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Abstract: In this study, a new method for determining the elastic constants of isotropic plates using
Lamb wave fundamental modes is presented. This method solves the inverse problem, where the
elastic constants (Young’s modulus and Poisson’s ratio) of the plate were estimated by measuring
the phase velocities of the Lamb wave using the Rayleigh–Lamb equations to find the solution and
determining the phase velocities of the A0 and S0 modes using a new method. The suitability of the
proposed method for determining the elastic constants was evaluated using simulated and experimen-
tal signals propagating on an aluminum plate. The theoretical modeling on the aluminum 7075-T6
plate shows that the proposed method allows the determination of the Poisson ratio with a relative
error not exceeding 2% and Young’s modulus with a relative error not exceeding 0.5%. The experi-
mental measurements of an aluminum plate of known thickness (2 mm) and density (2685 kg/m3)
confirmed the suitability of the proposed method for the measurements of elastic constants. In the
proposed method, the processing of ultrasonic signals can be performed in real-time, and the values
of the elastic constants can be obtained immediately after scanning the required distance.

Keywords: ultrasonic guided waves; material elastic constants identification; inverse problem; phase
velocity of the fundamental modes

1. Introduction

Modern engineering constructions use new types of materials with non-standard and
sometimes variable physical parameters. Therefore, determining the physical parameters
of such materials is relevant to modern production processes and the robotization of these
processes. Simple, inexpensive, fast-acting methods for determining these parameters are
being intensively developed for production processes [1–3].

One of the methods for solving this problem, which enables the determination of
the thickness, density, and elastic constants of plate-type materials, is the use of Lamb
waves [4]. The characteristics of the propagation of these waves are sensitive to changes in
the parameters of the material under investigation. The advantage of these waves is their
propagation over long distances on plates with minimal energy loss and low amplitude
attenuation. However, the determination of material parameters by Lamb waves is made
more complicated due to the multimodal propagation of these waves and the dispersion of
the signals [5]. Nevertheless, after properly choosing the excitation frequencies of the Lamb
waves and the appropriate propagating modes, the physical parameters of the investigated
plate can be determined by evaluating the signal propagation characteristics.

Lamb waves are used in studies investigating both isotropic and anisotropic plate
structures. In simpler isotropic and homogeneous plates, only longitudinal and shear
waves are present, which are characterized by their phase velocities, cL and cT. The Lamb
waves generated on the plate are a combination of these waves. The elastic constants of
the plate influence the phase velocities of these waves. By knowing the phase velocities of
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Lamb wave propagation, it was possible to estimate the elastic constants of the plate, i.e.,
an inverse problem was being solved. Recently, there have been many methods of solving
this problem.

Several directions can be distinguished in terms of the solutions to the inverse problem.
One such direction was the use of fundamental Lamb modes at low frequencies when
the product of the wave number k and the plate thickness d was kd << 1. In this case,
approximate analytical expressions are used to describe the interdependence of elastic
constants and phase velocity [6]. In [7], using laser-generated Lamb waves and the wavelet
transform method, the researchers evaluated the thickness and elastic properties of metal
foils with a thickness of less than 40 µm via the contact method. Another method [8] using
low-frequency multimode ultrasonic Lamb waves was developed to measure any of the
four acoustic parameters of thin elastic layers—thickness, density, shear, and longitudinal
wave velocity—with respect to the other three parameters. This method was applied to
the parameter measurements of thin aluminum layers, the thickness of which ranged
from 26 µm to 512 µm. Additionally, the work in [9] presents a method for measuring
the thickness of thin metal sheets with thicknesses ranging from 25 to 200 µm using
antisymmetric A0 Lamb mode propagation. The main problem with the presented work,
in this case, was that these methods could only determine the parameters of extremely
thin plates.

