectly.

3.3. Transposed Convolution

In the process of using neural networks, it is often necessary to use up-sampling to
increase the resolution of low-resolution images. Up-sampling methods include nearest-
neighbor interpolation [31], bilinear interpolation [32], and bi-cubic interpolation [33].
These up-sampling methods are based on prior knowledge and have fixed and non-
learnable rules, which are not ideal in many scenarios. Therefore, we introduce transposed
convolution [34] to learn better up-sampling parameters. Compared with traditional up-
sampling methods, the up-sampling method of transposed convolution is not a preset
interpolation method, but like standard convolution, it has learnable parameters and can
obtain the optimal up-sampling method through model learning. The operation of standard
convolution is to multiply the elements in the convolution kernel with the corresponding
elements in the input matrix pixel by pixel and sum them up. Then, the convolution kernel
slides on the input matrix in units of stride until all positions of the input matrix are tra-
versed. Assuming that the input is a 4 × 4 matrix, a 3 × 3 standard convolution is used for
calculation, and padding = 0 and stride = 1. The final output result is a 2× 2 matrix. Let x be
the 4 × 4 input matrix, y be the 2 × 2 output matrix, and C be the 3 × 3 convolution kernel,
then the standard convolution process is Cx = y. The process of standard convolution is
shown in (a) of Figure 5. Figure 5b shows the transposed convolution schematic.

The main purpose of transpose convolution [34] is to perform up-sampling. Transpose
convolution is not the inverse operation of convolution, and it can only restore the size
of the feature map to its original size, but the data is different from the original. Trans-
pose convolution does not increase the receptive field size, it only learns the content of a
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feature point and then maps it to the convolution kernel. Therefore, the receptive field of
all points on the convolution kernel remains unchanged, and adding multiple layers of
convolution behind it can expand the receptive field range. Using transpose convolution
for up-sampling in the model can automatically learn better up-sampling parameters and
achieve higher accuracy. Therefore, in the feature extraction part of the YOLOv5-MR model,
transpose convolution is used to improve the up-sampling ability.

Figure 5. Schematic diagram of (a) ordinary convolution and (b) transposed convolution.

3.4. Recognition and Reading of Dial Numbers

The final scale value of the dial needs to be calculated using the coordinates of the
pointer, the center point of the dial, and the coordinates of six scale targets. Firstly, the
YOLOv5-MR model is trained to detect eight types of targets, including the pointer, the
center point of the dial, and six scale values (0, 2, 4, 6, 8, 10). After training, the model
is used to locate the corresponding candidate regions in the original image, as shown
in Figure 6.

Figure 6. The recognition effect of the YOLOv5-MR model. Predicted-Reading represents the
predicted reading, and True Reading represents the actual reading. In the rectangular box in the
center of the index dial, the green number 2 represents the scale value 2, the yellow number 0 and
4 represents the scale value 0 and 4, the purple number 6 represents the scale value 6, the black
number 8 represents the scale value 8, and the red number 10 represents the scale value 10. The
purple center represents the predicted dial center, and the black 000. . . 0 represents the true center of
the dial.
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The YOLOv5-MR model obtains the center points of the scale C(Cx, Cy), the pointer
R(Rx, Ry), and the center point of the scale Ni (Nix, Niy). However, the predicted center
points are not the center of the circle but the center of an ellipse. Directly calculating using
Equations (6)–(10) would result in large errors, so it is necessary to fit the circumscribed
circle of the ellipse. The schematic diagram of fitting the minimum circumscribed circle of
the elliptical dial is shown in Figure 7.

Figure 7. Schematic diagram of the smallest circumscribed circle fitted to an ellipse.

