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Abstract: In the past few years, 3D Morphing Model (3DMM)-based methods have achieved remark-
able results in single-image 3D face reconstruction. However, high-fidelity 3D face texture generation
has been successfully achieved with this method, which mostly uses the power of deep convolutional
neural networks during the parameter fitting process, which leads to an increase in the number of
network layers and computational burden of the network model and reduces the computational
speed. Currently, existing methods increase computational speed by using lightweight networks for
parameter fitting, but at the expense of reconstruction accuracy. In order to solve the above problems,
we improved the 3D deformation model and proposed an efficient and lightweight network model:
Mobile-FaceRNet. First, we combine depthwise separable convolution and multi-scale representation
methods to fit the parameters of a 3D deformable model (3DMM); then, we introduce a residual
attention module during network training to enhance the network’s attention to important features,
guaranteeing high-fidelity facial texture reconstruction quality; and, finally, a new perceptual loss
function is designed to better address smoothness and image similarity for the smoothing constraints.
Experimental results show that the method proposed in this paper can not only achieve high-precision
reconstruction under the premise of lightweight, but it is also more robust to influences such as
attitude and occlusion.

Keywords: 3DMM; 3D face reconstruction; lightweight network

1. Introduction

Reconstructing high-fidelity 3D human faces is a long-standing problem in the multi-
media and computer vision communities. Faithfully reconstructing 3D faces is a crucial
prerequisite for many downstream applications, including face editing [1], virtual avatar
generation [2,3], face alignment [4], and recognition [5]. The proposed process aims to esti-
mate a realistic 3D facial representation that predicts face geometry, appearance, expression,
and scene lighting from the input source.

Methods of traditional 3D facial reconstruction are multi-eye stereo vision
matching [6,7], 3D morphing models (3DMM) [8,9], and shape from shading [10]. However,
most of these methods require high-fidelity 3D face data to build the 3D face models [11],
which can be problematic. In addition, general high-fidelity 3D data scans are difficult
to set up [12]. Therefore, there are several constraints that limit the wide application of
3DMM [13] For more than a decade, most existing models have used no more than 300 train-
ing scans. However, this small training set is inadequate to describe the full variability of
human faces [14,15].

Human facial images are mostly composed of non-linear data, such as expressions and
wrinkles [16,17], and the reconstruction of texture details based on linear 3DMMs has been
unsatisfactory [18]. Recently, many attempts have been undertaken to address the lack of
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detail in 3DMMs by adding non-linearity to the parametric model. For example, a linear
3DMM was replaced with a completely non-linear 3DMM [16,17,19]. In other research,
non-linearity was added as a complement to the 3DMM coarse reconstruction [20–23]. In
these methods, facial details were either represented in geometry using a displacement
map or encoded into the appearance using a detailed texture (or albedo) map.

With the development of deep convolutional neural networks (CNNs), an increasing
number of experts and scholars have begun to use weakly supervised methods of deep
CNNs to apply a 3DMM coefficient regression [24]. However, the network structure used
by these methods is complicated, and the model’s operational efficiency is low. At the
same time, the inference time is long and the model parameter space is large, so they are
unsuitable for certain applications.

In order to solve this issue and create an efficient model, this paper proposes a novel
and efficient network structure design called Mobile-FaceRNet. The proposed model
reduces the computational complexity and loss of network performance while achieving
the expected effect because it uses a lightweight network to replace the traditional deep
CNN for a 3DMM regression coefficient. In addition, a multiscale feature extraction fusion
and residual attention models were added to the lightweight network model training to
restore more refined facial details by observing the key areas that reflect the facial details.
Simultaneously, a new loss function was also designed to constrain the smoothness of the
learned 3D face model and better establish the similarities and differences between the
input face image and the rendered image. This enables the proposed method to achieve
higher accuracy in a more lightweight manner. This article contributes as follows:

• An end-to-end lightweight neural network (Mobile-FaceRNet) is created, an encoding–
decoding framework is designed, and the existing 3DMM is improved to effectively
and quickly reconstruct a more accurate 3D face model.

• A residual attention model and a multiscale feature extraction fusion model are added
to quickly obtain global information while prioritizing. Subsequently, a higher focus is
laid on some of the key information by superimposing the weight values of different
regions of interest.

• A new loss function is designed that smoothly constrains the learned 3D face model.
Simultaneously, intensive training is conducted on the feature points with the loss
function, which obtains larger loss values than those obtained during the
previous training.

• A comparison of the methods using the challenging AFLW2000-3D and AFLW-LFPA
datasets demonstrates that the proposed method achieves significantly improved
performance on 3D face reconstruction and face alignment tasks.