In measuring the parameters of thicker plates, methods involving comparing the re-
sults of theoretical modeling and experimental measurements and looking for the smallest
difference between these results have become widespread. The phase velocity of a plate
with a known density depends on Young’s modulus and Poisson’s ratio. Usually, these
parameters are determined by comparing the theoretically predicted Lamb wave dispersion
curves with the curves of experimental data [10–12]. One of the most common methods for
calculating theoretical dispersion curves for Lamb waves is the semi-analytic finite element
(SAFE) method. This algorithm calculates the dispersion curves of Lamb waves by solving
the dispersion wave equations using standard eigenvalue problem procedures [5]. The
inverse problem of determining the elastic constants of isotropic plates was solved in a
number of ways. The researchers in [13] describe an inverse technique based on the simplex
method to determine the elastic constants of isotropic plates. Lower-order symmetric and
antisymmetric modes of Lamb waves propagating along the plate in the signal frequency
range of 100–650 kHz were used in this study. The method for determining the distribution
of Young’s modulus in an isotropic plate based on velocity reconstruction tomography was
described [14]. Here, Young’s modulus was related to the dispersion relations of Lamb
modes. In solving the nonlinear inversion problem, velocity mapping was performed
using the full-waveform inversion (FWI) method. The research in [15] proposes an inverse
method to estimate the elastic constants of the material of the rails in use. The phase
velocities of the Lamb wave modes are measured experimentally, and the dispersion curves
are derived from them via SAFE numerical simulations. The elastic constants of the rails are
determined through an inversion procedure based on an improved genetic algorithm (GA).
To increase the speed and accuracy of the inverse procedure, particle swarm optimization
(PSO) was chosen [16]. Elastic constants are determined by finding the smallest absolute
percentage error between experimental and SAFE-calculated wave numbers. Experimental
wavenumbers are calculated using the pencil decomposition method of the matrix (MPDM).
In addition, the researchers in [17] propose an efficient modeling method-based identifica-
tion method of material constants combining spatial Fourier transform and multiple signal
classification (MUSIC) techniques. Only Young’s modulus was determined by this method.
The obtained results show that Young’s modulus of the investigated aluminum plate was
in very good agreement with that obtained using the traditional static testing of materials.
Moreover, ref. [18] described an optical technique for determining the elastic constants of
a material using maps of surface displacements obtained via pulsed TV holography. The
phase velocity of the longitudinal wave was measured using the pulse-echo method. The



Sensors 2023, 23, 6678 3 of 15

calculated Poisson’s ratio and Young’s modulus were obtained with an accuracy better
than 3% and 4%, respectively.

Numerical modeling methods are attractive because they can determine material pa-
rameters in complex geometries or anisotropic structures. However, their main advantage
is also their disadvantage—the preliminary parameters of the tested plate must be known.
Alternatively, a mismatch between experimental and simulated results can be obtained,
and the relevant model parameters can be adjusted to match the physics.

Another common method for solving the inverse problem was to use elastic formulas
and Lamb wave propagation functions to describe the propagation of signals in plates.
These formulas are used to plot the phase velocity or wavenumber dispersion curves of
Lamb waves. The inversion procedure uses various methods to recover the dispersion
curves from the experimental results, followed by a search for the minimum residual ratio
between the theoretical and experimental curves. The authors of [19] present a new elastic
isotropic plate parameter hybrid computational system for material identification (HCSMI).
Experimental dispersion curves and an artificial neural network (ANN) were used to
determine these parameters. This method reduced the “gap” between the approximate
experimental wavenumber curves and the theoretical dispersion curves obtained via direct
analysis. The research results obtained proved the high efficiency of the HCSMI system
for the identification of aluminum plate parameters. The inverse method was proposed
in [20], based on an improved particle swarm optimization (PSO) algorithm to determine
plate thickness and elastic constants. Numerical simulations and experimental studies have
confirmed that Young’s modulus, Poisson’s ratio, and plate thickness can be accurately
obtained from measured zero-order modal Lamb wave dispersion curves. The inversion
method based on genetic algorithms (GA) was developed in the work [21]. It was designed
for the wavenumber extraction of a single Lamb wave signal and the characterization of
the plate. The proposed method realizes the wavenumber extraction and calculation of the
plate parameters, avoiding overlapping Lamb wave modes and a low signal-to-noise ratio
(SNR). As shown in the analysis of the simulated and experimental signals, the deviation in
the wavenumber’s determination was about 1%, and the deviation in the plate parameters’
estimation was about 6%. A genetic algorithm was also used [22]. This method uses higher-
order modes excited by a linear transducer array, and the elastic constants are determined
using a comparison of theoretical and experimental wave numbers.

After analyzing the presented articles, the work’s goal was to create a simple and
effective method for measuring the elastic constants of isotropic plate materials. A contact
method was selected for exciting and receiving Lamb waves by scanning a certain plate
area. The separation of fundamental modes was used, and Rayleigh–Lamb equations
and the phase velocities of fundamental modes determined using a new method were
used to solve the inverse problem. The technique of proposed method has several distinct
advantages: (l) Only low-frequency fundamental Lamb wave modes are excited in the
isotropic plate; (2) it was sufficient to only know the thickness and density of the plate
in advance; (3) there was no need to calculate theoretical curves and compare them with
experimentally obtained phase velocities; and (4) the processing of ultrasonic signals was
performed in real-time, and values of elastic constants are obtained immediately after
scanning the required distance.

