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Abstract: Ship trajectory classification is of great significance for shipping analysis and marine
security governance. However, in order to cover up their illegal fishing or espionage activities, some
illicit ships will forge the ship type information in the Automatic Identification System (AIS), and
this label noise will significantly impact the algorithm’s classification accuracy. Sample selection is
a common and effective approach in the field of learning from noisy labels. However, most of the
existing methods based on sample selection need to determine the noise rate of the data through prior
means. To address these issues, we propose a noise rate adaptive learning mechanism that operates
without prior conditions. This mechanism is integrated with the robust training paradigm JoCoR
(joint training with co-regularization), giving rise to a noise rate adaptive learning robust training
paradigm called A-JoCoR. Experimental results on real-world trajectories provided by the Danish
Maritime Authority verified the effectiveness of A-JoCoR. It not only realizes the adaptive learning
of the data noise rate during the training process, but also significantly improves the classification
performance compared with the original method.

Keywords: AIS data; deep learning; trajectory classification; label noise; robustness; noise rate
adaptive learning; real-world data

1. Introduction

With the rapid development of information technology, marine datasets are growing
at an astonishing rate, driving the ocean into the era of big data. Marine data possesses
characteristics such as large volume, diversity, and spatiotemporal properties, making it
a typical application area for big data [1]. Among marine data, ship trajectory dataset
is an important component, formed by collecting and recording a series of navigation
information generated by ships during their voyages. These data form sequences with
temporal and spatial attributes, composed in the order of collection time.

The Automatic Identification System (AIS) [2] is currently the most widely used global
ship identification and tracking system in the field of maritime traffic. The AIS system
encodes and broadcasts key information of ships (such as position, speed, heading, ship
type, etc.) through transmitters and receivers on the ships. This information can be received
and used by surrounding ships, shore-based stations, and satellites to monitor the real-time
positions and navigation statuses of ships.

Through AIS, ships are able to perceive and recognize each other, taking timely evasive
actions to reduce the risk of collisions at sea. AIS provides not only static information
about the ships, such as length, width, and ship type, but also dynamic information
including latitude, longitude, and acquisition time. These pieces of information can be used
for predicting ship behavior [3–6] and trajectories [7,8], supporting maritime search and
rescue systems [9,10], detecting fishing activities [11,12], as well as identifying anomalous
behavior [13–16]. This greatly facilitates maritime operations and enhances maritime
safety governance. Additionally, the ship type information in AIS plays a crucial role in
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shipping analysis, prevention of maritime terrorism, and combating maritime smuggling
activities [17].

In order to better understand and utilize ship trajectory data, the task of ship trajectory
classification has emerged. This task aims to construct classification models by extracting
feature information embedded in trajectory data to accurately determine the types of
different ship trajectories. This ship trajectory-based classification task has extensive
application value and prospects. It can be used in maritime traffic management to assist in
monitoring and controlling ship operations. In the field of maritime safety, it helps identify
suspicious ship activities and prevent illegal behaviors such as terrorism. Moreover, it
can provide decision-making support for marine resource management, promoting the
sustainable development of fisheries and shipping industries.

However, it is important to note that AIS data presents certain challenges and issues
in practical applications. Due to the susceptibility of AIS data to manipulation by vessel
owners, some illicit vessels may intentionally falsify ship type information to conceal illegal
fishing activities, espionage operations, or other unlawful behaviors. According to statistics,
illegal fishing activities result in the capture of approximately 11 to 26 million metric tons
of fish annually, accounting for 15% of global fish consumption [18]. Additionally, there
are instances where certain countries may engage in malicious manipulation of AIS data,
disguising reconnaissance vessels as neighboring fishing vessels, leading to security risks
and geopolitical concerns.

Moreover, AIS data itself may contain recording or transmission errors, resulting
in ship type information not matching the actual situation. Such data noise and errors
pose challenges to ship trajectory-based classification tasks because incorrect ship type
information increases the difficulty of detecting maritime illegal activities, posing a serious
threat to maritime safety.