The rest of this paper is organized as follows. The related studies on 3D face reconstruc-
tion are reviewed in Section 2. Section 3 provides a detailed description of the proposed
method. Section 4 presents the experiment setup and a discussion of the results. Finally,
some concluding remarks are presented in Section 5.

2. Related Work
2.1. 3DMM

Blanz and Vetter proposed the first 3DMM model that provided an improved basis
for subsequent 3DMM models [8]. Paysan et al. created the Basel face model (BFM)
to fill in the gaps in the 3D face reconstruction dataset [25]. In addition, Amberg et al.
used non-rigid registration, and their method of dividing face attributes provided new
possibilities for 3D face reconstruction in terms of image registration and multilinear
improvements [21]. However, they did not eliminate the linear templates. Later, Bolkart
and Wuhrer demonstrated how to use joint optimization of the model parameters and
group registration of 3D scans to directly estimate a multilinear model from 3D scans, and
then further developed their approach into a non-linear 3DMM model [26].
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2.2. Face Alignment

Face alignment is an important aspect of 3D face reconstruction. The earlier 2D face
alignment methods, such as cascaded pose regression developed by Dollar et al., mainly
located a set of sparse face key points [27]. Its main operation was a vector addition, which
could still be attributed to the regression problem. With the development of deep learning,
some scholars have gradually applied CNN methods to 2D face alignment, despite certain
inherent limitations [28]. For example, 2D face alignment can only detect feature points
that are visible in a 2D plane. When the pose of the face is large or occlusions occur, 2D face
alignment cannot detect all the feature points within the range of the face. Subsequently,
researchers began to study 3D face alignment methods [29]. Tulyakov et al. designed a
cascaded regression framework to match real 3D face feature points and solved the problem
of invisible feature points caused by self-occlusions, making important contributions to the
preservation of face shape and evaluation of the orientation of the face [30]. However, a
cascaded regression is still needed.

2.3. 3D Face Reconstruction

Roth et al. proposed a method for reconstructing a 3D face model using albedo
information that reconstructed faces from a low-quality dataset with fewer images [31]. Dou
et al. adopted an end-to-end training network to avoid complex 3D rendering, discarding
the original methods of initializing RGB images and 3D facial expression rendering [32].
Additionally, they proposed a method for adding various details after the geometric model
had been built [33]. However, these methods were subject to the limitations of the 3DMM
model implementation framework and, therefore, could not handle fine changes outside
the subspace, such as hair or details in the lips or eyes.

A volumetric CNN was proposed to directly map the image pixels to a full 3D facial
structure without being restricted in the model space, but it required a complex network
and lengthy processing time to predict the voxel data [22]. More recently, Feng et al. took a
different approach by storing the 3D facial geometry into a UV position map and training
an encoder–decoder CNN to directly regress the complete 3D facial structure along with
the semantic information from a single image [34]. Subsequently, Deng et al. used a
weakly supervised method to regress the 3DMM parameters, which achieved state-of-
the-art performance in faces with large poses and unbalanced illuminations [35]. Tu et al.
developed a new self-critic learning-based approach that could effectively improve the 3D
face model learning procedure and produce a better model [36]. However, this method still
required 2D face feature point information as support.

Therefore, compared with these works, this study proposed training a higher-
performance network—Mobile-FaceRNet—and designed a multiscale feature preprocess-
ing module to provide richer multiscale feature information for the subsequent prediction
network. Simultaneously, the encoding–decoding structure of the prediction sub-network
is reasonably designed. The image feature information is different according to the various
prediction components of each network. Furthermore, a residual attention mechanism mod-
ule is introduced to effectively improve the speed and ability of network feature extraction.
These combined improvements greatly enhance the accuracy of the 3D face reconstruction
and dense alignment.

3. Methods

The framework and details of the proposed method for simultaneous 3D face recon-
struction and 3D face alignment that fits a 3DMM with an efficient CNN are discussed in
this section.

The overall structure of the network is shown in Figure 1, which consists of a feature
extraction module, an encoder–decoder module, and a loss function. The feature extraction
module, indicated by the blue border in Figure 1, obtains fused features with richer informa-
tion by densely connecting each feature extraction unit to input into the encoder–decoder
module. The specific feature extraction module introduction will be shown in Section 3.2.
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The encoder–decoder module is represented by the green and orange parts in Figure 1. The
residual attention mechanism is introduced on the basis of the improved Mobilenetv2; it
encodes and decodes the extracted features and obtains the 3DMM coefficients, camera
parameters, and spherical harmonic illumination coefficients of the face. Subsequently, two
fully connected layers are passed to the 3D face model, improving the shape and texture.
The corresponding 3D face model is reconstructed by adding spherical harmonic illumi-
nation. The specific parameter introduction and the Mobile-FaceRNet network structure
will be shown in Sections 3.1 and 3.3. The overall network is trained by backpropagation.
The loss function part in Figure 1 is a new perceptual loss function designed by us to
better address smoothness and image similarity for the smoothing constraints. The specific
introduction will be shown in Section 3.4.
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Figure 1. Pipeline overview of the proposed Mobile-FaceRNet.