The proposed method was described in the following order: In Section 2 of the article,
the theoretical basis for determining the elastic constants was established by analyzing the
phase velocities of Lamb waves. In Section 3, the influence of parameters on the uncertainty
of the estimation of elastic constants was determined using simulated signals. The verifica-
tion of the proposed method using experimental signals from an aluminum plate was given
in Section 4. Section 5 presents the conclusions and looks at future research perspectives.
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2. Theoretical Analysis
2.1. Fundamentals of Lamb Wave Propagation

Propagation of guided Lamb waves in homogeneous and isotropic plates depends on
the elastic properties of the material (Young’s modulus, E, and Poisson’s ratio, ν), density (ρ),
thickness (d), and frequency (f ) of the guided wave. The propagation characteristics of these
waves, depending on the listed parameters, are described by the analytical Rayleigh–Lamb
equations [4]:
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2
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where k = ω/cp is the wavenumber, ω = 2πf is the angular frequency, and cp is the phase
velocity of the Lamb waves modes.

The variables p and q are related by the expressions:
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(
ω

cL

)2
− k2, q2 =

(
ω

cT

)2
− k2, (3)

where cL and cT are longitudinal and transverse wave velocities, respectively.
Any Lamb wave mode in a plate is a combination of longitudinal and transverse

waves influenced by the elastic constants of the plate:

cL =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
, cT =

√
E

2ρ(1 + ν)
. (4)

The above equations describe the dependence of the dispersion characteristics of Lamb
waves on the constants of the material. Meanwhile, the main parameters describing Lamb
wave propagation based on these formulas are the phase velocity cp and the frequency f.

Different modes of Lamb waves respond differently to changes in the material’s
properties. However, using these formulas causes problems with the appearance of higher
modes at higher frequencies. Then, at a fixed frequency, several phase velocity values
corresponding to several different modes are obtained. When solving the inverse problem
based on the phase velocity of Lamb waves, an unambiguous dependence between the
phase velocity and these parameters is necessary to determine the elastic constants of the
material. Therefore, for the solution of the inverse problem, a low frequency was chosen,
where only the fundamental modes—A0 and S0—exist.

2.2. Determination of Elastic Constants Based on the Phase Velocities

The presented analytical Equations (1)–(4) describe the dependences of the dispersion
curves of Lamb waves on the material parameters: Young’s modulus (E), Poisson’s ratio
(ν), density (ρ), and thickness (d). Alternative forms of the dispersion Equations (1) and (2)
are better suited for numerical simulations [5]: ΨSYM(E, ν, ρ, f , d) =
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(5)

where kA = ω/cpA is the A0 mode wavenumber, kS = ω/cpS is the S0 mode wavenumber,
and variables p and q with subscripts correspond to modes A0 and S0.

The numerically found roots of these functions ΨSYM and ΨASYM are (ω, cpA, cpS).
They can be calculated once we know the material parameters.
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When solving the inverse problem, we assume that we are experimentally measuring
the phase velocities of the A0 and S0 modes of the Lamb waves in the material. After that,
the unknown material parameters must be calculated. However, there is a problem in this
case—only two equations and four unknowns exist.

In experimental measurements, the thickness d of the material can be determined
using mechanical means or ultrasonic pulse-echo methods. The material density ρ was
either known in advance or measured by other methods. Therefore, in the selected inverse
problem, we chose to determine Young’s modulus E and Poisson’s ratio ν. To calculate
Young’s modulus and Poisson’s ratio, Equation (4) were used based on the velocities of
longitudinal cL and transverse cT waves:

E = 2c2
Tρ(1 + ν), ν =

2−
(

cL
cT

)2

2
(

1−
(

cL
cT

)2
) . (6)

The unknown elastic constants E and ν are found by finding the minimum of the
objective function. For this, we used the standard Matlab function fminsearch. fminsearch
uses the Nelder–Mead simplex algorithm [23] and finds the minimum of a multivariate
scalar function starting from an initial estimate.

2.3. Measurement of the A0 and S0 Modes’ Phase Velocities

A new and simple experimental algorithm for determining the group and phase
velocity of the A0 mode [24] based on signal filtering and zero-crossing estimation was
used for the experimental determination of the phase velocities of the A0 and S0 modes
of Lamb waves. In this method, the zero-crossing instances closest to the peaks of the
signal envelopes are captured, and phase and group velocities are calculated using these
time instances.

Zero-crossing instances concentrated in the environment of the signal envelopes’ peaks
are determined by filtering the signals with the filtering algorithm [25]. When filtering the
signals with different filters, a concentration of zero-crossing instances was observed on
the time axis in the environment of the signal envelope peak (Figure 1b).
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Figure 1. B-scan image of the simulated Lamb wave A0 mode in d = 1 mm thickness aluminum plate
at f ex = 300 kHz excitation frequency [24] (a) and signal filtered by five filters (color curves) at the
distances x1 = 20 mm (b).
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The concentration of zero-crossing instances in the time axis was determined by the
minimum time difference between these instances [24]:

t0
iM = arg

{
min

(
∑N−1

i=1

(
min

1<k<K

(
t0
ik − t0

(i+1)k

)))}
, (7)

where t0
iM represents the concentrated zero-crossing instances; M is the number of zero-

crossing instances in the i-th filter; k = 1, 2, . . ., K is the number of zero-crossing instances;
K is the total number of zero-crossing instances; and i = 1, 2, . . . N, N is the total number
of filters.

