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Abstract: The mining rope shovel (MRS) is one of the core pieces of equipment for open-pit mining,
and is currently moving towards intelligent and unmanned transformation, replacing traditional
manual operations with intelligent mining. Aiming at the demand for online planning of an intelligent
shovel excavation trajectory, an MRS excavating trajectory planning method based on material surface
perception is proposed here. First, point cloud data of the material stacking surface are obtained
through laser radar to perceive the excavation environment and these point cloud data are horizontally
calibrated and filtered to reconstruct the surface morphology of the material surface to provide a
material surface model for calculation of the mining volume in the subsequent trajectory planning.
Second, kinematics and dynamics analysis of the MRS excavation device are carried out using the
Product of Exponentials (PoE) and Lagrange equation, providing a theoretical basis for calculating the
excavation energy consumption in trajectory planning. Then, the trajectory model of the bucket tooth
tip is established by the method of sixth-order polynomial interpolation. The unit mass excavation
energy consumption and unit mass excavation time are taken as the objective function, and the motor
performance and the geometric size of the MRS are taken as constraints. The grey wolf optimizer is
used for iterative optimization to realize efficient and energy-saving excavation trajectory planning
of the MRS. Finally, trajectory planning is carried out for material surfaces with four different shapes
(typical, convex, concave, and convex–concave). The results of experimental validation show that
the actual hoist and crowd forces are essentially consistent with the planned hoist and crowd forces
in terms of the peak value and trend variations, verifying the accuracy of the calculation model
and confirming that the full bucket rate and various parameters meet the constraints. Therefore,
the trajectory planning method based on material surface perception are feasible for application to
different excavation conditions.

Keywords: mining rope shovel (MRS); scaled model; material surface perception; trajectory planning;
grey wolf optimizer

1. Introduction

A mining rope shovel (MRS) is a kind of large mechanical excavator which is widely
used in open-cast mining operation; it is one of the core pieces of equipment used in
opencast mining [1]. Currently, MRS excavation work is mainly completed through manual
operation of four key actions, namely, excavating, rotation, unloading, and returning,
which are performed in a loop. However, this method has low digging efficiency, high
energy consumption, and a high failure rate, which seriously hinders the application and
development of MRS [2,3]. Therefore, there is an urgent need to replace traditional manual
operation with intelligent excavation [4] in order to ensure that the MRS can autonomously
and efficiently achieve the expected goals in any environment, as well as to establish an
intelligent operation mode to ensure efficient, safe, and energy-saving excavation.
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The reasonable planning of excavation trajectory is the basis of intelligent MRS. Cur-
rently, domestic and foreign scholars have conducted a great deal of research on excavation
trajectory planning for excavators. Based on the theory of soil damage, Awuah-Offei et al. [5]
constructed a digging resistance model of an electric shovel, analyzed the kinematics and
dynamics of the digging process, and optimized the crowd and hoist speed with the unit
energy consumption of digging materials as the objective function. Wang X et al. [6,7]
proposed a point-to-point (PTP) trajectory planning method with the goal of minimizing
the energy consumption per unit volume of mining, and designed an intelligent mining
system accordingly. Wei B et al. [8] proposed a new three-degrees-of-freedom parallel
excavating mechanism with higher flexibility for the MRS, and optimized the size and
excavation trajectory of the new mechanism with the unit excavation energy consumption
as the objective function. Bi Q et al. [9] used a multi-target genetic algorithm to optimize
the excavation trajectory in stages for electric shovel automation and verified the effec-
tiveness of the optimization method through field tests. Meng Y et al. [10] established a
force model of the bucket during the excavation process based on Coulomb theory, opti-
mized the excavation trajectory using the optimal energy consumption, and verified it by
EDEM simulation. Zhang T et al. [11] proposed a multi-target trajectory planning frame-
work for an MRS based on a pseudo-spectral method, which was used for autonomous
excavation of the MRS and verified by simulation and experiment. Fan J et al. [12,13]
proposed a new electro-hydraulic hybrid MRS and optimized its hoist and crowd speeds
with the goal of minimizing energy consumption per unit excavation mass. It can be seen
from the above research that most domestic and foreign scholars have focused on theoreti-
cal analysis for trajectory planning of excavators, and have not combined environmental
perception with trajectory optimization. Moreover, the existing research often takes unit ex-
cavation energy consumption as the objective function, meaning that the optimization goal is
relatively singular.

To address the aforementioned issues, this article takes a 1/30 scale model of the China-
made WK series MRS as its research object and proposes an MRS excavating trajectory
planning method based on material surface perception. In this method, the point cloud
data of the material stacking surface is obtained by lidar in order to perceive the mining
environment. The energy consumption per unit mass and the mining time per unit mass are
taken as the optimization objectives, and the full bucket rate, speed, and force are taken as
constraints. The gray wolf algorithm is used to plan the excavating trajectory. The first part
of this paper introduces the research background, the second part analyzes the kinematics
and dynamics of the MRS working device, and the third part introduces the method of
geometric modeling the material surface using 3D point cloud data. In the fourth part, the
trajectory planning model is established and the trajectory planning of the material surface
is carried out under various working conditions. In the fifth part, a scale model testbed
of the MRS is established and the trajectory planning results are verified by experiments.
Finally, the full text is summarized and the paper is concluded.