3.1. Parameters
3.1.1. DMM Parameters

The proposed method uses a parameterized 3D face geometry model as the initial face
geometry model, which is expressed as S =

{
si ∈ R3|1 ≤ i ≤ N

}
, where N = 35, 709 is the

number of vertices. At the same time, the parameterized face texture model is expressed as
T =

{
ti ∈ R3|1 ≤ i ≤ N

}
. These models are used for the initial face texture models, which

are expressed as
S = S(α, δ) = S + Eshapeα + Eexpδ (1)

T = T(β) = T + Etexβ (2)

where S is the average face geometry model and T is the average face texture model.
Eshape ∈ R3N×199, Etex ∈ R3N×199, and Eexp ∈ R3N×64 are the principal component analysis
(PCA) bases for face shape, texture, and expression, respectively. α ∈ R199, β ∈ R199, and
δ ∈ R64 are the shape, texture, and expression coefficients corresponding to the 3D face
model, respectively. S, T, Eshape, and Etex from the Basel Face Model 2009 database [8], and
Eexp is from the FaceWarehouse database [37].

The existing PCA bases for face shape and texture were improved by building two
fully-connected layers, FCshape and FCtexture, respectively.

The fully-connected layer FCshape = 199× 35, 709× 3, where the input is 199, out-
put is 107,127, and PCA-based ES of the face shape in the 3DMM has an initial weight
to obtain an improved face shape S. Similarly, the size of the fully-connected layer
FCtexture = 199× 107, 127, where ET is the initial weight, and the improved face shapeS
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and texture S models are obtained. The final 3D face reconstruction calculations are
expressed as:

S = S(α, β) = S + Snew_shape + Eexpδ (3)

T = T(β) = T + Tnew_texture (4)

3.1.2. Camera Parameters

A camera model was used to transform the face mesh model from a 3D space to a
2D plane. Similar to past research [38], a full perspective projection model was used. The
position and orientation of the camera in the world coordinate system are represented
by the rotation matrix R ∈ SO(3) and translation vector m ∈ R3, respectively, and are
expressed as:

q = Π(Rp + m) (5)

3.1.3. Spherical Harmonic Illumination Coefficient

It was assumed that the illumination was low-frequency and approximated the face
surface as a Lambert surface. Based on these two assumptions, spherical harmonics were
used to represent illumination [39]. The vertex color C(ti, ni, γ) was calculated from the
mesh vertex texture ti ∈ R3, mesh vertex normal vector ni ∈ R3, and illumination coefficient
γ ∈ R27, expressed as

C(ti, ni, γ) = ti ·
B2

∑
b=1

rb Hb(ni) (6)

where γ =
{

rb ∈ R3|1 ≤ b ≤ B2} is the corresponding illumination coefficient. Hb : R3 →
R is the spherical harmonic basis function and the first three orders (b = 3) were used.

3.2. Feature Extraction Module

DenseNet proposes a dense connection mode (dense connectivity) that connects each
layer with subsequent layers to output feature maps of the same size [40]. This dense
connection ensures that information flows between the layers, resulting in a more effective
transfer of features and gradients in the network. Additionally, the dense connection
improves the gradient disappearance problem caused by deepening the CNNs. At the
same time, the dense connection enables the final feature map that is output from the
network to synthesize the features of all the levels. Features at different levels in deep
CNNs represent different information. In a lower stage, the receptive field of the network
is smaller, more attention is paid to the details of the image, and the semantics are less
clear. At a higher stage of the network, the feature receptive field becomes larger and the
semantic features are more accurate, but the ability to represent the details becomes weaker.
The fusion of different levels of features can make full use of the semantic information of
high-level features and the detailed information of low-level features, which improves the
accuracy of 3D face reconstruction and dense alignment.

The proposed feature extraction module that obtains adequate rich information to feed
into the encoder–decoder module is shown in Figure 2. First, the image was preprocessed
using two convolutional layers with a kernel size of 3 × 3 and a channel number of 8. Sec-
ond, the outputs of each feature extraction unit were fused by a dense connection to obtain
multiscale fusion features. However, simply forming a feature extraction unit through ordi-
nary convolutional layers requires greatly deepening the network to achieve a sufficiently
large receptive field, which significantly increases the number of network parameters.
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Figure 2. Structural diagram of the feature extraction module.

