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Abstract: With the development of ocean exploration technology, the exploration of the ocean has
become a hot research field involving the use of autonomous underwater vehicles (AUVs). In
complex underwater environments, the fast, safe, and smooth arrival of target points is key for
AUVs to conduct underwater exploration missions. Most path-planning algorithms combine deep
reinforcement learning (DRL) and path-planning algorithms to achieve obstacle avoidance and path
shortening. In this paper, we propose a method to improve the local minimum in the artificial
potential field (APF) to make AUVs out of the local minimum by constructing a traction force. The
improved artificial potential field (IAPF) method is combined with DRL for path planning while
optimizing the reward function in the DRL algorithm and using the generated path to optimize the
future path. By comparing our results with the experimental data of various algorithms, we found
that the proposed method has positive effects and advantages in path planning. It is an efficient and
safe path-planning method with obvious potential in underwater navigation devices.

Keywords: autonomous underwater vehicles (AUVs); deep reinforcement learning (DRL); improve
artificial potential field; path planning

1. Introduction

In recent years, thanks to the abundance of marine resources, the “blue industry”
has received widespread attention and flourished. However, due to the development of
technology and the unknown as well as complex environment, 95% of the ocean remains
unexplored. Autonomous underwater vehicles (AUVs) have been widely used in environ-
mental observation, resource exploration, biological surveying, auxiliary positioning, and
other underwater tasks by virtue of their autonomy and maneuverability [1–3]. In order
to meet the needs of marine development, strict requirements have been proposed for the
automation of AUVs. The core technology of AUV autonomy is to complete path planning
and obstacle avoidance [4], which determine the application prospects of AUVs.

Owing to the complexity and variability of the marine environment, underwater
path planning is a complex issue that has received widespread attention. The current
means of AUV underwater path planning mainly include the ant colony algorithm [5,6],
fuzzy algorithm [7], genetic algorithm [8,9], algorithms based on neural networks [10],
and algorithms based on the artificial potential field theory [11,12]. Zhang et al. [13]
used a combination of the ant colony algorithm and forward sonar to accomplish two-
dimensional obstacle avoidance. Dong et al. [14] implemented a path-planning method for
AUVs, achieving a smoother generated path. Somaiyeh et al. [15] combined the ant colony
algorithm with the energy of an AUV to complete the path-planning task with minimal
energy. Chen et al. [16] proposed a method combining a neural network with path planning,
and found that robots can make decisions by imitating human thinking during navigation.
Based on local environmental information and obstacle features, robots can make decisions
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by simulating human beings, collecting all of the information necessary to build a database
and training the database through supervised learning methods to generate an optimal
neural network model. The experimental results show that the proposed algorithm enables
robots to achieve excellent obstacle avoidance ability in the path-planning task.

The above algorithm only focuses on path planning in a 2D environment, but the
practical applications are more focused on the 3D scene, so research should focus on 3D
environments. Ma et al. [5] introduced an alarm pheromone into the ant colony algorithm
(AP-ACO) and applied the new algorithm to the path planning of an AUV in complex
underwater environments. Experimental results show that AP-ACO has the advantages of
faster convergence speed and stability compared with the ordinary ACO algorithm, but
the algorithm works less than ideally in unknown environments. Li Bin et al. [17] designed
an improved sparrow algorithm and introduced an adaptive weighted silver balancing
strategy to improve the convergence rate and search ability of the algorithm. The proposed
algorithm completes the global path planning of AUVs in complex marine environments
subject to many influencing factors, but the turning angle is large. Wei et al. [18] pro-
posed a novel super-heuristic algorithm based on an evolutionary strategy; the proposed
algorithm combined a metaheuristic framework with a selection function to evaluate the
performance of low-level heuristic operators online. This online learning algorithm has
better computational efficiency and robustness and achieves satisfactory performance in
path planning in complex marine environments, although it is difficult to apply. Recently,
with the rapid development of information technology, artificial intelligence has made
considerable breakthroughs in technological and application fields [19]. Deep learning
(DL) [20] and reinforcement learning (RL) [21] have made rapid progress with the support
of artificial intelligence technology, and have shown great advantages in their respective
fields. DL achieves significant advantages in perception ability due to its neural network
structure, and RL helps to make optimal action decisions by maximizing the value function.
Mnih, V et al. [22] proposed a deep Q-network (DQN) algorithm, which skillfully com-
bines DL and RL together and initiates an era of deep reinforcement learning (DRL). DRL
combines the advantages of DL and RL [23], and it can provide a more perfect solution
in response to perception decision problems in complex systems. Silver [24] proposed
a deterministic policy gradient (DPG) algorithm. Compared with the stochastic policy
gradient algorithm, the performance of the proposed algorithm in high-latitude action
space has significant advantages. Lillicrap, T. Page et al. [25] proposed a deep deterministic
policy gradient (DDPG) algorithm. The DDPG can easily deal with complex problems and
large network structures because of its powerful functions, and the algorithm is simple and
convergent. Wei et al. [26] successfully combined the DDPG algorithm with an underwater
glider to realize a two-dimensional obstacle avoidance function in the underwater glider
under the control of DRL in the face of time-varying ocean currents. Chu et al. [27] inserted
a dynamic reward function into the DDQN algorithm, enabling AUVs to simultaneously
complete the tasks of path planning and obstacle avoidance in complex underwater en-
vironments. Fang et al. [28] controlled the attitude of an AUV during navigation using
the DDPG algorithm and solved the control fault problem at the critical value of the yaw
angle. Yang et al. [29] proposed a path-planning algorithm based on near-end strategy
optimization; the proposed algorithm combines a deep reinforcement learning network
with the features of local obstacles and selects the optimal strategy according to the en-
vironmental information. The results show that the paths generated by this algorithm
are time-saving and collision-free in complex underwater environments. Wang et al. [30]
proposed an algorithm based on a simplified deep deterministic policy gradient in order
to optimize the complex nonlinear problem of AUVs during navigation. The algorithm
simplifies the training process of the neural network and optimizes the path of an AUV.
The abovementioned method is designed for the ideal operating environment of the AUVs
and may not achieve satisfactory results in actual underwater operation experiments, so
attention should be paid to the sensing equipment carried by an AUV itself. Bu et al. [31]
used sensing devices for communication and combined the DRL algorithm with the energy
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of an AUV to generate an optimal operating path; however, the obstacle avoidance ability
was not ideal. Cao et al. [4] acquired image information through the forward sonar of an
AUV and combined the graphic information with the DRL algorithm to effectively avoid
obstacles in the face of complex underwater environments, planning a reasonable forward
path, although path optimization is not implemented. The possibility of multiple-sensor
devices jointly assisting AUVs in path planning has attracted increasing attention.