2. Kinematic and Dynamic Analysis
2.1. Construction of the MRS Scale Model

The study focused on a certain model of WK series MRS made in China. On the basis
of the model and based on similarity theory [14,15], an MRS scale model was established at
a ratio of 1/30 and an experimental platform for the MRS prototype model was built, as
shown in Figure 1.

The structural parameters corresponding to the front-end working device of the MRS
scale model are defined by the diagram shown in Figure 2 [16]. The specific numerical
values of each parameter and the geometric size of the dipper can be found in Table 1 [16].
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Figure 1. MRS model and MRS scale model: (a) MRS model and its main structure (① A frame, ② 

bucket handle, ③ boom point sheave, ④ boom, ⑤ saddle block, ⑥ bucket); (b) MRS scale model. 
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Table 1. Structural parameter values [16]. 

Parameter (Unit) Value Parameter (Unit) Value 

R1 (mm) 58 H (mm) 247.3 

R2 (mm) 20 α (°) 40 

lAB (mm) 450 β (°) 45 

lOB (mm) 160 δ1 (°) 14.8 

lOC (mm) 186.5 δ2 (°) 20.43 

lOD (mm) 255.8 Dipper (mm) 120 × 110 × 100 

2.2. Kinematic Analysis of the MRS Excavating Device 

The digging cycle of the MRS consists of four stages: digging, rotating, unloading, 

and returning. This article mainly carries out trajectory planning for its excavating pro-

cess. During the excavation process, the upper carriage rotation and the crawler walking 

mechanism are not working, and the boom remains stationary. Therefore, the MRS can be 

simplified to a 1R-1P system, that is, the rotary movement of the bucket handle around 

the 1  direction and the translational movement along the 2  direction, as shown in Fig-

ure 3a. 

Figure 3a,b shows the general pose and initial pose in the process of the MRS exca-

vation, where 1l  and 2l  are the horizontal distance and perpendicular distance from the 

rotary center of saddle block to the coordinate origin, respectively; 3l  is the distance from 

the saddle block rotary center to the bucket tooth tip in the perpendicular direction of the 

Figure 1. MRS model and MRS scale model: (a) MRS model and its main structure ( 1© A frame, 2©
bucket handle, 3© boom point sheave, 4© boom, 5© saddle block, 6© bucket); (b) MRS scale model.
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Figure 2. Structural parameters of the MRS scale model [16].

Table 1. Structural parameter values [16].

Parameter (Unit) Value Parameter (Unit) Value

R1 (mm) 58 H (mm) 247.3
R2 (mm) 20 α (◦) 40
lAB (mm) 450 β (◦) 45
lOB (mm) 160 δ1 (◦) 14.8
lOC (mm) 186.5 δ2 (◦) 20.43
lOD (mm) 255.8 Dipper (mm) 120 × 110 × 100

2.2. Kinematic Analysis of the MRS Excavating Device

The digging cycle of the MRS consists of four stages: digging, rotating, unloading,
and returning. This article mainly carries out trajectory planning for its excavating pro-
cess. During the excavation process, the upper carriage rotation and the crawler walking
mechanism are not working, and the boom remains stationary. Therefore, the MRS can be
simplified to a 1R-1P system, that is, the rotary movement of the bucket handle around the
ξ1 direction and the translational movement along the ξ2 direction, as shown in Figure 3a.

Figure 3a,b shows the general pose and initial pose in the process of the MRS exca-
vation, where l1 and l2 are the horizontal distance and perpendicular distance from the
rotary center of saddle block to the coordinate origin, respectively; l3 is the distance from
the saddle block rotary center to the bucket tooth tip in the perpendicular direction of the
bucket handle; θ1 is the rotary angle of the bucket handle; d2 is the elongation of the bucket
handle; and d20 is the initial value of the bucket handle extension length.
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Figure 3. Establishment of coordinate system for the MRS scale model: (a) general pose and
(b) initial pose.

In the article, the kinematics modeling and analysis of the working device of the
front end of the shovel is carried out using the product of exponentials (PoE) [17–19]. The
construction of the working device is shown in the above figure. First, the fixed base
coordinate system {B} and the end bucket tooth tip coordinate system {W} are established
as shown. Second, the following process variables need to be introduced: TBW(q) denotes
the pose transformation matrix of {W} relative to {B}; TBW(0) denotes the initial pose
transformation matrix of {W} relative to {B}; and ξ1 and ξ2 represent the joint spinors of
the rotating joint and prismatic joint in {B}, respectively. Therefore, the kinematic model
from the base coordinate system {B} of the working device to the end bucket tooth tip
coordinate system {W} can be expressed as [16].