To solve this problem, the proposed feature extraction unit was designed to consist of
a convolutional layer with a kernel size of 1 × 1 and 3 ResNet modules [41] with a kernel
size of 3 × 3. The number of output channels was 8. The 3 × 3 convolutional layers of
the middle module used atrous convolution, which was different from the first and third
ResNet modules. In addition, the dilation rate was set to 3 instead of the default 1. Using a
convolutional layer with a kernel size of 1 × 1 reduced the dimension of the feature map
and the number of network parameters, and improved computational efficiency. Applying
atrous convolution enable the convolutional layer to expand the receptive field of output
features while keeping the parameters unchanged.

The size of the equivalent receptive field R for an atrous convolutional layer with an
expansion rate d and kernel size K is expressed as:

R = (d− 1)× (K− 1) + K (7)

This study adopted a 3 × 3 convolutional layer with a dilation rate of d = 3, corre-
sponding to a receptive field size of 7. Stacking convolutional layers resulted in a larger
receptive field. By stacking two convolutional layers with kernel sizes of K1 and K2, the
final equivalent receptive field size is expressed as:

K = K1 + K2 − 1 (8)

According to Equations (7) and (8), the receptive field size of the output feature map
for the designed feature extraction unit was 11, and the receptive field of the output feature
map for the densely connected multiscale feature fusion module was 51. When atrous
convolution was not used, these values were 7 and 31, respectively. Obviously, using the
designed network structure ensured that the features of a larger receptive field could be
obtained in the case of a shallower network depth and a smaller number of parameters. At
the same time, this made the output feature map receptive field of each feature extraction
unit more different, allowing the network to obtain more informative fusion features to
input into the encoder.

3.3. Network Structure

A novel and efficient network structure named Mobile-FaceRNet was designed, which
was based on Mobilenetv2 [42] and transferred the input RGB image into parameters. This
model applied a depthwise separable convolution, multiscale representation, and residual
attention mechanism for 3D face alignment and 3D face reconstruction tasks for the first
time. The components of the Mobile-FaceRNet architecture are listed in Table 1.
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Table 1. Mobile-FaceRNet architectural components.

Operator t c n s

Conv2d - 32 1 2
Layer1 1 16 1 1

RA Module - - - -
Layer2 6 24 2 2

RA Module - - - -
Layer3 6 32 3 2

RA Module - - - -
Layer4 6 64 4 2

RA Module - - - -
Layer5 6 96 3 1

RA Module - - - -
Layer6 6 160 3 2

RA Module - - - -
Layer7 6 320 1 1

RA Module - - - -
Conv2d1×1 - 1280 1 1
Avgpool7×7 - - 1 -
Conv2d1×1 - k - -

The proposed encoder–decoder module was based on Mobilenetv2 [42]. The encoder
part obtained higher-level coding information through continuous downsampling and
convolution. After the decoder part continuously upsampled, it fused with the shallow
coding information through skip connections. Channel connection was used to fuse dif-
ferent coding information, which was different from directly adding high- and low-level
coding information [43]. The direct summation method ignores the differences between the
different levels of coding information, and the channel connection method can completely
retain different coding information. This study introduced a residual attention mechanism
in the decoder to highlight the focused parts of the task more effectively [44].

The residual attention module was divided into two branches: trunk and soft mask.
In contrast to spatial or channel attention mechanisms, a residual attention mechanism
generates weight information for all the elements of the feature map. Its purpose is to
inform the network which coding information needs more attention. The output H of the
residual attention module is expressed as

Hn,c = (1 + Gn,c(x))× Fn,c(x) (9)

where n represents the value at all the spatial positions. c ∈ {1, 2, · · · , C} is the index of
the channel when the residual attention module is given input x. F(x) and M(x) are the
outputs of the main and soft mask branches, respectively.

The structural design of the proposed residual attention module is shown in Figure 3.
The main branch of the residual attention module is a convolutional layer; the size of the
convolution kernel is 1 × 1, and the number of channels is half the number of input feature
maps. The 1 × 1 convolution of the backbone channel can effectively reduce the number
of feature channels, reduce the computational complexity, and merge the features of each
channel simultaneously. The soft mask branch is composed of two residual modules to
generate attention information, which act as feature selectors to enhance the good features
and suppress noise from the backbone features. The residual attention module adopts
the concept of residual learning, which can save the output characteristics of the main
branch and avoid weakening of the deep feature map caused by the stacking of multiple
attention modules.
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The improved lightweight network was used to obtain the 3D face parameter x ∈ R495

that needs to be regressed, including a 3DMM shape parameter α ∈ R199, 3DMM texture
parameter β ∈ R199, 3DMM expression parameter δ ∈ R64, and camera rotation R ∈ SO(3).
The camera translation m ∈ R3 and spherical harmonic illumination parameter γ ∈ R27 are
expressed as m and g, respectively, in:

x = (α, β, δ, R, m, γ) (10)