This paper presents an improved artificial potential field method with overcoming
local minima. When an AUV is trapped in the local optimal trap, all the distance data at
this time are introduced into the artificial potential field, such that the AUV trapped in the
local optimal trap escapes from the trap. In path planning, the improved artificial potential
field method is combined with DRL, and the distance data are used to optimize the reward
function to generate a safe path. For reducing the extreme turn events of an AUV at run
time, the generated path is used to optimize the future path.

In this paper, Section 2 presents the motion model. Section 3 introduces the methods
used, including the improvement of an artificial potential field, the utilization of gyroscope
data, and the use of DRL. Section 4 shows the experimental results, which intuitively show
the advantages of the method proposed in this paper through data analysis and comparison.
Finally, the conclusions and future work are given in Section 5.

2. Problem Formulation

Figure 1 shows a schematic of an AUV with multiple sensors during underwater path
planning. In the case of simulated deep AUV operation, the AUV can successfully avoid
obstacles to reduce the occurrence of peak steering, and the planned path is smooth.
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Figure 1. Schematic diagram of the underwater operation of an AUV with multiple sensors.

In the process of AUVs performing tasks, most of them take place in underwater scenes.
In a static environment and without the loss of generality, only the path-planning problem
for the main 3-DOF underactuated AUV is considered. Figure 2 shows the kinematic and
dynamic model of an AUV. According to the method proposed by T. I. Fossen et al. [32],
the motion of AUV swaying, pitch, and roll is ignored. Therefore, the AUV kinematics and
dynamics are expressed as follows:

.
η = Ry(α) ∗ Rz(β) ∗ vr, (1)

M
.
vr + C(vr)vr + D(vr)vr = G(vr) ∗ τ, (2)
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where Ry(α) =

cosα 0 −sinα
0 1 0

sinα 0 cosα

, Rz(β) =

 cosβ sinβ 0
−sinβ cosβ 0

0 0 1

. (3)
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To explain the above formula clearly and concisely, two reference frames need to
be assumed: The fixed-Earth inertial coordinate system {i} and the fixed-body inertial
coordinate system {b}. η = [x, y, z ]T depicts the positional status of the AUV in coordinate
system {i}. vr = [vr, θ, γ ]T represents the velocity matrix of the AUV, where vr represents
the forward velocity of the AUV. θ and γ represent the yaw and pitch in coordinate system
{i}, respectively. Matrices Ry(α) and Rz(β) convert the vectors in coordinate system {b}
into the vectors in coordinate system {i}. The M ∈ R3∗3 matrix is the mass matrix, and
the C(vr) ∈ R3∗3 matrix represents the Coriolis centripetal matrix. The D(vr) ∈ R3∗3

matrix represents the damping matrix, and G(vr) ∈ R3∗3 is the input configuration matrix.
τ =

[
τv, τα, τβ

]T represents three independent input control signals, where τv represents
the thrust of the propeller, τα represents the real-time steering angle, and τβ represents the
real-time attack angle. Usually, the propeller thrust is constant, and the steering and attack
angles are limited; thus, |τα| ≤

∼
τα and |τβ| ≤

∼
τβ, where

∼
τα and

∼
τβ represent the saturated

boundaries of τα and τβ, respectively.

3. Method
3.1. Utilization of Multisource Data

There are many sensors in an AUV, and their data are helpful for AUVs in path plan-
ning. In this paper, multisource data used are derived from a gyroscope and rangefinder.
Gyroscopes are widely used in AUVs, which can assist AUVs in navigation and posi-
tioning [33]. Based on the structure and kinematic constraints of an AUV, the gyroscope
can reflect the motion information of an AUV in real time [34]. The gyroscope data are
processed by Kalman filtering, which can make the motion path smoother and protect the
mechanical structure of an AUV [35].