TBW(q) = e[ξ̂1]θ1 e[ξ̂2]d2 TBW(0) (1)

In the above equation, the expression for the rotational axis spinor is ξ = (ω, ν)T ,
where ν = r×ω, r denotes an arbitrary point on the rotary axis, and ω is the unit vector
representing the direction of the rotary axis. The spinor expression for the translational axis
is ξ = (0, ν)T , while the kinematic matrix of the rotary axis is [16].

e[ξ̂]θ =

[
e[ω̂]θ

(
I − e[ω̂]θ

)
(ω̂× v) + ω̂ω̂Tvθ

01×3 1

]
, ω̂ 6= 0

e[ξ̂]θ =

[
I v̂θ
0 1

]
, ω̂ = 0

(2)

Therefore, the specific expression of TBW(q) can be obtained by calculation as fol-
lows [16]:

TBW(q)= e[ξ̂1]θ1 e[ξ̂2]d2 TBW(0) =


cos θ1 − sin θ1 0 l3 cos θ1 + l1+d2 sin θ1 + d20 sin θ1
sin θ1 cos θ1 0 l3 sin θ1 + l2 − d2 cos θ1 − d20 cos θ1

0 0 1 0
0 0 0 1

 (3)

where l1, l2, and l3 are fixed structural parameters. Therefore, by measuring the values
of θ1 and d2 we can obtain the pose of the bucket tooth tip relative to the body, thereby
completing the solution of the forward kinematics problem.
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The solution to the inverse kinematics problem for the MRS scaled model is to calculate
the joint variables θ1 and d2 based on the pose of the bucket tooth tip. Thus, assuming that
the bucket pose transform matrix T is known [16],

T =


a11 a12 a13 bx
a21 a22 a23 by
a31 a32 a33 bz
0 0 0 1

 (4)

a =

a11 a12 a13
a21 a22 a23
a31 a32 a33

, b =

bx
by
bz

 (5)

In the above formula, a is the rotary transformation matrix and b is the translational
transformation matrix. By comparing (3) and (4), we obtained [16]

bx = l3 cos θ1 + l1 + d2 sin θ1 + d20 sin θ1
by = l3 sin θ1 + l2 − d2 cos θ1 − d20 cos θ1

(6)

By solving Equation (6), we can obtain the expressions for θ1 and d2 [16]:

θ1 = arctan
(
(by − l2)l3 + (bx − l1)(d2 + d20)

(bx − l1)l3 − (by − l2)(d2 + d20)

)
(θ1 6= 90◦) (7)

d2 =
√
(bx − l1)

2 + (by − l2)
2 − l32 − d20 (8)

Therefore, when the pose transformation matrix from the machine body to bucket tooth
tip is known, it is possible to calculate the values of θ1 and d2 from Formulas (7) and (8) to
solve the inverse kinematics problem.

2.3. Dynamic Analysis

As can be seen from the previous kinematics analysis, the working mechanism of
the MRS can be simplified to a 1R-1P system, which includes the rotary movement of the
bucket handle and bucket around the saddle block rotary center as well as the translational
motion along the direction of the bucket handle. Therefore, this article defines the angle θ1
between the bucket handle and the vertical direction and the elongation d of the bucket
handle as generalized coordinates, as shown in Figure 4.
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In considering the structural characteristics of the working device of the MRS and
providing a better calculation model for the subsequent trajectory optimization, this paper
adopts the Lagrangian equation to dynamically model the working device of the MRS.



Sensors 2023, 23, 6653 6 of 21

The Lagrangian equation of the working device at the front end of the MRS is obtained
as follows: 

d
dt

(
∂L

∂
.
d

)
− ∂L

∂d
= Fd

d
dt

(
∂L

∂
.
θ

)
− ∂L

∂θ
= Fθ

(9)

In the above equation, L represents the Lagrangian function, which is defined as the
difference between the total kinetic energy K and total potential energy P in the relative
inertial system, that is, L = K− P, while Fd is the resulting force acting on the bucket along
the bucket handle direction and Fθ is the resulting force along the tangential direction of
the bucket tooth tip. Based on the two generalized coordinates, the dynamic model of the
digging device at the front end of the MRS can be obtained as follows:

[
md

(
d2 − Ldd + 1

3 L2
d

)
+ mc

(
d2 + Lcd + 1

3 L2
c

)] ..
θ1 + [2d(md + mc)− (mdLd −mcLc)]

.
θ1

.
d

+
[
mdg sin θ1

(
d− Ld

2

)
+ mcg sin θ1

(
d + Ld

2

)]
= Ftid sin θ2 − Fτ(Lc + d)

(md + mc)
..
d−

[
(md + mc)d− 1

2 (mdLd −mcLc)
] .
θ1

2 = Ftui − Fn − Fti cos θ2

+(md + mc)g cos θ1

(10)

where md is the mass of the bucket handle; Ld is the length of the bucket handle; mc is
the mass of the bucket, including the mass of the excavated materials and the weight of
the bucket itself; Lc is the length of the bucket; Fti is the hoist force of the wire rope; θ2
is the angle between the wire rope and the bucket handle direction; Fτ is the tangential
digging resistance; Ftui represents the crowd force of the bucket handle; and Fn represents
the normal digging resistance.

3. Material Surface Scanning Based on Laser Radar

To achieve rapid modeling of the material stack surfaces, in this paper we propose a
method for using three-dimensional point clouds to rapidly construct a geometric model
of the material surfaces. The 3D laser radar emits laser beams towards the material stack
and obtains a large amount of point cloud data by calculating the reflection time and
propagation speed of the laser. Then, the ordered point cloud is obtained by a combined
filtering process to complete the modeling of the material surface.