3.4. Loss Function

The loss function is the key to ensuring the smooth progress of the entire end-to-end
network and is an important part of obtaining a realistic 3D face reconstruction model. The
proposed loss function is expressed as

Lloss(x) = ωlandLland(x) + ωland_errorLland_error(x)
+ ωphotoLphoto(x) + ωssimLssim(x) + ωsthLsth(x) + ωregLreg(x) (11)

where Lland(x) and Lland_error(x) are the loss functions of the feature point alignment and
enhancement training, respectively. Lphoto(x) is the loss function of the difference between
the original image and the 3D face rendering image. Lssim(x) is the difference between
the original image and the 3D face rendering image. The loss function of the structural
similarity index measure (SSIM), Lsmooth(x) is the 3D face model smoothness constraint
loss function and Lreg(x) is the regularization term loss function. The weights were set
as ωland = 400, ωland_error = 2000, ωphoto = 100, ωssim = 2, ωsmooth = 50, and ωreg = 1 to
balance the loss function of each part.

Feature point loss function: This method uses the feature points of 2D face images as
weakly supervised information to train the neural network. At the same time, the relatively
advanced facial feature point detection algorithm is used to detect the 68 key points of the
face image in the training set [45]. The loss function Lland(x) is expressed as

Lland(x) =
68

∑
i=1

ωi ×
∥∥∥νki
− ν

′
i

∥∥∥2

2
(12)

where ωi is the weight corresponding to the feature point. The weight of the 52 feature
points fixed in the middle of a face is 1, and the weight of the 16 contour feature points in
the boundary position is 0.5. ν

′
i ∈ R2 is the real label of the 2D feature point of the face,

ki ∈ {1, 2, . . . , N} is the vertex index of the corresponding 3D face model, and νki
is the

coordinate of the reconstructed 3D face model projected to the pixel plane.
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A loss function Lland_error(x) was added after the fifth iteration to strengthen the
training of feature points with relatively large errors, which is expressed as

Lland_error(x) =
52

∑
i=1

ei ×
∥∥∥νki
− ν

′
i

∥∥∥2

2
(13)

where ei is the average error of the 52 fixed feature points in the training of the
previous iteration.

Pixel loss function: The goal of the pixel loss function Lphoto(x) is to make the rendered
and input images as close as possible, render the reconstructed 3D face model to the pixel
space, and align it with the input monocular face image. The proposed method used a
differentiable renderer to render the 3D face model to the 2D plane [8]. The rendered image
was matched with the input monocular face image, and their similarity in pixel space was
compared. The loss function Lphoto(x) is expressed as

Lphoto(x) =
1
n ∑

i∈V

∥∥∥Ii − I
′
i

∥∥∥
2

(14)

where V is the set of all the projected face area pixels on the pixel plane, and n is the number
of pixels in V. The rendering of the 3D face model is the color of the input monocular face
image at position i and the resulting image at position i after inputting the face area pixels.

SSIM loss function: The goal of the SSIM loss function is to guarantee the structural
similarity of the input and rendered images. The texture of the 3D face model can be better
reconstructed by adding the SSIM loss function, which is expressed as

Lssim(x) = 1−
(
2µIµI′ + c1

)(
2σI I′ + c2

)(
µ2

I + µ2
I′
+ c1

)(
σ2

I + σ2
I′
+ c2

) (15)

where µI = 1
n · ∑

i∈V
Ii is the set of all the projected face area pixels on the pixel plane, n

is the number of pixels in V, and σI I′ is the covariance of the visible area texture of the
input and rendered images. and σ2

I′
are the variances σ2

I′
of the visible area texture in the

input and rendered images, respectively. Here, c1 = 0.012 and c2 = 0.032. In addition,
µI′ =

1
n · ∑

i∈V
I
′
i , and are the average textures of the visible area in the input and rendered

images, respectively.
Smoothness Constraint Loss: A smoothness constraint loss of a 3D face ensures the

smooth shape of a reconstructed 3D face model and prevents the 3D face reconstruction
results from turning over and having a rough surface. The smoothness constraint is
expressed as

Lsth =
1
N

N

∑
i=1

∥∥∥∥∥ 1
di

∑
j∈Adji

(
vi − vj

)∥∥∥∥∥
2

2

(16)

where N is the number of vertices of the 3D face model, di is the degree of the i-th vertex
of the 3D face model, Adji is the set of neighbor indexes of the i-th vertex of the 3D face
model, and vi is the i-th vertex of the 3D face model coordinates.