When an AUV is moving underwater, only the attack angle and steering angle are
usually considered. Considering its mechanical properties and actual operation state, it is
necessary to restrict the attack angle, steering angle, and pitch angle. The steering angle
value size cannot exceed the saturated boundary. Similarly, the attack angle and pitch angle
must not exceed the corresponding saturated boundaries.

Since an AUV’s navigation angle (steering angle and attack angle) is determined by the
force at its current position, it is highly possible that AUVs will dramatically change their
direction. When this case happens, AUVs may not be able to complete the angle conversion.
Therefore, in the simulation process of path planning, the mechanical performance factor of
an AUV must be considered. The gyroscope can measure the size of the steering angle and
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attack angle in real time, and perform Kalman filtering on the AUV’s steering angle and
attack angle to achieve the purpose of optimizing the navigation angle and safe navigation.

A Kalman filter is an optimal estimator. It uses a recursive method to update the state
output of the model by inputting the recent measurements into a linear model. In a Kalman
filter, the state transition equation and the target observation equation are as follows:

xk+1 = Akxk + Bkuk + wk, (4)

yk = Hkxk + vk. (5)

Equation (4) is the model function that transfers state x from step k to step k + 1, where
xk ∈ Rn is the state of the system, xk is the actual state vector after measurement, and xk+1
is the next state vector estimated by the equation. Ak ∈ Rn∗n is the transition matrix, while
Bk is a linear matrix that transforms the dimension of the residual vector, uk, into the state
vector, xk. uk is the “forcing” term in the model in the form of a linear residual. Let wk
be the model estimation error. Equation (5) is the observation function that relates the
state vector, xk, to the observation vector, yk, where Hk is the linear observation operator
(ensuring the linearity of the system) and vk is the observation error.

E
[
vivT

j

]
= r ∀ i = j ∈ N, (6)

E
[
wiwT

j

]
= Q ∀ i = j ∈ N. (7)

In Equation (6), r is the covariance matrix of the observation error, vk, while Q is the
covariance matrix of wk in Equation (7).

In Figure 3, the principle of Kalman filtering is shown [36,37]. Kalman filtering is a
predictor–corrector method. Firstly, a state, x̂k, and its corresponding covariance matrix,
Pk, are predicted. Secondly, the Kalman gain, Kk, for this stage is calculated. Then, the
difference between the real measurement result, uk, and the predicted measurement result,
yk, is weighted by Kk to correct the prediction, x̂+k and P+

k . Finally, x̂k is updated to complete
the initialization.
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3.2. Improved Artificial Potential Field (IAPF) Algorithm

In 1986, Khatib [38] innovatively proposed a new algorithm of virtual force, the
artificial potential field (APF) method. This method manually simulates an electric potential
field similar to the form of an electromagnetic field in the working scene. The robot is
subjected to both gravitational and repulsive forces in the scene and plans its path according
to the characteristics of the potential field.

The artificial potential field method has some outstanding advantages, such as a small
amount of calculation, easy construction of the model, and remarkable effect of dynamic
obstacle avoidance; however, it still has shortcomings. For example, it is easy for the robot
to fall into the local optimum and sometimes cannot reach the target point. When the inte-
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grated potential field of the target point is not the minimum value in the whole integrated
potential field, the case of an unreachable target point will be generated [39]. The motion
of the robot in the scene is affected by the resultant force formed by the superposition of
attractive forces and repulsive forces, and the robot determines the direction and magnitude
of the next movement under the action of the resultant force. If the resultant force is zero,
the robot will stop moving. The more obstacles there are that repel the robot at the same
time, the higher the probability of the resultant force being zero. This condition is defined
as the “potential field trap” in this paper.

3.2.1. Improved Method for Unreachable Target Point Problem

The essence of the unreachable target point problem is that the integrated potential
field of the target point is not the minimum value in the whole integrated potential field.
In order to overcome the unreachable problem of the target point in the APF, a distance
correction function is added to the repulsive potential field, while the attractive potential
field remains unchanged. The distance correction function can balance the changes in
repulsive and attractive forces, especially in the case of a rapidly increasing repulsive
potential field. Thus, when a robot approaches the target point, the correction function can
be added to ensure that the target point is at the minimum value in the integrated potential
field. The new repulsive potential field function is as follows:

Urep =

{
1
2 krep

(
1

(Xn−X0)
− 1

r0

)2
dn(Xn, Xg

)
, (Xn − X0) ≤ r0

0, (Xn − X0) > r0.
(8)

dn(Xn, Xg
)

is the Euclidean distance from the current position to the target point raised
to the power of n, and n is any real number greater than zero. According to Equation (8),
when the robot approaches the target point, the repulsive potential field will tend to zero,
so that the integrated potential field at the target point is still the minimum.