After performing these calculations, we obtained that the distance dependence of
zero-crossing instances in narrow ranges was linear, with jumps for the A0 mode and only
linear for the S0 mode (Figure 2a). A line drawn between two jumps for the A0 mode and a
straight line drawn for the S0 mode form cases of equal phases of the investigated signals.
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Figure 2. B-scan image of the simulated Lamb wave mode signals (color-coded) and calculated
zero-crossing instances (line) (a) and zero-crossing instances of the i-th filter in the narrow range (b).

Based on the zero-crossing instances of the same phase, the phase velocities of the A0
and S0 modes of the Lamb waves for each case of the filtered signal are calculated:

cpAi =
xi3 − xi2

t0
i6 − t0

i3
, (8)

cpSi =
xi4 − xi1

t0
i2 − t0

i1
, (9)

where cpAi and cpSi are the phase velocities of the A0 and S0 modes for the i-th filter, respectively.
The values of the phase velocities calculated by the algorithm described above are

shown in Figure 3. This figure shows the dispersion curves calculated for an aluminum
plate from the analytical expressions (Equations (1) and (2)) (lines). Meanwhile, the values
of the phase velocities calculated by the proposed method are shown by dots. A filter
packet of five filters (N = 5) was chosen for the calculations, and the excitation frequency
was f ex = 300 kHz. A detailed algorithm for selecting all parameters was presented in [24].
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Theoretical simulations using simulated signals [24] have shown that the proposed
method allows the calculation of the phase velocity with a mean relative error of less
than 0.7%.

3. Estimation of Elastic Constants Using Simulated Signals
3.1. Formation of Simulated Signals for Fundamental Modes

In order to evaluate the reliability of the proposed method, simulating signals propa-
gating in an aluminum plate 7075-T6 have been formed. The main parameters of this plate
are Young’s modulus E = 71.7 GPa, Poisson’s ratio ν = 0.33, and density ρ = 2710 kg/m3.
The excitation signal y(t) for the Lamb waves was a three-period harmonic signal with
a Gaussian envelope. Then, the Lamb wave signal u(x,t) excited in a plate of constant
thickness d at the propagation distance x was described by the following equation:

u(x, t) =
1

2π

∫ ∞

−∞
FT(y(t))e

−jω x
cp ejωtdω, (10)

where FT is the Fourier transform, t is the time, and j is the basic imaginary unit j =
√
−1.

Since the signal u(x,t) depends on the phase velocity, we can describe the signals at
specific distances and thus form a B-scan image after assuming the dependence of the
phase velocity change. Based on the dispersion curves of the A0 and S0 modes (Figure 3)
calculated using analytical expressions (Equation (5)), we formed B-scan images at a fixed
excitation frequency, f ex, shown in Figure 4. The amplitudes of all A0 and S0 mode signals
(uA(xr,tp) and uS(xr,tp)) that have traveled a distance xr are normalized to the maximum
amplitude of the first signal (uA(x1,tp) or uS(x1,tp)). In experimental studies, the amplitudes
of the S0 mode signals are usually lower than the A0 mode signals. Therefore, for the
normalization of the signal amplitudes, a coefficient for the correction LS of the S0 mode
signal amplitudes has been introduced:

LS =
max

(
uS
(
x1, tp

))
max

(
uA
(

x1, tp
)) , (11)

where uA(xr,tp) and uS(xr,tp) are the A0 and S0 mode signals, respectively.
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The presented B-scan modeling methodology was used in further studies to calculate
the phase velocities of the A0 and S0 modes from these B-scan images.

3.2. Parameter Selection of the Proposed Algorithm

The phase velocity determination algorithm has certain limitations and requirements
for parameter selection [24]. The overlap of the two modes limits the method’s applicability
because it distorts the phase of the analyzed mode. A certain scan distance is required to
determine the phase velocity, which is caused by the fixed A0 mode propagation jump. The
choice of excitation frequency also influences the results of the phase velocity calculation.
The listed problems were solved during theoretical studies.