Regularization: Regularization items were added to reasonably constrain the network
and ensure the final integrity of the 3D reconstruction, which is expressed as:

Lreg = ∑i ωα‖α‖2+ωβ‖β‖2 + ωδ‖δ‖2 (17)

Here, ωα = 2× 10−5, ωβ = 2× 10−2, and ωδ = 4× 10−4.
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4. Experiments
4.1. Implementation Details and Datasets

The BFM was used as the 3D deformable face model. The face image dataset used
the CelebA [46] and 300W-LP [47] attribute datasets, and the images were balanced and
optimized in advance. A total of approximately 120,000 clear facial images with a relatively
uniform distribution were obtained for the 3DMM training. Data enhancements were made
to these images, including flipping (horizontal flipping), random rotation (rotating from
−30◦ to −30◦ clockwise based on the center point), and simulated lighting. During the
training process, the image was either flipped or rotated at random, with a probability
of 50% for each application. The simulated lighting operation randomly multiplied the
RGB color channel of the face image by 0.6 to 1.2, and the three channels were operated
independently. The probability distribution was a uniform distribution of 0.6 to 1.2.

The test dataset used the AFLW2000-3D and AFLW-LFPA facial image datasets.
AFLW2000-3D is composed of the first 2000 images in the AFLW database and their 3D
information [47]. The 3D information was obtained through a 3DMM reconstruction and
contained 68 feature points. AFLW-LFPA is another extension of the AFLW dataset [28]. It
contains face images with multiple poses and views, a balanced yaw angle distribution,
and 34 face key points.

Using the network model described above for training, the size of the input images
was set to 64 × 64 × 3 pixels, and the number of vertices was 35,709, which is the same
as in Ref. [28]. An Adam optimizer was used to optimize the model with a learning rate
of 0.001 and a batch size of 4. The proposed network was trained on a Lenovo P720
graphics workstation.

4.2. Comparative Experiment
4.2.1. 3D Face Alignment

Face images were randomly selected for qualitative testing from the ALFW2000-3D
dataset, as shown in Figure 4. The normalized mean error (NME) was used as an index
to evaluate the performance of the algorithm [47]. The normalized average error was
normalized according to the size of the face-bounding box, which is expressed as

NME =
1
T

N

∑
k=1

‖mk − nk‖2
d

(18)

where T is the number of vertices and d is the square root of the product of the length and
width of the real bounding box of the face, which is calculated as d =

√
ωbbox × hbbox. In

addition, mk ∈ R2 and nk ∈ R2 are the predicted point coordinates and label on the test
set, respectively.

Figure 4. Dense face alignment effect.
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The absolute value of the yaw angle was divided into three types: I (0◦, 30◦], II
(30◦, 60◦], and III (60◦, 90◦]. A total of 574 sheets were randomly selected for testing;
thus, the ratio of the face image at each angle was 1 to ensure that the result was evenly
distributed. A total of 68 sparse feature points were used to measure the face alignment
effect [48]. The results of the proposed method compared to those of the other methods on
the AFLW2000-3D (68 feature points) [27] and AFLW-LFPA (34 feature points) datasets are
listed in Table 2. The evaluation standard used the normalized average error (%). As the
data decreased in number, the alignment effect improved. Here, “-” indicates that there is
no corresponding data. The data information for the other methods was based on related
papers published as the main source. Good robustness and higher accuracy were achieved
at different angles of the face poses.

Table 2. NME (%) results for dense face alignment.

Method
AFLW2000-3D AFLW-LFPA

I II III Mean Mean

SADRNet [49] - - - 4.33 -
Img2pose [50] - - - 3.91 -

3DSTN [51] 3.15 4.33 5.98 4.49 -
DeFA [52] - - - 4.50 3.86
PRNet [34] 3.75 4.51 5.61 5.42 -

Nonlinear 3DMM [16] - - - 4.70 -
ACRLoss [53] - - - 4.27 3.75

Chang et al. [54] 3.11 3.84 6.60 4.52 -
Tran et al. [17] - - - 4.12 -

Ours 2.89 3.76 4.78 3.80 3.34

4.2.2. 3D Face Reconstruction

The proposed approach was qualitatively compared against recent learning-based
texture reconstruction methods from Refs. [18,19,23,35,38], as shown in Figure 5. The
proposed method was superior to the other approaches with high texture reconstruction.
From the thickness and shape of the eyebrows to the wrinkles around the mouth and
forehead, the proposed texture and shape reconstructions achieved strong identification
characteristics in the corresponding input images.

For quantitative comparison, the experiments evaluated the shape reconstruction
performance of the proposed method on the CelebA dataset [46]. Additionally, the focus
was mainly laid on the criteria for measuring the image-level difference. First, the L1-
distance loss was applied as the basic pixel-level criterion. Second, two commonly used
image similarity criteria were utilized to evaluate the similarities between the rendered and
original input face images, namely the SSIM and peak signal-to-noise ratio (PSNR). With
regard to the human face problem, the PSNR is expressed as

PSNR
(

I, I
)
= 10 · log10

(
2552

MSE
(

I, I
)) (19)

where I and I are the 2D image of the original face and the projected 2D image of the
reconstructed face, respectively.