The repulsive force is the negative gradient force of the new repulsive potential field,
which is mathematically expressed as follows:

Frep = −∇Urep =

{
Frep1 + Frep2 , (Xn − X0) ≤ r0

0 (Xn − X0) > r0,
(9)

where Frep1 and Frep2 are as follows:

Frep1 = krep

(
1

(Xn − X0)
− 1

r0

)
dn(Xn − Xg

)
d2(Xn − X0)

, (10)

Frep2 =
n
2

krep

(
1

(Xn − X0)
− 1

r0

)2
dn−1(Xn, Xg

)
. (11)

3.2.2. Improved Method for Potential Field Trap Problem

In the optimal scenario, an AUV would come to a stop upon reaching its intended
destination; however, when an AUV navigates through an integrated potential field com-
prising numerous obstacles, it may encounter situations where the resultant force acting on
it becomes zero, or the integrated potential field at its current position reaches a minimum
value. In such instances, the AUV becomes motionless and is unable to progress towards
the goal point, ultimately impeding its ability to reach the intended destination.

When an AUV is attempting to escape a “potential field trap,” it is crucial to prioritize
both obstacle avoidance and efficient path planning. In a study by Zhou et al. [40], they
propose an improved method that primarily focuses on accomplishing the path-planning
task while neglecting obstacle collision avoidance. To effectively address the issue of
potential field traps, it is essential to leverage all of the distance data provided by an
AUV’s rangefinders. Rangefinders, such as sonar and photoacoustic rangefinders [41], are
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employed to continuously monitor the closest distance between an AUV and surrounding
obstacles in real time, ensuring the safe navigation of an AUV. The accuracy of the ranging
measurements directly impacts the safety of AUV navigation and facilitates smoother
navigation, enabling AUVs to escape potential field traps more efficiently.

In an underwater environment, when an AUV becomes trapped in a potential field, it
can generally be categorized into two cases: a single obstacle or multiple obstacles. The
strategy for improving the method in the case of a single obstacle is depicted in Figure 4a,
while the strategy for the case of multiple obstacles is illustrated in Figure 4b.
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In a scenario involving a single obstacle, an AUV can be ensnared in a potential field
trap only when the AUV, obstacle, and target point align perfectly on a straight line. In this
particular position, the combined effect of the repulsive force and attractive force becomes
zero, leading to the entrapment of the AUV within the potential field. To overcome this
situation, a traction force is employed to assist the AUV in escaping the potential field trap.
Initially, an auxiliary force is established within the Cartesian coordinate system, directed
from the origin to the target point, and its magnitude is set to match the attraction force
between the AUV and the target point. The traction force required to free the AUV from
the potential field trap is obtained through the vector product of the auxiliary force and
the attractive force exerted by the target point. By employing this traction force, the AUV
successfully escapes the potential field trap and reaches its intended target point.

In a scenario involving multiple obstacles, when an AUV becomes trapped in a
potential field, it is crucial to select an appropriate auxiliary vector to facilitate its escape. To
achieve this, the nearest obstacle to the AUV is identified using a photoacoustic rangefinder,
and the repulsive force generated by this obstacle is employed as the auxiliary force. By
chance, if this repulsive force aligns perfectly in magnitude and is in the opposite direction
to the attractive force, the search continues for the second closest obstacle to the AUV
using the photoacoustic rangefinder. The repulsive force exerted by the second closest
obstacle is then utilized as the new auxiliary force. This process is repeated until a suitable
auxiliary force is found. By employing this method to identify the auxiliary force, the AUV
ensures safe navigation while effectively escaping the potential field trap and reaching the
target point as expeditiously as possible. The traction force required for the AUV to escape
the potential field trap and reach the target point smoothly is determined through the
vector product of the auxiliary force and the attraction force exerted by the target point. By
integrating this approach, not only can the AUV navigate safely, but it can also overcome
potential field traps and swiftly reach the target point.
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3.3. Multisource-Data-Assisted AUV Path-Planning Method Based on the DDPG Algorithm

Reinforcement learning, which falls under the domain of machine learning, serves
as the foundation for deep reinforcement learning [42]. In this framework, an agent is
trained through a reward-based system, aiming to maximize the cumulative reward while
learning an optimal strategy to achieve its objectives. The agent directly interacts with the
environment and learns by evaluating the resulting action values, as depicted in Figure 5.
During agent–environment interaction, the agent selects the subsequent action based on
the current state and the environmental reward. This action at leads to a transition from
state st to new state st+1, and the agent receives a corresponding environmental reward rt.
Leveraging the current state, the agent strives to maximize the expected reward value and
continually learns in addition to enhancing its action strategy throughout the interaction
with the real-world environment [43].
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Deep learning, as a vital component of machine learning, utilizes deep neural networks
to autonomously learn from raw data and extract highly accurate features. Reinforcement
learning, on the other hand, plays a significant role in evaluating actions taken by an
agent during its interaction with the environment, allowing the agent to maximize rewards
and acquire optimal strategies. By combining the strengths of deep learning (DL) and
reinforcement learning (RL), deep reinforcement learning (DRL) has achieved remarkable
advancements in continuous motion control and has been proven to be highly effective in
autonomous driving systems. Within DRL, the deep deterministic policy gradient (DDPG)
algorithm has emerged as a valuable solution for addressing problems within continuous
motion spaces. It has gained traction and is being increasingly employed in the field of
autonomous transportation, showcasing its potential and applicability in this domain.