The propagation of A0 and S0 mode signals depends on the phase velocities of these
modes (Equation (10)), and these velocities differ significantly at low frequencies. Thus,
these signals are separated in time as they move away from the excitation transducer. By
applying the time window method, these signals can be extracted. As reference points
for the formation of time windows, we chose the maxima of the A0 and S0 mode signal
envelopes (Figure 5):

eA(xr) = max
(
HT
[
uA
(
xr, tp

)])
, eS(xr) = max

(
HT
[
uS
(
xr, tp

)])
, (12)

where HT is the Hilbert transform.
The time interval between the envelopes’ maxima ∆tg, which enables the separation

of the A0 and S0 mode signals, was calculated:

∆tg = eA(xR)− eS(xR) =
ps
fex

, (13)

where ps is the number of periods of the excited signal and xR is the distance at which this
condition is satisfied.

Applying this time window produces separate A0- and S0-mode B-scan images
(Figure 5).

The calculated distance xK determines the location from which it was possible to
separate the modes and calculate their phase velocities cpA and cpS.

Another important parameter is the distance at which sudden changes (jumps) in
the phase of propagation of A0 mode signals are recorded. These jumps occur when the
half-periods of the signal “move” within the signal envelope as the distance, phase, and
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group velocities differ. The distance between these jumps ∆xT depends directly on the
period T defined by the phase cpA and group cgA velocities:

T =
∣∣tgA − tpA

∣∣ = ∣∣∣∣∣∆xT

cgA
− ∆xT

cpA

∣∣∣∣∣ = ∆xT
∣∣cpA − cgA

∣∣
cgAcpA

, (14)

∆xT =
TcgAcpA∣∣cpA − cgA

∣∣ =
1

fex
cgAcpA∣∣cpA − cgA

∣∣ , (15)
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Figure 5. Separation of A0 and S0 modes using the signal envelopes of these modes.

Three jumps are observed during one period (Figure 6b). The distance between the
two jumps, ∆xT/2, defines the minimum distance that must be scanned to determine the
phase velocity cpA of the A0 mode.
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Another important task was the choice of the frequency of excitation. Since we use
only fundamental modes, it is obvious that we need to choose an excitation frequency lower
than the first Cutoff frequency for the phase velocity (Figure 7a, Cutoff frequency 1). On
the other hand, it would be best to choose frequencies that provide the greatest sensitivity
to changes in the elastic constants of the analyzed plate. For sensitivity assessment, we
calculated the relative deviations ∆m of the phase velocities from the reference elastic
constant (Young’s modulus, E, or Poisson’s ratio, ν) values, changing these values in 20%
increments and decrement directions:

∆m =
c0n − (c0n − c%n)

c0n
, (16)

where c0n represents the calculated reference values of the phase velocities at the fixed
frequencies, and c%n represents the phase velocities calculated at the fixed frequencies using
±20% changed elastic constants. Large deviations in the elastic constants were chosen to
determine how much such deviations influence the deviations of the phase velocities from
the reference values. The calculated relative deviations ∆m are shown in Figure 7a, and the
parameters of the calculations are listed in Table 1. The marking ♦ shows in which mode
the reference values of the phase velocities are calculated.
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Table 1. Parameters of phase velocity deviation calculations. The marking ♦ shows in which mode
the reference values of the phase velocities are calculated.

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

S0 mode ♦ ♦ ♦ ♦

A0 mode ♦ ♦ ♦ ♦

Young’s modulus, E +20% +20% −20% −20%

Poisson’s ratio, ν +20% +20% −20% −20%

In order to evaluate the influence of the elastic constants on the changes in the funda-
mental modes, the total relative deviation ∆Σ was calculated. This deviation was normal-
ized in relation to its minimum value and presented in Figure 7b.

∆∑ = ∑8
n=1

c0n − |c0n − c%n|
c0n

, δ∑ =
∆∑

min
(
∆∑
) . (17)
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In order to evaluate the nature of the variation in the total relative deviation for
different materials, the relative deviation for aluminum 7075-T6 and steel AISI 4340 was
calculated. The same tendencies of variation in the total relative deviation were obtained.

As we can see from Figure 7b, it was possible to determine the frequency (Cutoff
frequency 2, f·d ∼= 750 kHz·mm) from which a higher total deviation value was obtained.

3.3. Evaluation of Uncertainties in Simulation Results

Solving the inverse problem in order to determine the elastic constants of the materials
gives results with certain errors. The relative error used to evaluate the suitability of the
proposed method was obtained by calculating the elastic constants by the proposed method
and comparing them with the initial values of these constants:

δν = 100%· |ν− νc|
ν

, δE = 100%· |E− Ec|
E

, (18)

where ν and E are the Poisson’s ratio and Young’s modulus initial values, respectively; νc
and Ec are calculated elastic constants.