The original point cloud data of the material stack, as shown in Figure 5, indicate
that there is a large amount of noise in the point cloud due to the influence of scanning
speed and the surrounding environment, making it difficult to generate an accurate three-
dimensional surface model. Therefore, the combined filtering method shown in Figure 6,
which was jointly developed based on C++ and the PCL point cloud library, was used to
reconstruct the surface.
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3.1. Horizontal Calibration of Point Cloud Data

Due to the uneven ground of the mine, the point cloud data have an error in the roll
angle α and pitch angle β relative to the horizontal plane. Therefore, horizontal calibration
was performed before removing the ground points. In the horizontal plane, the Cartesian
coordinate system was established perpendicular to the direction of the MRS crawler as the
x-axis, parallel to the direction of the crawler as the y-axis, and vertical to the direction of
the horizontal plane as the z-axis.

The coordinate transformation matrix is shown below:

T =

 cos β 0 − sin β
sin α · sin β cos α sin α · cos β
cos α · sin β − sin α cos α · cos β

 (11)

The formula for correcting the original point cloud data is as follows:x
y
z

 = T

xs
ys
zs

 (12)

In the formula, xs, ys, and zs are the original point cloud data.

3.2. Point Cloud Data Combination Filtering Process

In this paper, the ground noise was filtered by straight-through filtering. Ground
points were removed by setting a height threshold. If the z value of a point in the point
cloud data was less than the maximum height, it was considered a ground point and
discarded. If it was greater than or equal to the maximum height, it was considered a
surface point of the material and was retained. This allows for fast removal of outliers,
achieving the goal of rough processing in the first step. Additionally, a filter method
combining radius and statistical filtering was used to remove surface and outlier noise. The
formula used for calculating the Euclidean distance between any two points is as follows:

d(pi, pj) =
√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 ≤ Ks (13)

In the equation, x, y, and z represent the three-dimensional coordinates of the point
clouds. Radius filtering is used to calculate the Euclidean distance between a point cloud
and other point clouds in its spatial neighborhood, and the point cloud is removed
or retained by comparing the distance between the two along with the set threshold
distance Ks.

Based on this, the mean Euclidean distance di of all point cloud neighborhoods can
be calculated according to the number of point clouds in the neighborhood and the global
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neighborhood mean d can be calculated based on the total number of point clouds. Then,
the standard deviation of the point cloud neighborhood is calculated as follows:

δ =
√

V =

√√√√√ 1
n− 1

 n

∑
i=0

di
2 − 1

n

(
n

∑
i=0

di

)2
 (14)

where V represents the variance of the neighborhood and n represents the total num-
ber of point clouds. Assuming that the mean Euclidean distance di of the point cloud
neighborhood is normally distributed, we have

di ∼ N
(

d, δ2
)

(15)

By setting a filtering threshold factor α, the statistical filtering algorithm removes the
point clouds as noise points when the following formula holds:

‖di − d‖ > αδ (16)

After filtering, the number of point cloud data items is on the order of millions, making
it difficult to store and process the data. Therefore, the uniform voxel algorithm was used
for “down-sampling” of the point cloud data for compression using the following formula
to calculate the minimum length of the voxel grid:

lx = xmax − xmin
ly = ymax − ymin
lz = zmax − zmin

(17)

where xmax, ymax, and zmax represent the maximum values of the three-dimensional coordi-
nates of the point cloud and xmin, ymin, and zmin represent the minimum values. Then, we
can use the following formula to calculate the voxel grid size:

Dx = lx/r
Dy = ly/r
Dz = lz/r

(18)

where r is the length of the set voxel small grid. The centroid point within the voxel grid is
used to replace all points within the grid, achieving the purpose of down-sampling.

After point cloud sampling, the improved bilateral filtering based on normality is
used to smooth the surface of the point cloud to eliminate sharp noise caused by individual
point cloud fluctuations, improve the quality of the point cloud, and complete surface
reconstruction. This algorithm considers the distance between points and neighboring
points and uses the distance along the normal direction as a judgment basis. For a certain
point P in the point cloud, the unit normal vector of point P is first calculated using the
points within the neighborhood range of point P, then the position of P is updated using
the following formula:

P′ = P + δP · np (19)

where P′ is the updated position of the point, nP represents the normal vector of point P,
and δP represents the bilateral filtering factor, as shown in the following equation:

δP =
∑ q∈Nr(P)

wd(‖q− P‖)wn(|< nP, q− P >|) < nP, q− P >

∑ q∈Nr(P)
wd(‖q− P‖)wn(|< nP, q− P >|) (20)

In the above formula, Nr(P) represents the neighborhood of a point P, wd and wn are
given Gaussian weights, and q represents the points within the neighborhood P.
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Due to the fact that the shape of the material surface is often complex and variable,
and may not necessarily be an ideal 40-degree slope [20,21], this paper piled four different
shapes of material surfaces and scanned and filtered the material stacking surfaces under
different working conditions to obtain the material stacking surfaces model shown in
Figure 7. The color bars in the figure represent the vertical height of the material stacking
surface from 0–400 mm. The material properties of the material stacking surface are shown
in Table 2 below.
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Figure 7. Material stacking surfaces under different working conditions and their surface models:
(a) typical stacking surface; (b) concave stacking surface; (c) convex stacking surface; (d) convex–
concave stacking surface.

Table 2. Material properties of the material stacking surface.