3.3.1. Deep Deterministic Policy Gradient (DDPG)

Figure 6 is a multiple-sensor-assisted AUV path-planning method based on the DDPG
algorithm. The DDPG algorithm is formed by the architecture of Actor–Critic and combined
with the algorithm of a DQN. It both solves the continuous action problem and enhances
the stability as well as effectiveness of the network training, in addition to overcoming the
non-convergence problem when using the neural network to approximate the function
value [44]. Its network structure includes an actor network and evaluator network, both of
which have their own online network and target network. Both online networks output
and evaluate actions in real time, as well as training and updating network parameters
online. Its network structure includes an actor network and evaluator network, which each
have their own online network and target network. The two target networks will update
the value network system and the actor network system, but the network parameters in the
system are not trained and updated in real time [45]. As can be seen in Figure 6, the agent
outputs an action based on the current state, st, generated by the environment information
and its own data. When the action is an effective action, it will receive a feedback reward,
rt, from the environment. The data containing the current state information, action, reward,
and next action information will then be stored in the experience pool. At the same time,
the neural network will extract sample data from the experience pool for training and
realize the accuracy as well as stability of the algorithm by adjusting the action strategy.
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The critical network updates the network parameters by minimizing the loss function,
L
(
θQ): {

L(θQ) = 1
N ∑

i
(yi −Q

(
si, ai|θQ))2

yi = r(si, ai) + γQ′(si+1, µ′(si+1|θµ′)|θQ′),
(12)

where θQ and θQ′ , respectively, represent the parameters of the evaluation network and the
target network. θµ′ represents the parameters of the target network in the actor network
and N is the number of experiences learned.

Updates the current network parameters for the actor:

∇θµ
J =

1
N ∑N

i ∇ai Q(Si, ai|θQ)∇θµ µ(Si|θµ), (13)

where ∇θµ
J is the gradient.

Update actor target network parameter θµ′ and critic target network parameter θQ′ :{
θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′ ,
(14)

where the value domain of τ is [0, 1].

3.3.2. AUV Path-Planning Model Based on the DDPG Algorithm with Multiple Sensors

As illustrated in Figure 6, the current state of an autonomous underwater vehicle
(AUV) serves as an input, which is fed through the DDPG network. The output of the
network represents the virtual action of the AUV. Previous actions are sequentially inputted
into the computer, and the virtual actions are processed by a Kalman filter to generate the
actual actions. These actions are stored in an experience pool and used for training through
random sampling. Throughout the interaction with the environment, the DDPG network
is continually updated, and the resulting data become more reasonable after undergoing
Kalman filtering. Simultaneously, the AUV is in a constant learning process, optimizing
subsequent control strategies. The critic component of the neural network consists of two
hidden layers with 512 and 256 neurons, while the actor component has a hidden layer
with 256 neurons. The output nodes of the hidden layers are activated using the rectified
linear unit (ReLU) activation function, and the final layer of the network employs the
hyperbolic tangent (tanh) activation function to limit the output range to [−1, 1]. This
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architecture ensures the neural network’s capability to process information effectively and
make appropriate action predictions in the context of DDPG-based control for AUVs.

3.3.3. State Space

An AUV obtains useful information through state space and uses this information
to assist in making decisions. In the DDPG framework, the state space is the input of the
neural network, which is defined as follows in this experiment:

St = [xt, yt, zt, vt, Dt], (15)

where xt, yt, zt represent the position of an AUV in Cartesian coordinate space, vt represents
speed, and Dt represents obstacles as well as target points in the environment.

3.3.4. Action Space

Since the AUV’s movement is accomplished by yaw angle, pitch angle, and speed, the
output of the action is defined as follows:

at =
[ .
vt, αt, βt

]
, (16)

where
.

vt represents acceleration. αt and βt represent yaw and pitch angles, respectively.
Considering the mechanical structure of the AUV, the best yaw and pitch angles can only
be selected in the AUV performance range.

3.3.5. Reward Function

The reward function is the key of DRL and is used to evaluate the merits of each action.
After a series of actions to achieve the goal, the route with the highest cumulative reward is
the best route. The most common reward is a sparse reward. The sparse reward is used in
this paper. The reward function of this paper is as follows:

reward =


+10 Reach target point
−10 Hit an obstacle

3dis1
dis2
− 2 Dangerous navigation

2dis1
dis2
− 1 Safenavigation,

(17)

where dis1 is the distance of the AUV to the nearest obstacle and dis2 is the distance of the
AUV to the center of the nearest obstacle. Utilizing the above reward function allows the
AUV to navigate as safely as possible.

3.3.6. Mixed Noise

In order to make the search ability of a robot better, it is necessary to add some noise
to the output action of the DDPG. Commonly used noise includes Gaussian noise and
OU noise; the former produces uncorrelated searches in the time series, while OU noise
produces correlated searches in the time series. The next step of OU noise is affected by the
previous step, and the formula is as follows:

NOU(dat) = θ(a− at)dt + δdWt, (18)

where at is the action at time t, θ is the learning rate of the stochastic process, a is the
average of the action sampling data, δ is the random weight of the OU, and Wt is the Wiener
process.