Trajectory classification methods based on deep learning typically assume that the ship
types in the dataset are correctly labeled. However, this assumption is often difficult to meet
in real-world scenarios. Deep learning models have powerful learning capabilities and can
fit training sets with arbitrary label noise proportions [19]. However, the presence of label
noise severely compromises the generalization performance of the models. Compared to
other types of noise, label noise is considered more harmful to the model’s performance [20].
Learning from datasets with noisy labels has become an important task in modern deep
learning applications.

To avoid the model learning incorrect samples, many recent studies have adopted sam-
ple selection methods to choose correctly labeled samples from the noisy training dataset.
Arpit et al. [21] found that deep learning models tend to first learn from easy samples
during the training process and then learn from noisy label samples and difficult samples.
Therefore, the small loss selection strategy treats samples with small training losses as clean
samples [22]. MentorNet [23], based on the idea of knowledge distillation [24], first uses
a teacher model to select clean samples, which are then input into the student model for
training, partially avoiding the influence of noisy label samples. Co-teaching [25] proposes
using two different models (with different structures or different initializations of the same
structure) with different learning abilities to filter out different types of errors caused by
noisy labels. Each model selects its own small-loss samples from the same mini-batch
and exchanges them with the peer model to update parameters. Co-teaching+ [26] further
selects samples with inconsistent predictions from the small-loss samples, encouraging both
models to learn the same correct patterns. JoCoR (joint training with co-regularization) [27]
uses contrastive loss to measure the consistency of predictions between the two peer models
and combines it with the supervised loss of the two peer models to form a joint loss. It
selects a certain proportion of small joint loss samples to train the two peer models simul-
taneously. Yao et al. [28] believe that the proportions of noisy label samples in different
mini-batches are different, and using a relatively fixed proportion to select training samples
does not reflect the actual situation. They propose using the Jensen–Shannon divergence
(ranging from 0 to 1) to measure the difference between predicted results and true labels,
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which represents the probability of belonging to clean samples. For samples identified as
containing noisy labels, they construct two different views to further measure the difference
in predictions between the two views and differentiate between in-distribution samples
and out-of-distribution samples.

The method of learning from small-loss samples has overall good performance but
can accumulate errors due to incorrect selections. In addition, determining the appropriate
proportion of small-loss samples remains a challenge. Existing methods mostly directly
use the true noise rate of the dataset as the proportion of small-loss samples. However, it is
often difficult to obtain the true noise rate of the dataset in reality, making these methods
challenging to directly apply to practical problems. To address this issue, we propose a
noise rate adaptive learning mechanism without prior conditions, allowing the model to
learn the data noise rate during training. We combine this mechanism with JoCoR and
design a robust training paradigm called A-JoCoR.

The contributions of this study are summarized as follows: (1) propose a noise rate
adaptive learning mechanism without prior conditions. (2) Combine the proposed noise
rate adaptive learning mechanism with JoCoR to design the robust training paradigm
A-JoCoR. (3) Using AIS data from the Danish Maritime Authority, which includes 80,000 tra-
jectories with eight ship types, each containing 10,000 samples from January to May 2020
within their territorial waters, we demonstrate the effectiveness of the proposed method
for ship trajectory classification problems with noisy labels.

The rest of this paper is organized as follows: Section 2 introduces the methods used
in this paper. Section 3 demonstrates the effectiveness of the proposed algorithm through
its application to AIS trajectories. Section 4 discusses and analyzes the experimental results.
Finally, the conclusions are discussed in Section 5.

2. Methods

The classification of ship trajectories with noisy labels in this paper consists of three
stages: (1) data preprocessing and construction of the trajectory dataset, (2) adding different
levels of label noise to the original dataset through a label transformation matrix, and
(3) learning the noisy trajectory dataset using the A-JoCoR robust training paradigm.