Material Poisson’s Ratio Shear Modulus (MPa) Density (kg/m3)

Limestone 0.35 1.35 × 103 2540

To improve the efficiency of surface fitting [22,23], eight points with equal intervals
were selected in the X axial direction of the point cloud and another eight points with
equal intervals were selected in the Y axial direction. Surface fitting of the material stacking
surface was performed using 64 points, with the goodness-of-fit parameter R2 used to
constrain the fitting effect (R2 > 0.95). Finally, the mathematical expression of the material
surface in the {Oo} coordinate system was obtained:

z = f (x, y) (21)

4. Trajectory Planning Model Based on Grey Wolf Algorithm

Before establishing an optimization model, it is often necessary to determine the three
elements of optimization: optimization variables, objective functions, and constraints.
In this paper, information on the material stacking surface was obtained through laser
scanning and the material surface data were imported into the trajectory planning model.
The optimal excavation trajectory under the current operating conditions was obtained by
using the grey wolf algorithm to perform optimization calculations.
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4.1. Determination of Optimization Variables

In this paper, following the comparative experiments performed by Wang et al. [4],
trajectory planning was carried out by using the sixth-order polynomial interpolation
method and the excavation process of the MRS was divided into x direction and y di-
rection motion, as shown in Figure 8. The design variables were determined as x =
[ax0, ax1, ax2, ax3, ax4, ax5, ax6, ay0, ay1, ay2, ay3,ay4, ay5, ay6] and the excavation trajectory of
the MRS can be represented as{

gx(t) = ax6t6 + ax5t5 + ax4t4 + ax3t3 + ax2t2 + ax1t + ax0
gy(t) = ay6t6 + ay5t5 + ay4t4 + ay3t3 + ay2t2 + ay1t + ay0

(22)
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The intersection point of the material surface and the horizontal plane, which is the
initial position of the bucket tooth tip, was set as the excavation starting point (0,0). Here,
the termination position of the tooth tip at the end of the excavation is set to

(
gx, gy

)
and

the excavation termination time is td. To guarantee the smoothness of the MRS excavating
process, the velocities and accelerations of the starting and ending points were both set to 0,
that is: 

gx(0) = 0
gy(0) = 0
vx(0) = 0
vy(0) = 0
ax(0) = 0
ay(0) = 0



gx(td) = gx
gy(td) = gy
vx(td) = 0
vy(td) = 0
ax(td) = 0
ay(td) = 0

(23)

Therefore, based on the state parameters of the initial and end positions of the bucket
tooth tip, the coefficients of the sixth-order polynomial can be processed:

ax0 = 0
ax1 = 0
ax2 = 0

ax3 =
10gx

t3
d
− ax6t3

d

ax4 = −15gx

t4
d

+ 3ax6t2
d

ax5 =
6gx

t5
d
− 3ax6td



ay0 = 0
ay1 = 0
ay2 = 0

ay3 =
10gy

t3
d
− ay6t3

d

ax4 = −
15gy

t4
d

+ 3ay6t2
d

ax5 =
6gy

t5
d
− 3ay6td

(24)
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Therefore, the sixth-order polynomial only needs to determine the size of ax6, ay6, td, gx, gy
to obtain the excavation trajectory of the bucket tooth tip at any time, meaning that the vari-
ables to be optimized are x = [ax6, ay6, td, gx, gy].

4.2. Objective Function Determination

In this paper, the excavation energy consumption and excavation time are compre-
hensively considered in the excavation trajectory planning and the objective function of
trajectory planning is constructed by the unit mass excavation energy consumption and
unit mass excavation time of the MRS.

(1) Minimum unit mass excavation energy consumption target

Reducing the excavating energy consumption while meeting the excavating require-
ments is the main problem of MRS trajectory planning. The energy consumption of the
MRS excavating process is mostly the energy consumed by the crowd and hoist motors to
overcome the excavation resistance and the gravity of the bucket handle, bucket, and mate-
rial. Therefore, this paper takes the minimum unit mass excavating energy consumption as
the primary objective function of the excavation process; its mathematical expression is

f1(X) = min
∧
E = min


[∫ td

t0
vhFhdt +

∫ td
t0

vcFcdt
]

mdig

 (25)

Here,
∧
E represents the total energy consumption during excavation, vh represents

the hoist speed, Fh represents the hoist force, vc represents the crowd speed of the bucket
handle, Fc represents the crowd force, and mdig represents the quality of the excavated
material.

(2) Maximum excavating efficiency target

To improve the efficiency of MRS excavation, this article takes the time required to
excavate the quality of material per unit as another optimization objective. Obviously, the
less time it takes to excavate quality material per unit, the higher the excavation efficiency
of the MRS. The mathematical expression for this objective is

f2(X) = min(
tdig

mdig
) (26)

where tdig is the total excavation time.

(3) Total objective function

To simplify the calculation model used for trajectory planning, a weighted method is
adopted to combine the above two objective functions into one. In this way, multi-target
optimization is simplified into single-target optimization. According to the role of each
objective function in the actual excavating process, the index tolerance method was used to
confirm the weight coefficient from the variation range of each objective function, as shown
in Table 3. Finally, the weight coefficients of each objective function were set to k1 = 0.7
and k2 = 0.3. The overall objective function is as follows:

f (x) = k1 f1(X) + k2 f2(X) (27)

Table 3. The weighting coefficients of each objective function.