Mixed noise formed by Gaussian noise and OU noise can better optimize the search
strategy. The mixed noise employed in this paper is as follows:

at ∼ NGaussian(at + NOU(dat), var) (19)
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where var represents the Gaussian variance. As the training volume accumulates, the robot
starts to gradually adapt to the environment, so it needs to reduce the search rate. The var
needs to be adjusted, so it is defined as var = var ∗ C and the C is the specified decay rate.

The path-planning method proposed in this paper not only improves the defects of
the original algorithm, but also combines with DRL, as well as taking into account the
mechanical properties of an AUV, making the generated path safer. The pseudocode for
the multisource-data-assisted AUV path-planning method based on the DDPG algorithm
is as Algorithm 1:

Algorithm 1 Multisource-data-assisted AUV path-planning based on the DDPG algorithm

1. Randomly initialize critic network Q
(
s, a
∣∣θQ) and actor µ(s|θµ) with weights θQ

and θµ

2. Initialize target network Q′ and µ′ with weights θQ′ ← θQ , θµ′ ← θµ

3. Initialize replay bufferR
4. for episode = 1, M do
5. Initialize a random process N for action exploration
6. Receive initial observation station state s1
7. for t = 1, T do
8. Select action at = µ(st|θµ) +Nt according to the current policy and exploration
noise
9. Select virtual actions based on the current strategy and noise
10. The virtual actions is filtered by Kalman filter to generate the corresponding real

action
11. Perform the virtual actions, and get the corresponding reward and the next

position status
12. Execute action at and observe reward rt and observe new state st+1
13. Store transition (st, at, rt, st+1) inR
14. Set yi = ri + γQ′(si+1, µ,(si+1|θµ′ )|θQ′ )

15. Update critic by minimizing the loss: L = 1
N ∑i

(
yi −Q

(
si, ai

∣∣θQ))2

16. Update the actor policy using the sampled policy gradient:

∇θµ
J = 1

N

N
∑
i
∇aQ

(
s, a
∣∣θQ)|s=si ,a=µ(si)

∇θµ µ(s|θµ)|si

17. Update the target networks:
θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

18. end for
19. end for

4. Simulation Results

To evaluate the effectiveness of the proposed path-planning method, it is compared to
the improved ant colony optimization (IACO) algorithm, IAPF-TD3 algorithm, and IAPF-
DDPG algorithm in the context of autonomous underwater vehicles (AUVs). The IACO
algorithm is an intelligent algorithm known for its strong performance in path-planning
tasks, while the TD3 algorithm represents an advanced deep reinforcement learning (DRL)
method. The IAPF-TD3 algorithm is a sophisticated path-planning algorithm, making it a
suitable choice for comparison purposes. In the experimental setup, an underwater envi-
ronment of dimensions 10 hm10 hm6 hm (excluding boundaries) is constructed. Spherical
and cylindrical obstacles are randomly positioned within this environment. For clarity, the
AUV’s left steer angle is assigned a positive value, while the right steer angle is assigned
a negative value. Similarly, the AUV’s climb angle is set as positive, and the descent
angle is set as negative. The navigation safe distance parameter is set to 0.03 hm (3 m) to
ensure safe navigation. Table 1 provides the AUV’s mechanical capacity parameters and
hyper-parameters employed during the training process. Through this comprehensive
comparison, the proposed path-planning method can be rigorously evaluated in terms of its
performance and effectiveness, providing valuable insights for the field of AUV navigation.
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Table 1. AUV’s capacity parameters and hyper-parameters in training process.

Category Parameter Name Parameter Values

Mechanical capacity

V 2 m/s (0.02 hm/s)
Ml 0.7 rad/s
Mr 0.7 rad/s
Mc 0.5 rad/s
Md 0.5 rad/s
Me 1 rad
Mp 1 rad

Hyper-parameter

er 2 × 106

bs 128
Mi 1000
Ms 500
Al 0.001
Cl 0.001
Su 0.01

Abbreviation definitions: V is velocity; Ml is the maximum steering angle (left turn); Mr is the minimum steering
angle (right turn); Mc is the maximum attack angle (climbing angle); Md is the minimum attack angle (descent
angle); Me is the maximum pitch angle (elevation angle); Mp is the minimum pitch angle (depression angle); er is
the experience replay buffer; bs is the batch size; Mi is the max episode; Ms is the max step; Al is the actor learning
rate; Cl is the critic learning rate; and su is the soft update rate.

Figure 7 shows the reward curves of the IAPF-DDPG algorithm and the IAPF-DDPG-
sensors algorithm. Figure 7 shows that the proposed algorithm in this paper outperforms
the original algorithm in terms of rewards.
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In the comparison experiment, in order to intuitively show the experimental results,
AUVs equipped with the IACO algorithm, IAPF-TD3 algorithm, and IAPF-DDPG algorithm
are all installed with a gyroscope and ranging equipment. These devices do not participate
in the operation of the AUVs, only outputting corresponding data for comparison.