2.1. AIS Data Preprocessing

AIS data contains a vast amount of information generated by ships during their
voyages, comprising a total of 27 fields, including 10 dynamic data fields such as collection
timestamp, latitude, longitude, and speed, and 14 static data fields such as ship dimensions,
draft, and ship type. Additionally, there are three calculated fields. The names and
meanings of some fields are shown in Table 1. Through a survey of existing ship trajectory
classification works, this paper ultimately aims to retain seven fields from the AIS data:
timestamp, MMSI, latitude, longitude, Speed Over Ground (SOG), Course Over Ground
(COG), and ship type. The MMSI serves as a unique identifier for different ship trajectory
data, facilitating the segmentation of data from different vessels. The ship type is used as a
label for annotating ship trajectory data, and it plays a role in subsequent model training.
The combination of timestamp, latitude, and longitude forms a ship trajectory data point
containing temporal and spatial information, while the inclusion of SOG and COG enriches
the features of the ship trajectory data. However, due to technical malfunctions and
coverage limitations, the data may suffer from issues such as missing data and cannot be
directly used for training deep learning models. Therefore, preprocessing of the AIS raw
data is necessary before constructing the ship trajectory dataset (Figure 1).

Figure 1. Trajectory preprocessing structure.
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Table 1. Partial AIS data fields and their meanings.

Name Meaning Example

Timestamp Timestamp from the AIS
basestation 1 January 2020 08:10:43

MMSI MMSI number of vessel 255806119
Latitude Latitude of message report 54.70378

Longitude Longitude of message report 10.888377

ROT ROT of turn from AIS
message if available −1.1

SOG Speed Over Ground from AIS
message if available 18.6

COG Course Over Ground from
AIS message if available 239.7

Heading Heading from AIS message if
available 240

Ship type Describes the AIS ship type of
this vessel Pilot

Width Width of the vessel 4
Length Length of the vessel 16

Type of position fixing device Type of positional fixing
device from the AIS message GPS

Draught Draught field from AIS
message 1.7

The data preprocessing process is as follows. Firstly, the trajectory points in the raw
AIS data with the same MMSI are arranged in chronological order. This is performed to
separate the navigation trajectories of different vessels. Secondly, trajectory points with
missing values or values that clearly do not conform to real-world conditions are removed.
This includes cases where the SOG is greater than 80 knots/hour, longitude is greater than
180◦, and latitude is greater than 90◦. Next, a threshold-based method is applied to remove
drift points in the trajectories. In this study, a distance threshold of 1 km is set based on
experience. If the distance between a trajectory point and the line connecting its preceding
and succeeding points exceeds the threshold, the point is considered a drift point and is
removed. Furthermore, the trajectories are segmented. A single vessel’s data within a
specific time period may include multiple sailing trips. To determine if a vessel’s data
within a time period contains multiple sailing trips, time and distance interval thresholds
are set for adjacent trajectory points. If the time interval between two adjacent trajectory
points exceeds 1 h or the distance interval exceeds 1 km, it is considered that the vessel
has started a new trip, and the trajectory is segmented accordingly. After segmenting all
trajectory data, the trajectories are further divided into segments of 500 trajectory points
each. Trajectory segments with fewer than 500 points and excessively short trajectories are
removed, resulting in fixed-length trajectory data of 500 points.

In addition, when analyzing the segmented vessel trajectories, it was observed that
many vessels had a prolonged SOG value of 0. Upon observing the latitude and longitude
of these trajectory points, it was found that these vessels remained stationary throughout
the duration or for a significant period of time. For this category of stationary vessels, it is
believed that their trajectories contain insufficient information and cannot be applied to
subsequent research tasks. Therefore, their entire trajectories are removed.

After the preprocessing steps described above, this study extracted a total of 381,483 tra-
jectory data points from AIS data within the territorial waters of Denmark from January to
May 2020, as provided by the Danish Maritime Authority [29]. These trajectory data points
encompassed 15 types of vessel trajectories, as shown in Table 2 with specific information.
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Table 2. The number of preprocessed trajectories for each type of ship.