Objective Function Variation Range Tolerance Weight Coefficient Normalization

f1 [13, 15] 1 1.0000 0.6960

f2 [3.75, 8.33] 2.29 0.4367 0.3040
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4.3. Calculation of Excavation Volume

From the previous processing of point cloud data, we can obtain the expression of the
material surface in the {Oo} coordinate system as z = f (x, y). Assuming the optimized
excavation surface of the bucket is g(x, y), the excavation volume can be estimated through
double integration. The calculation method is shown in Figure 9. The integration domain
S is divided into k closed spaces ∆si; when ∆si is very small, a point (xi, yi) can be taken
randomly in ∆si, then the product of [ f (xi, yi)− g(xi, yi)] and ∆si can be used to calculate
the volume of each part. Finally, the volumes of all parts are summed to obtain the
excavation volume. The calculation formula is as follows:

V =
x

[ f (x, y)− g(x, y)]dxdy = lim
max|∆s|→0

k

∑
i=1

[ f (xi, yi)− g(xi, yi)]∆si (28)
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4.4. Determination of Constraint Conditions

In order to ensure the feasibility of the excavation trajectory, constraint conditions need
to be introduced into the MRS trajectory planning model, which can be mainly categorized
into excavation performance constraints, motor performance constraints, and geometric
dimension constraints, as follows.

(1) Constraint on bucket filling rate

To guarantee the efficiency of the MRS excavating process and to avoid overloading
or underloading during excavation, the variation range of the bucket filling rate is limited
to 90% to 110%, that is: {

c1 = 0.9−V/Vcd ≤ 0
c2 = V/Vcd − 1.1 ≤ 0

(29)

In the above equation, V represents the volume of the materials excavated by the
bucket and Vcd is the capacity of the bucket itself.

(2) Constraint on excavation time

To improve the excavating efficiency of the MRS, and based on the relevant literature
and actual working conditions, the time range for a single excavation operation of the MRS
is set to 9 s to 15 s [11,12], that is: {

c3 = 9− tdig ≤ 0
c4 = tdig − 15 ≤ 0

(30)

(3) Digging back angle constraint
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To guarantee the stability of the excavation process, the variation range of the digging
back angle is limited as follows: {

c5 = βmax − β ≤ 0
c6 = β− βmin ≤ 0

(31)

where βmax and βmin represent the upper and lower limits of the digging back angle,
respectively.

(4) Velocity constraint

The digging process of the MRS is mainly driven by the crowd and hoist motors.
Limited by the performance of the motors, the speed at any time must be less than the
maximum output speed of the motor. In the meantime, to ensure the stability of the
excavation, the crowd speed and hoist speed at any time should be greater than zero,
that is: 

c7 = −vh ≤ 0
c8 = vh − vhmax ≤ 0
c9 = −vc ≤ 0
c10 = vc − vcmax ≤ 0

(32)

In the above equation, vhmax and vcmax represent the maximum rotational speeds of
the hoist motor and crowd motor.

(5) Driving force and power constraints

To ensure that at any moment during the digging process, neither the crowd and hoist
forces nor the crowd and hoist power should exceed the rated value of the motors, that is:

c11 = Fh − Fhmax ≤ 0
c12 = Fc − Fcmax ≤ 0
c13 = Ph − Phmax ≤ 0
c14 = Pc − Pcmax ≤ 0

(33)

In the above equation, Fhmax and Fcmax represent the maximum driving forces of the
hoist motor and crowd motor, respectively, while Phmax and Pcmax are the respective rated
powers of the hoist and crowd motors.

(6) Geometric dimension constraints

The digging cycle of the MRS consists of four stages: digging, rotating, unloading and
returning. To guarantee the smooth progress of the subsequent rotating and unloading
processes, it is necessary to make sure that the bucket leaves the material surface when the
digging is finished and that the bottom of the bucket is higher than the height of the shovel
loader hopper, that is, {

c15 = Hdm − h ≤ 0
c16 = Hkk + Hcd − h ≤ 0

(34)

where h is the height of the bucket tooth tip, Hdm is the height when the bucket tooth tip
leaves the material surface, Hkk is the height of the shovel loader hopper, and Hcd is the
height from the bucket tooth tip to the bottom of the bucket.

The maximum stroke of the MRS crowd motion is limited by the size of the bucket
handle, while the hoist wire rope is limited by the top sheave of the boom, that is,{

c17 = d− Ldg ≤ 0
c18 = h− Htl ≤ 0

(35)

where d is the elongation of the bucket handle, Ldg is the length dimension of the bucket
handle, and Htl is the height of the top sheave of the boom.
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Therefore, the optimized design model is as follows:
x =

[
ax6, ay6, td, gx, gy

]
min f (x) = k1

( [∫ td
t0

vh Fhdt+
∫ td

t0
vc Fcdt

]
mdig

)
+ k2

tdig
mdig

ci ≤ 0(i = 1, 2, 3, · · · , 18)

(36)

4.5. Trajectory Planning Method Based on Grey Wolf Optimizer

The Grey Wolf Optimizer (GWO) is a swarm intelligence optimization algorithm
inspired by the social hierarchy and hunting behavior of wolves. It was proposed by
Australian scholar Mirjalili et al. [24] in 2014. The algorithm has the advantages of simple
structure, few parameters to be adjusted, easy implementation, good solution accuracy and
fast convergence speed.