Figure 8 illustrates the 3D paths generated by the IACO algorithm, IAPF-TD3 algo-
rithm, IAPF-DDPG algorithm, and IAPF-DDPG-sensors algorithm. Figure 8a presents a
top view, while Figure 8b provides a 3D view of the paths. In the figure, the cyan point
represents the starting point, and the magenta point represents the target point. The red
curve represents the path planned by the IACO algorithm, the blue curve represents the
path planned by the IAPF-TD3 algorithm, the green curve represents the path planned
by the IAPF-DDPG algorithm, and the black curve represents the path planned by the
IAPF-DDPG-sensors algorithm. Figure 8a clearly demonstrates the horizontal projection of
the four paths. The red and green curves intelligently choose to bypass complex obstacles,
while the blue and black curves navigate between the intricate obstacles. Furthermore,
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Figure 8a highlights that the red and black curves exhibit minimal fluctuation in vertical
height, whereas the blue and green curves display significant variations in numerical height.
This comprehensive visualization in Figure 8 provides a comprehensive comparison of the
path-planning capabilities of the different algorithms, shedding light on their effectiveness
in navigating complex underwater environments.
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Figure 8. The 3D paths planned by the IACO algorithm, IAPF-TD3 algorithm, IAPF-DDPG algo-
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(a) Top view. (b) 3D view. 

Figure 9 provides a comprehensive comparison of the steering angle, attack angle, 
pitch angle, and closest distance to obstacles for the AUVs, employing the four algorithms. 
The steering angle represents the horizontal turn angle between consecutive moments, 
while the attack angle refers to the vertical turn angle. In Figure 9a, a contrast of the steer-
ing angle is presented, demonstrating that the proposed algorithm improves the AUV�s 
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and the IAPF-DDPG-sensors algorithm. Both the balls and the cylinders represent obstacles. (a) Top
view. (b) 3D view.

Figure 9 provides a comprehensive comparison of the steering angle, attack angle,
pitch angle, and closest distance to obstacles for the AUVs, employing the four algorithms.
The steering angle represents the horizontal turn angle between consecutive moments,
while the attack angle refers to the vertical turn angle. In Figure 9a, a contrast of the steer-
ing angle is presented, demonstrating that the proposed algorithm improves the AUV’s
steering angle compared to the DDPG-IAPF algorithm. The IACO algorithm consistently
maintains a positive steer angle. Figure 9b highlights the comparison of the attack angle,
clearly indicating that the proposed algorithm significantly enhances the AUV’s attack
angle compared to the other three algorithms. Regarding the pitch angle, as shown in
Figure 9c, all four algorithms maintain the AUV’s pitch angle within acceptable perfor-
mance parameters. Figure 9d visually demonstrates that all four algorithms strive to
maintain a safe distance from obstacles to avoid collisions. Notably, the proposed algorithm
exhibits a shorter path while ensuring security. The comprehensive analysis provided by
Figure 9 underscores the effectiveness of the proposed algorithm in improving steering
and attack angles, maintaining appropriate pitch angles, and ensuring collision avoidance.
This further establishes its credibility and trustworthiness in terms of AUV navigation in
complex underwater environments.

Table 2 shows the experimental data of the steering angle, attack angle, pitch angle,
distance to the obstacle (the negative number represents the collision), the path length, and
the running time of the AUVs with the four algorithm models.
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Table 2. Experimental data.

Name IACO IAPF-TD3 IAPF-DDPG IAPF-DDPG-Sensors

Ms 0.116 0.140 0.615 0.570
Ma 0.149 0.054 0.070 0.032
Me 0.907 0.611 0.611 0.611
cd 0.049 0.365 0.199 0.064
pl 19.627 17.595 18.626 16.540

Abbreviation definitions: Ms is the maximum of the absolute value of the steering angle; Ma is the maximum
value of the absolute value of attack angle; Me is the maximum of the absolute value of the climbing angle; cd is
the closest distance; and pl is the path length.
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Figure 9. Steering angle, attack angle, pitch angle, and distance from the nearest obstacles of AUVs
with four algorithms. (a) Steering angle. (b) Angle of attack. (c) Pitch angle. (d) Distance to the
nearest obstacle.

To verify the reliability of the algorithm, Monte Carlo simulation experiments were
performed on the four algorithms. In order to facilitate the comparison of the experimental
results on the basis of static obstacles, a certain number of obstacles are selected and
allowed to randomly change their position within a specified range, and 1000 simulation
experiments were conducted on them. The experimental results are shown in Figure 10,
where a is the length of the AUV path and b is the distance between the AUV and the nearest
obstacle. It can be seen from Figure 10 that the length of the path generated by the IACO
algorithm is longer, while the path generated by IAPF-TD3 algorithm has large fluctuations.
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The path generated by the proposed algorithm in this paper has small fluctuations and still
ensures that AUVs reach their destinations safely. Based on the experimental results, the
algorithm proposed in this paper improves the path-planning problem on the premise of
ensuring safe navigation. To assess the reliability of the algorithm, Monte Carlo simulation
experiments were conducted on the four algorithms. To facilitate a comparative analysis,
a predetermined number of obstacles were selected, and their positions were randomly
varied within a specified range. A total of 1000 simulation experiments were performed
using these dynamic obstacles. The experimental results, depicted in Figure 10, include
the length of the AUV path (denoted as “a”) and the distance between an AUV and the
nearest obstacle (denoted as “b”). Observing Figure 10, it becomes apparent that the path
generated by the IACO algorithm tends to be longer, while the path produced by the
IAPF-TD3 algorithm exhibits significant fluctuations. Conversely, the path generated by
the proposed algorithm in this paper demonstrates minimal fluctuations while ensuring
that AUVs safely reach their destinations. Based on these experimental results, it can
be concluded that the algorithm presented in this paper effectively addresses the path-
planning problem while maintaining an AUV’s navigation safety. Through rigorous Monte
Carlo simulations and analyses, the reliability and robustness of the proposed algorithm
are validated, solidifying its efficacy in real-world scenarios.
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Figure 10. Route lengths and safe distance distribution of the four algorithms in the case of random
obstacles. (a) The simulation of the path length. (b) The simulation of the closest distance.