Ship Type Number of Trajectories

Passenger 140,715
Fishing 106,149

Pilot 29,329
HSC 25,954

Dredging 19,556
Tug 19,207
SAR 10,982

Cargo 10,822
Tanker 7545
Towing 3196

Law enforcement 2971
Reserved 1799

Anti-pollution 1320
Pleasure 1258
Sailing 680

It can be observed that the preprocessed ship trajectory data exhibits a severe class
imbalance issue. The number of cruise ship trajectories is over two hundred times greater
than the number of sailboat trajectories. To ensure a balanced distribution of samples in
the constructed dataset, we selects eight types of vessel categories, including passenger
ships, tugboats, fishing boats, pilot boats, cargo ships, dredgers, high-speed boats, and
search and rescue vessels. Each category consists of 10,000 trajectories, resulting in a
total of 80,000 trajectories comprising the ship trajectory dataset for further analysis and
research.The training set, validation set, and test set are divided in a ratio of 6:2:2, with the
samples of ship trajectories from each class evenly distributed across these datasets.

2.2. Noise Label Setting

To evaluate the performance of the proposed method on ship trajectory classification
tasks with noisy labels, this study follows the approach outlined in references [27,30,31] to
introduce noisy labels into the dataset. Specifically, a label corruption matrix Q is employed
to intentionally introduce label noise into the constructed dataset.

Qij = Pr[ỹ = j|y = i] (1)

where Qij denotes the probability of a clean sample with label i being flipped to a noisy
sample with label j.

In this study, two structures of label corruption matrix Q are utilized: (1) symmetric
flipping [32], and (2) asymmetric flipping [30], which simulates the noise labels in fine-
grained classification. An example of the label corruption matrix Q is shown in Figure 2. It
is worth noting that asymmetric flipping only selects half of the labels for flipping, resulting
in a total label corruption rate that is half of the label flipping ratio.

2.3. Robust Training Paradigm for Noise Rate Adaptive Learning

This paper proposes a noise rate adaptive learning mechanism without any prior
assumptions. The mechanism enables the model to learn the noise rate of the dataset
during the training process, allowing for the adaptive adjustment of the selection ratio
of small-loss samples. The proposed mechanism combines this approach with the robust
training paradigm JoCoR, resulting in the design of a robust training paradigm called
A-JoCoR, which incorporates noise rate adaptive learning.
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Figure 2. Example of noise transition matrix Q (taking six classes and a noise ratio of 0.5 as an
example).

2.3.1. Mechanism of Noise Rate Adaptive Learning without Prior Assumptions

We explored the intrinsic relationship between various metrics of deep learning models
during training and the actual data corruption rate. Through experimental analysis on the
ship trajectory dataset with noisy labels using JoCoR, taking the results on a 50% symmetric
noise dataset as an example (as shown in Figure 3), we found that as the number of training
epochs increases, the training accuracy of the model continues to rise until it surpasses
the proportion of clean data in the training set. This is because the model gradually fits to
the erroneous label data in the later stages of training. However, during this process, the
validation accuracy of the model does not rise along with the training accuracy but rather
starts to deviate and never exceeds the proportion of clean data. This discrepancy is likely
due to inconsistent characteristics of the noise data between the training and validation
sets. The features learned from the erroneous label data in the training set do not help
improve the model’s classification performance on the validation set, as the relatively
easy-to-discriminate clean samples continue to be correctly classified on the validation set.

Figure 3. Results of JoCoR on the 50% symmetric noise dataset. Accuracy vs. epochs.
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To validate this inference, we conducted statistics on the proportion of correctly
predicted clean samples in the training set and validation set under each epoch during
JoCoR’s training on a 50% symmetric noise dataset. The variation curve of this proportion
with respect to epochs is shown in Figure 4. The solid line in the graph represents the mean
accuracy over five experiments, and the shaded area represents the STD band.

Figure 4. The proportion of clean samples among correctly predicted samples.