In Figure 7, C(Cx, Cy) represents the center point of the ellipse-shaped dial predicted
by the YOLOv5-MR rotation object detection model, while R(rx, ry) represents the center
of the predicted pointer. P(Cx, Cy) is a point with the same horizontal coordinate as the
center of the dial and the same vertical coordinate as the center of the pointer. O(Ox, Oy)
is the center of the finally predicted circumscribed circle. Since the YOLOv5-MR rotation
object detection model is used, the rotation angle of the pointer can be directly predicted
by the model and denoted as θi. According to the principle of equal opposite angles, it
is known that θ1 = θ2 and θ3 = 90− θ2. The length of line RP is denoted as lx = Cx − rx,
and lPO = lRP is obtained by tanθ = lRP. Finally, the coordinates of the center of the
circumscribed circle are Ox = Oy and Oy = ry+lPO. When calculating the reading value
based on the predicted center point position, pointer center point position, and dial scale
position information, it is necessary to check whether the detection box is complete. The
conditions for calculating the reading result are: (1) center point; (2) pointer; and (3) at least
two scale marks. If these conditions are not satisfied, the dial scale prediction cannot be
performed normally.

The process for calculating the angle between the pointer and each scale on the dial
is shown in Figure 8, where 0, 2, 4, 6, 8, and 10 denote the dial scales, (xc, yc) represents
the center of the minimum enclosing circle, (x1, y1) represents the center of the pointer,
and (x2, y2) represents the coordinates of the 0-scale. The angle between the pointer and
each scale, denoted by θi (I = 1,2. . .6), is obtained by Equation (10). This angle calculation
method calculates the angle required for the pointer to rotate counterclockwise or clockwise
from (x1, y1)to the current scale with (xc, yc) as the rotation center. Counterclockwise
angles are negative, and clockwise angles are positive. θ ∈ (−180, 180) forms an angle
vector V = [θ1 θ2 θ3 θ4 θ5 θ6].

The mathematical principle for calculating the angle between two vectors based on
their coordinates is as follows: Let m and n be two non-zero vectors, and let <m,n> denote
the angle between them. Then, the cosine of <m,n> is given by cos < m, n ≥ m.n

|m||n| . If the
vectors are represented by their coordinates and the dot product operation is used, then we
can obtain:

m = (x1, y1, z1), n = (x2, y2, z2) (10)
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m.n = (x1x2 + y1y2 + z1z2) (11)

|m| =
√

x2
1 + y2

1 + z2
1 (12)

|n| =
√

x2
2 + y2

2 + z2
2 (13)

Figure 8. Calculates the angle between the individual tick marks of the pointer.

By substituting Equations (10)–(13) into Equation (14), the cosine value of the angle
between the two vectors can be obtained, and thus the degree of the vector angle can
be obtained.

cos < m, n >=
(x1x2 + y1y2 + z1z2)√

x2
1 + y2

1 + z2
1 ×

√
x2

2 + y2
2 + z2

2

(14)

Setting z = 0 in Equation (14), it yields a two-dimensional plane vector, as shown in
Equation (15):

cos < m, n >=
(x1x2 + y1y2)√

x2
1 + y2

1 ×
√

x2
2 + y2

2

(15)

The range of the angle between two vectors is θ ∈ [0,π]. If the scale to be read is
located on the left side of the pointer, it is rotated counterclockwise, and the angle value is
negative. The larger the negative value, the closer the scale is to the pointer. Similarly, if
the scale to be read is on the right side of the pointer, it is rotated clockwise, and the angle
value is positive. The smaller the positive value, the closer the scale is to the pointer. After
obtaining the angles between each scale and the pointer, the smallest positive angle θi and
the largest negative angle θj are determined. Based on the proportions of these two angles
in the entire angle (360 degrees) of the circle, the scale value that the pointer points to is
determined. The proposed method directly uses the recognized pointer coordinates, scale
coordinates, and fitted center point coordinates for calculation, which is simpler and more
convenient than the method proposed by Zou et al. [27], which first extracts the pointer
from the image using Mask R-CNN, and then uses the Hough transform to fit the pointer
line and obtain the pointer rotation angle.