Sensors 2023, 23, 6713 12 of 18
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Yang et al.

Lin et al.

Gecer et al.

Deng et al.

Ours

Genova et al.

Figure 5. Comparison of qualitative results with other methods (Yang et al. [18], Lin et al. [23], Gecer
et al. [19], Deng et al. [35], Genova et al. [38]).

Two well-known pretrained face recognition networks were also leveraged to map
from the image space to the feature space and evaluate the difference between the rendered
and input face images in the facial feature space. The two facial recognition networks
that were adopted were LightCNN and evoLVe [55] because of their state-of-the-art perfor-
mances and wide acceptance [23]. In summary, the difference was calculated between two
face images at the pixel level (including L1-distance loss, PSNR, and SSIM) and face-feature
level (including LightCNN and evoLVe). The NME was also employed to evaluate the
proposed method on the task of 3D face reconstruction in comparison with Yang et al. [18],
Mobilenetv2 [42], and DeFA [52] on the AFLW2000-3D dataset. Following Ref. [56], the
Iterative Closest Points algorithm was first employed to find the corresponding nearest
points between the reconstructed 3D face point cloud and ground truth. Then, the NME
normalized by the face bounding-box size was calculated. The proposed method showed
significant improvements and surpassed the performance of the other three methods on
the AFLW2000-3D dataset, as shown in Figure 6. The numerical statistics for each method
are listed in Table 3.

Table 3. Comparative results.

Method L1 ↓ PNSR ↑ SSIM ↑ LightCNN ↑ evoLVe ↑
Deng et al. [35] 0.05 26.58 0.83 0.72 0.64
Gecer et al. [19] - 26.5 0.898 - -

Lin et al. [23] 0.034 29.69 0.89 0.90 0.85
Yang et al. [18] 0.02 24.88 0.89 0.91 0.83

Ours 0.01 28.50 0.96 0.94 0.87
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Figure 6. 3D reconstruction performance (CED curves) on the AFLW2000-3D dataset (Trans et al. [17]).

4.2.3. Comparisons of Different Network Structures

A complex network structure is generally described as being a deep learning model
that often uses forward propagation calculation (required computing power) in addition
to calculating its accuracy, combined with the number of parameters (required memory).
The proposed method and current mainstream lightweight neural network structures are
compared in this section to verify the effectiveness of the proposed network structure on
the task of face alignment and in terms of complexity. The experimental network structures
included DenseNet [40], MobileNetV2 [42], ResNet50 [57], and the proposed Mobile-
FaceRNet. The results of the proposed Mobile-FaceRNet network structure demonstrated
a significant reduction in errors on the AFLW and AFLW2000 datasets when compared
to the other network models, as listed in Table 4. In terms of operational efficiency, the
number of model parameters and Giga-Floating Point Operation (GFLOP) complexity
achieved 88.6% and 90.7% reductions, respectively, compared to ResNet50. MobileNetV2
was slightly higher in terms of operational efficiency than Mobile-FaceRNet. However, the
proposed method demonstrated an obvious improvement in terms of accuracy. Compared
with DenseNet, the number of model parameters and GFLOP complexity achieved 62.3%
and 84% reductions, respectively.

For a fairer comparison, the results where Mobile-FaceRNet did not combine the
residual attention mechanisms were also calculated. Mobile-FaceRNet was very close to
MobileNetV2 in terms of complexity and the number of model parameters while also
displaying an obvious accuracy improvement, as shown in Table 4. The proposed method
significantly exceeded the performance of the other two network structures in complexity
and accuracy on the AFLW and AFLW2000 datasets. In terms of complexity and the
number of model parameters, the proposed method achieved 89.5% and 91.6% reductions
compared to ResNet50, respectively. Compared with DenseNet, the number of model
parameters and GFLOP complexity achieved 65.7% and 86.2% reductions, respectively,
showing a significant improvement. In order to better reflect the operating efficiency of our
model, we also compared the final computing time of the model. It can be seen that our
model is significantly shorter than ResNet50 and DenseNet, and it has the same times as
MobileNetv2, but it has significantly improved the detail recovery ability of the model.
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Table 4. The NME(%) performance comparison of the proposed network against other networks.