By comparing Figures 3 and 4, it can be observed that when the training accuracy curve
and the validation accuracy curve begin to diverge, the curve representing the proportion
of correctly predicted clean samples also starts to separate. The proportion of correctly
predicted clean samples in the training set gradually decreases with an increasing number
of epochs, while the proportion in the validation set remains relatively unchanged. This
alignment perfectly aligns with the changing trends of training accuracy and validation
accuracy. This experimental phenomenon confirms the previous inference: the model’s
learning of erroneous label data features on the training set does not immediately affect its
classification results on the validation set. This also explains why the model’s validation
accuracy does not surpass the proportion of clean data.

Based on this finding, we incorporate the model’s validation accuracy into the small-
loss sample selection mechanism and propose a no prior condition adaptive learning
mechanism for noise rate. The specific design is as follows:

R(t) = 1− τt

τt+1 = τt − ρ(τt − (1− σ))

σ = peva
t

(2)

where t represents the training epoch, σ denotes the estimated noise rate of the model in
the t-th round, peva

t represents the validation accuracy of the model in the t-th round, τt
denotes the sample abandonment rate in the t-th round, and the adaptive learning rate
ρ ∈ (0, 1].

The noise rate adaptive learning mechanism proposed in this paper only requires
setting the initial values of the sample abandonment rate τ and the adaptive learning rate
ρ. With these settings, it can dynamically estimate the noise rate based on the validation
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accuracy during the model training process. This eliminates the drawbacks of existing
robust classification frameworks that rely on prior means to estimate the noise rate.

2.3.2. Robust Training Paradigm for Noise Rate Adaptive Learning

To evaluate the effectiveness of the proposed noise rate adaptive learning mechanism,
it was combined with JoCoR to introduce a joint training framework called A-JoCoR. The
overall framework structure is illustrated in Figure 5.

Figure 5. Schematic diagram of A-JoCoR.

A-JoCoR initially performs different parameter initializations for two equivalent mod-
els with the same structure. Then, during the training process, the noise rate adaptive
learning mechanism estimates the true noise rate µ and assigns the estimated noise rate σ to
the sample abandonment rate τ. Each equivalent model retains a corresponding proportion
of small-loss samples based on the τ value of each epoch. They calculate their respective
supervised loss and contrastive loss, forming a joint loss for simultaneous training. This
process enhances their discriminative ability towards clean samples and gradually achieves
consistent predictions. The detailed procedure is shown in Algorithm 1.

Algorithm 1 A-JoCoR
Input: Network f with Θ = {Θ1, Θ2}, learning rate η, training set D,
epochTmax, iteration Imax, initial sample abandonment rate τ1, the estimated noise rate
σ;

for t = 1, 2, . . . , Tmax do
Shuffle training set D;
for n = 1, 2, . . . , Imax do

Fetch mini-batch Dn from D;
p1 = f (x, Θ1), ∀x ∈ Dn;
p2 = f (x, Θ2), ∀x ∈ Dn;
Calculate the joint loss l of p1 and p2 by Equation (3);
Obtain small-loss sets D̃n by D̃n = argminD′n :|D′n |≥R(t)|Dn |l(D′n)// from Dn;

Calculate the average loss L of D̃n by L = 1
|D̃| ∑x∈D̃ l(x);

UpdateΘ = Θ− η∇L;
end for
Obtain peva

t ;
Update σ = peva

t ;
Update τt+1 = τt − ρ(τt − (1− σ));
Update R(t + 1) = 1− τt+1;

end for
Output: w f and wg

In the context of multi-class classification involving M classes, we consider a dataset
D = {xi, yi}N

i=1 consisting of N samples, where xi represents the i-th instance and yi ∈
1, . . . , M is its corresponding observed label. Following JoCoR, A-JoCoR involves two
deep neural networks referred to as f (x, Θ1) and f (x, Θ2). The prediction probabilities of
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instance xi are denoted as p1 = [p1
1, p2

1, . . . , pM
1 ] and p2 = [p1

2, p2
2, . . . , pM

2 ] for Θ1 and Θ2,
respectively. These probabilities are generated by the "softmax" layer outputs of Θ1 and Θ2.