The relative errors are calculated using different excitation frequencies f ex up to the
Cutoff frequency 2. The starting frequency was 100 kHz, and the frequency step was
50 kHz. At the same time, the ratio of the amplitudes of the A0 and S0 modes (coefficient
LS) was changed. The obtained results of relative error calculations are shown in Figure 8.
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Figure 8. Relative error calculations result using different excitation frequencies f ex and ratios of
the amplitudes of A0 and S0 modes: ‘o’—LS = 1, ‘+’—LS = 0.5; ‘*’—LS = 0.1. (a) Relative errors of
Poisson’s ratio calculations; (b) relative errors of Young’s modulus calculations.

The calculations performed showed that it is possible to distinguish a frequency area
with smaller errors. This area is practically the same in Poisson’s ratio and Young’s modulus
calculations. It covers a stretch of f·d = 300–650 kHz·mm. In this area, the relative error
of Poisson’s coefficient calculation does not exceed 2%, and the relative error of Young’s
modulus calculation does not exceed 0.5%. This conclusion should be based on the selection
of fundamental mode excitation frequencies f ex for the specific thickness d of the plate
under investigation.

4. Experimental Verification

Quantification of the proposed method for estimating elastic constants was performed
using experimental studies of Lamb wave propagation in a d = 2 mm thick aluminum plate
of 1.2 × 1.2 m2 in size. The elastic constants of the aluminum plate are not known exactly.
The density of the aluminum plate was determined by weighing it (ρ = 2685 kg/m3).

The experimental B-scan was obtained with two contact transducers, one stationary
as the transmitter and the receiver moving straight from the transmitter. Contact-type
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transducers with hemispherical plastic tips and a 220 kHz resonant frequency are used.
The frequency of the transducers was selected according to the criterion of a small relative
error for the corresponding thickness of the plate (Figure 8). The excitation signal of
the transmitter was a three-period burst with a Gaussian envelope. The position of the
receiver was changed with a Standa 8MTF-75LS05 scanner (Standa Ltd., Vilnius, Lithuania).
Scanner control, signal excitation, and registration were carried out using the ultrasonic
measurement system “Ultralab,” developed at the Ultrasound Research Institute of the
Kaunas University of Technology.

The B-scan image was formed while the receiving transducer moved at a distance of
60–200 mm with a step of 0.1 mm (Figure 9a). Figure 9b shows the received signal at a
distance of 100 mm from the sending transmitter. Figure 9c shows the amplitude–frequency
characteristic of this signal.
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Figure 9. B-scan image of the Lamb wave propagating through an aluminum plate (a), the signal at
the distance 100 mm (b), and the frequency response of this signal (c).

It was determined that the ratio of the amplitudes of the A0 and S0 modes in experi-
mental measurements was about LS = 0.05. Meanwhile, the amplitude–frequency response
of the signals was wide and different for A0 and S0 modes. This was revealed by separating
one mode from another. Filter packets with different center frequencies are selected for
these modes according to the algorithm described in detail [24]. Five filter packets (N = 5)
have been selected for both modes. The following filter parameters have been selected for
A0 mode: resonant frequency of the center filter f 3 = 226.8 kHz; bandwidths of the filters
∆f = 46.4 kHz; and distances between the filters df = 34.8 kHz. Parameters corresponding
to S0 mode are: f 3 = 382.1 kHz, ∆f = 75 kHz, and df = 56.2 kHz.
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The 2D-FFT method [26] was chosen to evaluate the intermediate results of the pro-
posed method (phase velocities of A0 and S0 modes). The results of the B-scan processing
of individual A0 and S0 modes by the 2D-FFT method are shown in Figure 10 with color
marking. The values (dots) of the phase velocities calculated by the proposed method
based on the experimental data are also presented in those pictures.
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2D-FFT method (color), and phase velocity values were calculated from experimental data using the
proposed algorithm (dots).

As we can see, the phase velocities of A0 and S0 modes obtained by both methods are
very close. Next, the elastic constants of aluminum were calculated based on the values of
these velocities and obtained as follows: Young’s modulus E = 68.85 GPa, Poisson‘s ratio
ν = 0.35. The obtained elastic constants are very close to the aluminum plate constants
given by [27]: d = 2 mm, ρ = 2700 kg/m3, E = 70 GPa, ν = 0.35. Yong’s modulus differs only
by 1.6%, and the Poisson ratios match.

5. Discussion and Conclusions

This paper presents a new and simple method for determining the elastic constants of
isotropic plates using Lamb waves’ fundamental modes. The proposed method solves the
inverse problem where the elastic constants (Young’s modulus and Poisson‘s ratio) of the
plate are estimated by measuring the phase velocities of the Lamb wave. Rayleigh–Lamb
equations and the phase velocities of fundamental modes (A0 and S0) determined by a new
method are used to solve the inverse problem. Theoretical modeling on an aluminum 7075-
T6 plate showed that the proposed method allows the Poisson’s ratio to be determined with
a relative error not exceeding 2% and Young’s modulus to be determined with a relative
error not exceeding 0.5%. In the theoretical simulation, the selection of the excitation
frequencies of the fundamental modes for the specific thickness of the investigated plate
was justified, and the minimum required scanning distance of that plate was defined.
Experimental measurements on a 2 mm thick aluminum plate confirmed the suitability of
the proposed method for elastic constant measurements.