4. Experimental and Results Analysis
4.1. Recognition and Reading of Dial Numbers

In this paper, the hardware environment used to conduct the experiments in this paper
consisted of an NVIDIA GTX3090 GPU, an Intel(R) Core (TM) i7 CPU with a clock speed
of 2.3~4.6 GHz, and 32 GB of RAM. The algorithms were implemented using Pytorch 3.6,
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Python 3.9, and cuda 10.0, and the experiments were conducted on an ubuntu 18.4 operat-
ing system.

All models were trained, validated, and tested under the same hyper-parameters. The
hyper-parameters are set as shown in Table 1. The evaluation of the performance of all
detections is based on the IOU (Intersection over Union) between the predicted and ground
truth bounding boxes. A predicted bounding box is considered successful if its IoU is
greater than 0.5. In object detection, both precision and recall need to be considered when
evaluating the performance of a network model. The mAP is generally used to evaluate the
performance of network models in object detection. The precision and recall are calculated
by the Formulas (16) and (17), respectively. The parameter values presented in Table 1 are
dimensionless and do not have specific units of measurement.

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

Table 1. Parameter settings.

Parameter Names Parameter Values

Momentum 0.937
Weight_decay 0.0005

Batch_size 4
Learning_rate 0.01

Epochs 600

In the context of object detection, TP refers to the number of true positive detections,
FP refers to the number of false positive detections, and FN refers to the number of false
negative detections. Average Precision (AP) is defined as the average precision at different
recall levels, and is commonly used to evaluate the detection performance of a specific
class. mAP is the mean of AP across all object classes, and is commonly used to evaluate
the overall performance of a detection model. The calculation of mAP can be expressed by
Equation (18).

mAP =
∑n

i=1 APi

n
(18)

The APi represents the detection accuracy of a certain class, and n is the number
of classes.

4.2. Dataset

As there is no publicly available dataset for lightning arrester meter reading, this paper
presents a new dataset named MR-Meter, which consists of 2000 lightning arrester images
and 14,000 annotated targets. The images were mainly collected from a well-known power
station in the region and were uniformly resized to 640 × 640. The dataset was annotated
in the VOC2007 format, and the annotation includes the rd_pointer, which refers to the
position of the pointer, the Center refers to the center of the pointer, and the positions
of the zero, two, four, six, eight, and ten scales. During annotation, efforts were made
to ensure that the center of the annotation box is on the scale as much as possible. The
training and testing sets were randomly sampled at a ratio of 7:3, with 1400 images for
training and 600 images for testing. All annotation information, including location and
class information, was recorded in xml format.

In order to obtain better prior knowledge of the dial targets, this paper uses the K-
means algorithm to generate eight prior boxes on the MR-Meter dataset. The clustering
results are shown in Figure 9, where (a) represents clustering the target sizes in the dataset,
(b) represents clustering the target center positions in the dataset, and (c) represents the
statistics of the number of labels in the dataset. From Figure 9, it can be seen that many
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points are clustered in the lower left corner, and many target sizes are smaller than 0.04,
indicating that there are many small targets in the dial dataset.

Figure 9. Setting the cluster center to 8 for k-means clustering.

4.3. Results of the YOLOv5-MR Reading Model

This section employs comparative experiments to verify the effectiveness of the
YOLOv5-MR model, using the average error δ as the evaluation metric, as shown in
Equation (19):

δ =
∑i=1

n
|αi−Ai|

Ai

n
(19)

where n denotes the number of experimental groups, ai represents the predicted value
of the model, and Ai represents the manual reading. We used 10 sets of data, and the
recognition results are shown in Table 2.

Table 2. The average error comparison of YOLOv5-MR and other object detection models.