The grey wolf algorithm first constructs the social hierarchy of a wolf pack. The fitness
of each individual in the population is calculated and the three wolves with the highest
fitness are designated as the α wolf, β wolf, and δ wolf, while the rest of the individuals
are labeled as ω wolves. The process of searching for prey (seeking the optimal solution)
is mainly achieved through the guidance of the α, β, and δ wolves. During the iterative
calculation process, the three wolves α β δ with the highest fitness in the current population
are preserved and the positions of other candidate wolves ω are continuously adjusted
based on the coordinates of these three wolves; hunting (optimization) is completed by
searching for prey, encircling prey, and attacking prey, and finally a set of optimal solutions
is obtained. The specific mathematical model is shown below:

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X
∣∣∣∣,→Dβ =

∣∣∣∣→C2·
→
Xβ −

→
X
∣∣∣∣,→Dδ =

∣∣∣∣→C3·
→
Xδ −

→
X
∣∣∣∣

→
X1 =

→
Xα −

→
A1·
→
Dα,

→
X2 =

→
Xβ −

→
A2·
→
Dβ,

→
X3 =

→
Xδ −

→
A3·
→
Dδ

→
X(t + 1) =

→
X1+

→
X2+

→
X3

3

(37)

Here,
→
Dα,

→
Dβ and

→
Dδ are the distance between the current candidate wolf and the

optimal solution (α, β, δ wolves);
→
Xα,

→
Xβ, and

→
Xδ denote the position vectors of the α, β, δ

wolves in the current grey wolf population;
→
X denotes the position vector of the candidate

wolf; t is the current iteration number;
→
A and

→
C are cooperativity coefficient vectors.

Figure 10 illustrates the position updating strategy of GWO in a two-dimensional space.
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Because the trajectory planning is for the intelligent operation mode service, it needs
to meet real-time requirements; thus, the initialization of the population is particularly
important. This article adopts the good point set method to obtain uniformly distributed
initial values and then calculates iteratively using the GWO, which improves the conver-
gence speed of the algorithm and can avoid its falling into local optima. Figure 11 shows
the grey wolf population generated by the good point set method and by the random
method in a three-dimensional search space. It can be seen from the figure that the initial
population generated by the random method cannot be uniformly distributed in the entire
search space and has strong randomness, making it easy for the algorithm to fall into local
optima. In contrast, the initial population generated by the good point set method can be
uniformly distributed in the entire search space, enriching the population diversity and
enhancing the global search capability of the algorithm. The improved GWO process is
shown in Figure 12.
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iterations tmax = 100. After trajectory planning, the trajectory planning results for different
excavation conditions are shown in Figures 13–16. The planned results indicate that the
trajectory planning method based on the grey wolf algorithm can be applied to different
excavation conditions.
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Figure 13. Typical material surface trajectory planning results: (a) excavation trajectory; (b) hoist and
crowd speeds; (c) hoist and crowd forces.
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Figure 16. Convex–concave material surface trajectory planning results: (a) excavation trajectory;
(b) hoist and crowd speeds; (c) hoist and crowd forces.

Figure 13a shows the optimal excavating trajectory under different excavation con-
ditions; the abscissa represents the displacement in the horizontal direction, the ordinate
represents the displacement in the vertical direction, the blue line represents the material
surface fitting curve, the red line represents the planned excavation trajectory, and the black
line represents the ideal 40◦ material surface. Figure 13b shows the crowd speed and hoist
speed for various material surface. Figure 13c shows the crowd force and hoist force for
various material surface. Figure 13 displays the planning results for a typical material sur-
face, while Figure 14 shows the planning result for a concave material surface. Compared
with the typical material surface, with the concave surface the hoist speed is significantly
reduced and the excavation trajectory is deeper. Figure 15 shows the planning results for
a convex material surface. Compared with the typical material surface, the crowd speed
decreases, the hoist speed increases, and the excavation trajectory is shallower. Finally,
Figure 16 shows the planning results for a convex–concave material surface. Compared
with the typical material surface, the crowd and hoist speed are reduced and the excavation
trajectory is between that of the typical material surface and the convex material surface.

Tables 4 and 5 show the optimization results obtained from trajectory planning under
different excavating conditions. It can be found that the shallower the excavation trajectory,
the less excavation time required; in addition, the convex–concave material surface requires
the least excavating time and energy consumption. All optimization variables satisfy the
constraint conditions, and the bucket fill factor meets the requirements; therefore, the
trajectory planning method based on the grey wolf algorithm is applicable to different
excavating conditions and has certain feasibility and reliability.

Table 4. Different material surface optimization variables.

Different Material Surface ax6 (10−7) ay6 (10−7) gx (m) gy (m) td (s)

Typical material surface −9.98 5.41 0.3489 0.3159 11.85
Concave material surface −17.05 9.73 0.3605 0.2943 11.81
Convex material surface −5.52 11.33 0.2413 0.2796 11.57

Convex-concave material surface −9.71 4.15 0.2825 0.2352 11.49

Table 5. Different material surface optimization results.