However, this method has some limitations and unexplored applications. The overlap
of the different modes affects the method’s applicability at close distances between the
transducers. Some initial scanning distance was required. A certain scan distance was
required to determine the phase velocity of the A0 mode, which was determined by the fixed
propagation jump of the A0 mode. The application of this method to complex composite
plates has also not yet been investigated.

However, after evaluating the limitations of this method, it was necessary to emphasize
the advantages of this method as well. First, the method does not require prior knowledge
of the Lamb wave phase velocities’ curves or the preliminary values of the elastic constants
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of the plate under investigation. Second, the processing of the received ultrasonic signals
can be performed in real-time, and the values of the elastic constants can be obtained
immediately after scanning the required distance. This enables the method to be used in
automated systems for determining material parameters. Since the method focuses only on
the processing of received signals, this methodology could be applied using non-contact
excitation and the receiving of Lamb waves.

Author Contributions: O.T.: conceptualization, methodology, investigation, writing—original draft
preparation, and visualization. L.M.: validation, supervision, formal analysis, and writing—review
and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Blitz, J. Electrical and Magnetic Methods of Non-Destructive Testing; Springer: Dordrecht, The Netherlands, 1997; p. 261.
2. Hellier, C.J. Handbook of Nondestructive Evaluation, 2nd ed.; McGraw-Hill Companies: New York, NY, USA, 2013; p. 720.
3. Staszewski, W.J.; Boller, C.; Tomlinson, G.R. Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing;

John Wiley & Sons: Padstow, UK, 2004; p. 266.
4. Green, R.E. Ultrasonic Investigation of Mechanical Properties, Vol.3 of Treatise on Materials Science and Technology; Academic Press:

Cambridge, MA, USA, 1973; pp. 1–166.
5. Rose, J.L. Ultrasonic Guided Waves in Solid Media; Pennsylvania State University: State College, PA, USA, 2014; pp. 1–512.

[CrossRef]
6. Hutchins, D.A.; Lundgren, K.; Palmer, S.B. A laser study of transient Lamb waves in thin materials. J. Acoust. Soc. Am. 1989, 85,

1441–1448. [CrossRef]
7. Hayashi, Y.; Ogawa, S.; Cho, H.; Takemoto, M. Non-contact estimation of thickness and elastic properties of metallic foils by

laser-generated Lamb waves. NDT E Int. 1999, 32, 21–27. [CrossRef]
8. Zhang, R.; Wan, M.; Cao, W. Parameter measurement of thin elastic layers using low-frequency multi-mode ultrasonic lamb

waves. IEEE Trans. Instrum. Meas. 2001, 50, 1397–1403. [CrossRef]
9. Sait, S.; Abbas, Y.; Boubenider, F. Estimation of thin metal sheets thickness using piezoelectric generated ultrasound. Appl. Acoust.

2015, 99, 85–91. [CrossRef]
10. Rogers, W.P. Elastic property measurement using Rayleigh-Lamb waves. Res. Nondestr. Eval. 1995, 6, 185–208. [CrossRef]
11. Dean, J.L.; Trillo, C.; Doval, A.F.; Fernandez, J.L. Determination of thickness and elastic constants of aluminum plates from

full-field wavelength measurements of single-mode narrowband Lamb waves. J. Acoust. Soc. Am. 2008, 124, 1477–1489. [CrossRef]
[PubMed]

12. Yan, L.; Cunfu, H.; Guorong, S.; Bin, W.; Chung, C.H.; Lee, Y.C. Elastic properties inversion of an isotropic plate by hybrid particle
swarm-based-simulated annealing optimization technique from leaky lamb wave measurements using acoustic microscopy. J.
Nondestruct. Eval. 2014, 33, 651–662. [CrossRef]

13. Sale, M.; Rizo, P.; Marzani, Z. Semi-analytical formulation for guided waves-based reconstruction of elastic moduli. Mech. Syst.
Signal Process. 2011, 25, 2241–2256. [CrossRef]

14. Ratassepp, M.; Rao, J.; Fan, Z. Quantitative imaging of Young’s modulus in plates using guided wave tomography. NDT E Int.
2018, 94, 22–30. [CrossRef]

15. Zhu, L.; Duan, X.; Yu, Z. On the Identification of Elastic Moduli of In-Service Rail by Ultrasonic Guided Waves. Sensors 2020,
20, 1769. [CrossRef]