Model Average Error δ

YOLOv3 0.05
YOLOv3-SPP 0.048

YOLOv5s 0.046
YOLOv5m 0.028

YOLOv5-MR 0.022

According to the data in Table 2, it can be seen that YOLOv5-MR can effectively
improve the detection performance of small targets in the dataset, and has strong conver-
gence ability. Therefore, the prediction performance of YOLOv5-MR model has a smaller
error compared to YOLO series object detection models. The final recognition results of
YOLOv5-MR are shown in Figure 10.

Figure 10. The first row represents the original graph, and the second row represents the YOLOv5-MR
recognition results. Predicted-Reading represents the final reading result of the YOLOv5-MR model,
and True Reading represents the actual reading. In the rectangular box in the center of the index dial



Sensors 2023, 23, 6644 15 of 19

of the second row, the green number 2 represents the scale value 2, the yellow number 0 and
4 represents the scale value 0 and 4, the purple number 6 represents the scale value 6, the black
number 8 represents the scale value 8, and the red number 10 represents the scale value 10. The
purple center represents the predicted dial center, and the black 000. . . 0 represents the true center of
the dial.

4.4. Experimental Results

To compare the performance of our YOLOv5-MR model with the YOLOv5 model,
we conducted experiments using the same dataset and parameter settings. We plotted
the loss curves of the two models based on the saved log files during training, as shown
in Figure 11. Each image from left to right represents the Box_Loss, Obj_Loss, Cls_Loss,
Ang_Loss, and Total_Loss, respectively. From the Total_Loss curves, we can see that the
YOLOv5-MR model converges faster, more stably, and with a smaller loss value than the
YOLOv5 model. This indicates that the EIoU loss function, which directly penalizes the
predicted box’s aspect ratio, can effectively avoid the problem of enlarging the aspect ratio
of incorrectly predicted boxes in the GIoU loss function, thus improving the convergence
ability of the network. Furthermore, our YOLOv5-MR model adds the detection of the C2
feature layer, which contains more object information, and sets a group of smaller Anchors
based on the target size characteristics of the MR-Meter dataset to speed up the convergence
speed of predicted boxes for small targets, improving the model’s detection ability for small
targets. Finally, the YOLOv5-MR model can learn better up-sampling parameters through
transposed convolution, which helps the model converge faster and more stably.

Figure 11. Loss comparison chart.

4.5. Ablation Studies

To evaluate the effects of multiscale feature detection, EIoU loss function, and trans-
posed convolution on object detection performance under the same experimental condi-
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tions, ablation experiments were conducted. The Ultralytics 5.0 version of the YOLOv5m
model was used as the baseline model. The input image resolution was set to 640 × 640,
and the model was trained for 300 epochs. The results are shown in Table 3. The second row
of Table 3 shows that after introducing multiscale feature detection, the average precision
increased by 1.2%, but the computation speed decreased. The third row of Table 3 shows
that after using the EIoU loss function, the average precision increased by 1.8%, and the
speed did not decrease. The fourth row of Table 3 shows that after replacing the near-
est neighbor interpolation with transposed convolution, the average precision decreased
by 0.3%. Due to unreasonable hyper-parameter settings, such as kernel size, stride, and
padding of the transposed convolutional layer, adjustments need to be made based on
the MR-Meter dataset. By incorporating these three improvements into the YOLOv5-MR
model, the average precision improved by 3.0%, and the detection performance of small
targets was significantly improved.

Table 3. Ablation experiments.

Model Recall (%) mAP (%) GFLOPS (s) Weights (MB)

YOLOv5m 75.2 76.4 53.8 44.8
YOLOv5m + Multi-scale feature detection 76.2 77.6 94.6 49.0

YOLOv5m + EIoU Loss 76.6 78.2 53.8 44.8
YOLOv5m + Transposed Convolution 74.8 76.1 53.9 44.8

YOLOv5-MR 78.2 79.7 94.9 49.1

4.6. Comparative Experiment

In this section, we compared the performance of our proposed YOLOv5-MR model
against several state-of-the-art object detection models, including Ultralytics5.0 version of
YOLOv3 [20], YOLOv3-spp [35], and YOLOv5 [22]. The models were trained and validated
using the MR-Meter dataset, and the comparison was conducted in terms of Recall, mAP,
GFLOPS, and Weights, as presented in Table 4. It can be observed from Table 4 that our
proposed YOLOv5-MR model achieved significantly higher mAP accuracy compared to
YOLOv3, YOLOv3-spp, YOLOv5s, and YOLOv5m models.