Net
AFLW2000-3D AFLW-LFPA

Params (M) GFLOPs Time (h) Mean Mean

ResNet50 [57] 23.11 1.319 26 4.179 5.471
MobileNetV2 [42] 2.38 0.109 9 4.165 5.540

DenseNet [40] 7.02 0.800 18 4.087 5.286
Ours (no attention) 2.40 0.110 8 3.936 5.201

Ours 2.56 0.121 9 3.828 4.904

4.2.4. Ablation Study

A weakly supervised 3D face reconstruction method was implemented for single im-
age input, and a multiscale feature extraction fusion module and residual attention module
were added to the encoder–decoder network. Ablation experiments were performed on
the BFM dataset to test the effect of adding a multiscale feature extraction fusion module
and a dual attention module to the 3DMM coefficients (s, t, and e), and the experimental
results are listed in Tables 5 and 6, respectively. Two indicators—a scale-invariant depth
error (SIDE) and mean angle deviation (MAD)—were used to evaluate the reconstruction
effect of the algorithm [56].

Table 5. Ablation results of the dual attention module.

Eshape Etex Eexp SIDE
(
×10−2) ↓ MAD(deg .) ↓

√
0.7743 15.8709√
0.7754 15.8925√
0.7721 15.7134√ √ √
0.7637 15.2986

Table 6. Ablation results of multiscale feature extraction and fusion module.

Eshape Etex Eexp SIDE
(
×10−2) ↓ MAD(deg .) ↓

√
0.7778 15.6845√
0.7505 15.1609√
0.7512 15.4257√ √ √
0.7160 14.7222

SIDE is defined as the error between the reconstructed face depth and the actual face
depth, expressed as

SIDE
(

d, d
)
=

√
∑uv ∆2

uv
W × H

−
(

∑uv ∆uv

W × H

)2
(20)

where d and d are the depth values of the reconstructed and actual faces, respectively, and
∆uv = ln(d)− ln

(
d
)

.MAD is defined as the average error between the reconstructed face
and the surface normal of the actual face, and is expressed as

MAD(n, n) = ∑uv r(n, n)
W × H

(21)

where r is the angle between the two vectors starting from the same pixel point, n is the
surface normal vector calculated by using the true depth value of the dataset, and [insert
variable here] is the surface normal calculated by using the predicted depth value vector.
The ablation results of the two modules are listed in Table 7.
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Table 7. Ablation results of the two modules.

Eshape Etex Eexp SIDE
(
×10−2) ↓ MAD(deg .) ↓

√
0.7529 15.0565√
0.7369 15.7608√
0.7365 15.1116√ √ √
0.7110 15.4342

The above results show that adding a single module to the network improved the
experimental results to a certain extent, and adding two modules at the same time achieved
the best effect. The multiscale feature extraction and fusion module fully combined the
semantic information of high-level features with the detailed information of low-level
features, strengthened feature transfer and reuse, improved the network gradient dis-
appearance problem, and provided richer feature information for the encoder–decoder
prediction network. The residual attention module was added to the encoder and decoder
networks to assist the network in better extracting relevant feature information, accelerating
the convergence, and completing the reconstruction task.

An ablation experiment was designed to determine whether to use 3D face smoothness
in the loss function, and the effect is shown in Figure 7. Adding the 3D face smoothness
constraint to the loss function ensured the local smoothness of the 3D reconstruction model,
which had a greater impact on the 3D face reconstruction effect. An image of the input face
is shown in Figure 7a. The effects of not using and using the 3D face smoothness constraint
are shown in Figure 7b and Figure 7c, respectively. The reconstructed 3D face model had a
face flip and a rough surface when the 3D face smoothness constraint was not used, and the
quality of the reconstruction was poor. The effect was significantly improved after adding
the smoothness constraint. This indicates that the smoothness constraint of the 3D face
plays a vital role.

(a)Original image (b)without smooth (c)smooth

Figure 7. Effect of adding a 3D face smoothness constraint.
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5. Conclusions

In this paper, we propose an efficient and lightweight network model, Mobile-FaceRNet,
for 3D face reconstruction and dense face alignment improved the ability of the network
to extract and process face image features by designing a densely connected multiscale
fusion module and introducing a residual attention mechanism. Moreover, the existing
3DMM model was used as part of the fully connected layer of the network. The 3DMM
model was improved to effectively reconstruct a more accurate 3D face model and improve
its generalization ability. A new loss function was designed that effectively improved the
reconstruction quality by adding smoothness constraints to the learned 3D face model and
using the SSIM of the input face image and rendered image as the loss. Solves the problem
of using a lightweight network for parameter fitting to improve the calculation speed but
lose the reconstruction accuracy. Experimental results showed that the proposed method
achieved high-precision reconstruction under the premise of a lightweight network; model
parameters and GFLOP complexity achieved 65.7% and 86.2% reductions, respectively,
showing a significant improvement. At the same time, it was more robust to influences such
as attitude and occlusion. This shows that the proposed algorithm has high application
value in various scenarios. In future work, we will start with human head reconstruction
and consider employing the albedo parameterized model to complement the head texture
map and expand the range of reconstruction.
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