In order to better simulate the underwater driving environment of AUVs, a dynamic
simulation environment is also simulated in this paper. Figure 11 shows the path planned
by four algorithms in a dynamic environment.
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Figure 11. Paths generated by four algorithms in a dynamic environment. Both the balls and
cylinders are obstacles, the semi-transparent ball is a dynamic obstacle, and the curve with the red
arrow represents the movement path of the dynamic obstacle. (a) Left front bottom view. (b) Top
right front view.
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It can be observed from Figure 11 that the path smoothness planned by the IACO
algorithm is very low in the face of complex environment; on the other hand, the path
generated by the IAPF-TD3 algorithm has good smoothness, but unfortunately it collides
with obstacles. The path generated by the IAPF-DDPG algorithm has average smoothness,
but it does not collide with an obstacle while reaching the target. The IAPF-DDPG-sensors
algorithm optimizes the path on the basis of the IAPF-DDPG algorithm, and causes the
smoothness of the path to be improved. Table 3 shows the experimental data, including the
steering angle, attack angle, pitch angle, distance from obstacle (negative number indicates
collision), path length, and running time of the four algorithm models in a dynamic
environment.

Table 3. Experimental data.

Name IACO IAPF-TD3 IAPF-DDPG IAPF-DDPG-Sensors

Ml 0.079 0.078 0.619 0.601
Mc 0.075 0.024 0.024 0.006
Me 1.086 0.462 0.611 0.498
cd −0.818 −0.276 0.032 0.149
pl 20.692 14.740 16.009 15.772

Abbreviation definitions: Ms is the maximum of the absolute value of the steering angle; Ma is the maximum
value of the absolute value of the attack angle; Me is the maximum of the absolute value of the climbing angle; cd
is the closest distance; and pl is the path length.

When the AUV moves underwater, the rangefinder has a certain measurement error,
and the measurement error of the rangefinder is kept within 0.5%. It is necessary to
add random errors to the rangefinder to verify the stability of the generated path of the
algorithm. The measurement range of the rangefinder is set at 1 hm, adding random errors
to the rangefinder in a static environment, and the error comparison is made through the
output of the gyroscope. The experimental results are shown in Figure 12. The experimental
results show that the paths generated by the IACO and IAPF-TD3 algorithms have large
fluctuations in the presence of measurement errors, while the IAPF-DDPG and IAPF-DDPG-
sensors algorithms have strong stability.
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In order to estimate the computer resources consumed during the running of the algo-
rithm, the computational complexity needs to be analyzed. The computational complexity
only takes into account the operational phase, which is a path-planning task performed
on a trained model. Thus, the computational complexity of a DRL-based method is only
determined by DNNs. Usually, for dense neural networks, the complexity is O

(
µγ2), where

γ is the number of layers of the neural network and µ is the number of neurons in the
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widest layer, which is the layer with the largest number of neurons. The number of neurons
in each layer depends on the dimension of the input layer, and the number of layers in
the neural network is independent of the problem, so the computational complexity of the
DRL is O

(
n2).

From the experimental results of the above figures and tables, it can be concluded that
the algorithm proposed in this paper makes the path of AUV path-planning shorter, the
curve smoother, and its navigation safer in the three-dimensional case. Meanwhile, this
method has lower requirements for the steering and climbing of AUVs, which can improve
the positioning accuracy of AUVs in real cases.

It is easily seen from the above experimental results that the proposed algorithm is
favorable for AUV path-planning in underwater environments. Its advantages are mainly
reflected as a smooth trajectory, short length of the planned path (short running time), and
small range of course change (easier to achieve heading change and navigation positioning).

5. Conclusions and Future Work

Under the condition of simulating the AUV’s operation state deeply, in order to make
the AUV’s operation more safe and efficient in the underwater environment, this paper
proposes a new algorithm by using the sensor equipment of AUV. The artificial potential
field algorithm is improved by using a rangefinder, and an AUV’s course conversion is
processed by the Kalman filter algorithm. These were combined with the DDPG algorithm
to form the new algorithm proposed in this paper—the IAPF-DDPG-sensors algorithm.
Under the condition of ensuring an AUV’s safe navigation, the algorithm uses DDPG
network architecture to continuously train and optimize the navigation route. Experiments
in static and dynamic environments show that the algorithm has a good effect in underwater
environments. The algorithm performs well in terms of the safe travel and path distance of
AUVs, and improves the path smoothness (course switching) of AUVs.

In the future, we will focus on the energy optimization and stationary control of AUVs
in target-tracking tasks. In addition, we strive to migrate the algorithms mentioned in this
paper to the AUV entities, and constantly optimize the path-planning algorithm in this
paper in subsequent entity experiments.
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