16. Orta, A.H.; Kersemans, M.; Van Den Abeele, K. On the identification of orthotropic elastic stiffness using 3D guided wavefield
Data. Sensors 2022, 22, 5314. [CrossRef] [PubMed]

17. Ambrozinski, L.; Packo, P.; Pieczonka, L.; Stepinski, T.; Uhl, T.; Staszewski, W.J. Identification of material properties—Efficient
modeling approach based on guided wave propagation and spatial multiple signal classification. Struct. Control Health Monitor.
2015, 22, 969–983. [CrossRef]

18. Fernández, J.L.; Deán, J.L.; Trillo, C.; Doval, A.F. Elastic constants determination by direct measurement of the beat wavelength
between A0 and S0 Lamb modes with pulsed TV holography. Opt. Lasers Eng. 2007, 45, 618–630. [CrossRef]

19. Pabisek, E.; Waszczyszyn, Z. Identification of thin elastic isotropic plate parameters applying Guided Wave Measurement and
Artificial Neural Networks. Mech. Syst. Signal Process. 2015, 64–65, 403–412. [CrossRef]

https://doi.org/10.1017/CBO9781107273610
https://doi.org/10.1121/1.397981
https://doi.org/10.1016/S0963-8695(98)00029-2
https://doi.org/10.1109/19.963216
https://doi.org/10.1016/j.apacoust.2015.05.011
https://doi.org/10.1080/09349849509409557
https://doi.org/10.1121/1.2945707
https://www.ncbi.nlm.nih.gov/pubmed/19045639
https://doi.org/10.1007/s10921-014-0259-3
https://doi.org/10.1016/j.ymssp.2011.02.004
https://doi.org/10.1016/j.ndteint.2017.09.016
https://doi.org/10.3390/s20061769
https://doi.org/10.3390/s22145314
https://www.ncbi.nlm.nih.gov/pubmed/35890993
https://doi.org/10.1002/stc.1728
https://doi.org/10.1016/j.optlaseng.2006.08.007
https://doi.org/10.1016/j.ymssp.2015.04.007


Sensors 2023, 23, 6678 15 of 15

20. Gao, X.; Tian, Y.; Jiao, J.; Li, C.; Gao, J. Non-destructive measurements of thickness and elastic constants of plate structures based
on Lamb waves and particle swarm optimization. Measurement 2022, 204, 111981. [CrossRef]

21. Chen, H.; Ling, F.; Zhu, W.; Sun, D.; Liu, X.; Li, Y.; Li, D.; Xu, K.; Liu, Z.; Ta, D. Waveform inversion for wavenumber extraction
and waveguide characterization using ultrasonic Lamb waves. Measurement 2023, 207, 112360. [CrossRef]

22. Bochud, N.; Laurent, J.; Bruno, F.; Royer, D.; Prada, C. Towards real-time assessment of anisotropic plate properties using elastic
guided waves. J. Acoust. Soc. Am. 2018, 143, 1138. [CrossRef]

23. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low
Dimensions. SIAM J. Optim. 1998, 9, 112–147. [CrossRef]

24. Tumšys, O. Experimental method for simultaneous determination of the Lamb wave A0 modes group and phase velocities.
Materials 2022, 15, 2976. [CrossRef]

25. Draudviliene, L.; Ait Aider, H.; Tumsys, O.; Mazeika, L. The Lamb waves phase velocity dispersion evaluation using an hybrid
measurement technique. Compos. Struct. 2018, 184, 1156–1164. [CrossRef]

26. Alleyne, D.; Cawley, P. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J.
Acoust. Soc. Am. 1991, 89, 1159–1168. [CrossRef]

27. Rocha, B.; Silva, C.; Suleman, A. Structural Health Monitoring System Using Piezoelectric Networks with Tuned Lamb Waves.
Shock. Vib. 2010, 17, 677–695. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.measurement.2022.111981
https://doi.org/10.1016/j.measurement.2022.112360
https://doi.org/10.1121/1.5024353
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.3390/ma15092976
https://doi.org/10.1016/j.compstruct.2017.10.060
https://doi.org/10.1121/1.400530
https://doi.org/10.1155/2010/798069

	Introduction 
	Theoretical Analysis 
	Fundamentals of Lamb Wave Propagation 
	Determination of Elastic Constants Based on the Phase Velocities 
	Measurement of the A0 and S0 Modes’ Phase Velocities 

	Estimation of Elastic Constants Using Simulated Signals 
	Formation of Simulated Signals for Fundamental Modes 
	Parameter Selection of the Proposed Algorithm 
	Evaluation of Uncertainties in Simulation Results 

	Experimental Verification 
	Discussion and Conclusions 
	References