Table 4. Comparison of different object detection models.

Model Recall (%) mAP (%) GFLOPS (s) Weights (MB)

YOLOv3 74.6 75.0 158.1 125.4
YOLOv3-SPP 74.5 75.9 159.0 127.0

YOLOv5s 63.9 60.8 15.9 13.9
YOLOv5m 75.2 76.4 53.8 44.8
YOLOv7s 71.6 69.5 17.3 57
YOLOv8s 72.4 68.4 19.3 58

YOLOv5-MR 78.2 79.7 94.9 49.1

Although the GFLOPS of our proposed model is lower than that of YOLOv5s and
YOLOv5m models, it still satisfies the requirements of real-time and accuracy. Our YOLOv5-
MR model introduced multi-scale feature detection and detected the C2 feature layer with
more object feature information to improve the extraction ability of small object features.
Furthermore, we employed a better EIoU loss function that directly penalizes the side
length to solve the problem of enlarging the wrong side length during the bounding
box convergence process, which greatly improved the convergence speed of the model.
Additionally, using transpose convolution in the backbone network can better learn the
parameters of up-sampling and improve the accuracy of the model. This paper compares
and analyzes the YOLOv5-MR algorithm with YOLOv7 [36] and YOLOv8 [37], and our
findings indicate that our proposed algorithm exhibits excellent performance in terms
of accuracy and recall. Specifically, compared to YOLOv7 and YOLOv8, our algorithm
exhibits higher mAP and recall.



Sensors 2023, 23, 6644 17 of 19

5. Disscussion

In this paper, we propose a new automated meter reading model, YOLOv5-MR. The
YOLOv5-MR model has added a small object detection layer to predict small objects on the
C2 feature layer. In accordance with the characteristics of the MR-Meter dataset, a new set
of anchors has been added to detect small objects, greatly improving the model’s ability to
detect small objects. The YOLOv5-MR model directly uses the length of the predicted box
as the penalty term, effectively avoiding the problem of amplifying the wrong length in the
original IOU loss function, making the model converge quickly and well. Experimental
results demonstrate that the YOLOv5-MR model outperforms the original YOLOv5 model
in small object detection, and the new external circle fitting method is more accurate, faster,
and more robust than current target-based meter reading methods. Compared to other
recent meter reading studies, the YOLOv5-MR model achieves better results in accuracy,
speed, and robustness. Compared to the recent single-stage YOLO network, our proposed
algorithm shows excellent performance in accuracy and recall. Specifically, compared to
YOLOv7 [36] and YOLOv8 [37], our algorithm shows higher mAP and recall rate.

6. Conclusions

This paper proposes an automatic meter reading model of dial indicator based on
YOLOv5-MR, aiming at the problems of low accuracy and large error of current target-
detection-based meter reading methods. The algorithm has a high accuracy and robustness.
Through improving the multi-scale, Loss function and the way of using the target, the
detection ability of the model is improved, and finally a new dial fitting circle algorithm is
proposed. Accurate reading of the dial scale has been achieved. In the next phase, we intend
to utilize a more lightweight backbone network and apply a model pruning algorithm to
further reduce the weight of our model, thereby improving its overall efficiency. This will
enable the model to operate with less computational resources and make it more suitable
for use in resource-constrained settings.

Future research can explore how to apply this method to other fields while further
improving the model’s performance and accuracy. The YOLOv5-MR model can be applied
to fields such as substation automatic inspection robots and autonomous driving to improve
their performance and accuracy.
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