Different Material Surface f f 1 (J/kg) f 2 (s/kg) mdig (kg) Bucket Fill
Factor (%)

Typical material surface 13.76 17.19 5.771 2.053 99.72
Concave material surface 13.83 17.22 5.925 1.991 96.71
Convex material surface 13.87 17.51 5.367 2.156 104.7

Convex-concave material surface 12.57 15.55 5.625 2.045 99.29
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5. Experimental Verification

In this study, a scale model testbed of the MRS (as shown in Figure 17) was constructed
for excavation testing. The feasibility and credibility of the trajectory planning method
were then validated by comparing the planned and tested results.
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Figure 17. The scaled model testbed of the MRS.

The hoist and crowd movements of the digging device in the prototype were achieved
by individual motor driven systems. The motor control was implemented through an
upper computer, LabVIEW 2020 software, and a microcontroller. Dynamic torque sensors
were employed to measure the real-time crowd force of the bucket handle, tension sensors
to measure the real-time hoist force of the wire rope, and rotation encoders to measure the
extension of the bucket handle and the lifting distance of the wire rope. LabVIEW software
in cooperates with a data collector was used to realize the acquisition, storage, and display
of sensor measurement data. The installation position of the motors and sensors is shown
in Figure 18. The structure of the testbed system is shown in Figure 19.

To guarantee the credibility and stability of the test results, it is necessary to repeatedly
take the average of trajectory planning tests under different excavating conditions. The
data obtained from the torque and tensile sensors were processed using Matlab R2018a,
resulting in the curves of crowd force and hoist force over time.

Figure 20 compares the planned results and test results of the crowd and hoist forces
under different excavation conditions. Due to the flexibility of the hoist wire rope and the
resistance fluctuations during the excavation process, the test results are presented as an
obviously fluctuating curve. Compared with the planned results, it can be seen that the
values of the two are not much different and that the overall change trend is essentially the
same. At the same time, the excavating quality and excavating time of the planned and test
were compared to validate the credibility and feasibility of the trajectory planning method.
Relevant coefficients (R2) were introduced to describe the degree of match between the
planned and tested results, as shown in Table 6.
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Figure 20. Comparison of different material surface shape planning and test crowd and hoist
forces: (a) typical material surface hoist force; (b) typical material surface crowd force; (c) concave
material surface hoist force; (d) concave material surface crowd force; (e) convex material surface
hoist force; (f) convex material surface crowd force; (g) convex–concave material surface hoist force;
(h) convex–concave material surface crowd force.
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Table 6. Comparison between planned results and experimental results for various excavation conditions.

Different Material Surface

Excavating Quality/kg
Relative

Deviation/%

Digging Time/s
Relative

Deviation/%

Relevant
Coefficient (R2)

Planned
Results

Test
Results

Planned
Results

Test
Results

Hoist
Force

Crowd
Force

Typical material surface 2.053 2.086 1.58 11.85 11.81 0.34 0.9224 0.8861
Concave material surface 1.991 2.079 4.23 11.81 11.72 0.77 0.9103 0.8717
Convex material surface 2.156 2.245 3.96 11.57 11.49 0.70 0.9271 0.9049

Convex-concave material surface 2.045 2.174 5.93 11.49 11.43 0.52 0.9347 0.8531

As shown in the table, the relative deviations between the planned and tested excava-
tion quality under different excavation conditions are about 5%. The relative deviations
of the digging times are below 1%. Additionally, the R2 values for the planned and tested
results of the crowd force and the hoist force are greater than 0.85, indicating that the two
have a high degree of agreement. The test results show that the trajectory planning method
based on material stack surface perception has certain feasibility and reliability, that the
established dynamic model can more accurately predict the crowd and hoist force, and that
the planned results of various performance indicators are reliable.

6. Conclusions

(1) A laser radar was used to obtain the point cloud data of the material stack surface
in order to perceive the excavating environment, and the point cloud data were
horizontally calibrated and filtered to establish a prediction model of the material
stack surface. Furthermore, kinematic and dynamic analyses of the MRS excavation
device were conducted using the Product of Exponentials and Lagrange equation.

(2) A trajectory planning method for the MRS excavation based on material surface
perception and the Grey Wolf Algorithm was proposed, with the unit mass exca-
vation energy consumption and unit mass excavation time as the target functions
and the electric motor performance and MRS geometry size as constraints. Trajec-
tory planning was conducted on four different shapes (typical, concave, convex, and
convex–concave) of material stack surfaces.

(3) An MRS scale model testbed was constructed and used for experimental verification.
The test results show that the planned results for hoist force and crowd force were
generally consistent with the test results in terms of the values and change trend
under different excavation conditions and had R2 values greater than 0.85, validating
the feasibility and reliability of the proposed trajectory planning method.

This method can provide a theoretical basis for the intelligent and unmanned devel-
opment of excavating machinery such as electric shovels and excavators, and has certain
feasibility and applicability. In follow-up research, the initial pose of the MRS could be
incorporated into the trajectory planning scope. Meanwhile, the point cloud processing
and trajectory planning algorithm should be further improved and optimized in order
to reduce the optimization time and improve computational efficiency to better meet
practical needs.
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