During the training stage of A-JoCoR, each network has the capability to make pre-
dictions independently. However, to enhance the collaboration between the networks, a
pseudo-siamese paradigm is employed. In this paradigm, although the parameters of the
two networks are distinct, they are updated simultaneously using a joint loss. The loss
function l, applied to instance xi, is constructed in the following manner :

l(xi) = (1− λ) ∗ lsup(xi, yi) + λ ∗ lcon(xi) (3)

In the loss function, the first part lsup is conventional supervised learning loss of the
two networks, the second part lcon is the contrastive loss between predictions of the two
networks for achieving co-regularization.

For multi-class classification, A-JoCoR use cross-entropy loss as the supervised part to
minimize the distance between predictions and labels.

lsup(xi, yi) = l1(xi, yi) + l2(xi, yi) = −
N

∑
i=1

M

∑
m=1

yi log(pm
1 (xi))−

N

∑
i=1

M

∑
m=1

yi log(pm
2 (xi)) (4)

where l1 and l2 represent the cross-entropy losses of two networks.
Following JoCoR, A-JoCoR incorporates a co-regularization approach by utilizing a

contrastive term. This ensures that the two networks guide each other during training.
In order to assess the similarity between the predictions of the two networks, A-JoCoR
employs the symmetric Kullback–Leibler (KL) divergence.

lcon = DKL(p1||p2) + DKL(p2||p1)

DKL(p1||p2) =
N

∑
i=1

M

∑
m=1

pm
1 (xi) log

pm
1 (xi)

pm
2 (xi)

DKL(p2||p1) =
N

∑
i=1

M

∑
m=1

pm
2 (xi) log

pm
2 (xi)

pm
1 (xi)

(5)

where DKL() represents the Kullback–Leibler divergence calculation. DKL(p1||p2) repre-
sents the KL divergence from distribution p1 to distribution p2, while DKL(p2||p1) rep-
resents the KL divergence from distribution p2 to distribution p1. By summing these
two divergences, the overall KL divergence is obtained.

We employ 1D-CNN (1D convolutional neural network) as the network architecture
for A-JoCoR, which can be divided into three parts: the input layer, the hidden layers,
and the output layer. The input layer of the 1D-CNN transforms the input data into a
feature vector x of length 500 with five features. The hidden layers of the 1D-CNN consist
of eight 1D convolutional layers with ReLU as the activation function. A 1D max pooling
layer follows every two convolutional layers. A basic building block can be formalized as
follows:

yk = W k
⊗

x + bk

hk = ReLU(yk)

yk+1 = W k+1
⊗

hk + bk+1

hk+1 = ReLU(yk+1)

mk = Maxpooling1d(hk+1)

(6)

where k represents the index of the convolutional layer, k = {1, 3, 5, 7}; W k and bk are the
weight vector and bias vector for the k-th convolutional layer; Maxpooling1d() represents
a 1D max pooling operation; ReLU() represents the rectified linear unit activation function
applied to the input;

⊗
denotes the convolution operator.
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The output layer of the 1D-CNN is composed of a global average pooling layer
and a fully connected layer with a softmax activation function, resulting in a probability
distribution vector p for the eight ship types. The visualization of the 1D-CNN is shown in
Figure 6.

Figure 6. Schematic diagram of the 1D-CNN.
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3. Results
3.1. Experimental Setting

The experiments in this paper were conducted on a single physical machine with the
following specifications: Windows 10 operating system, 32 GB of RAM, Intel(R) Core(TM)
i7-9850H CPU, and an NVIDIA Quadro T2000 GPU. The experiments were implemented
using Python 3.7 programming language and the deep learning framework used was
PyTorch.

We used accuracy (acc), precision (P), recall (R), and F1-score as model evaluation
metrics. Accuracy is the proportion of correctly identified samples to the total number of
samples. Precision is the proportion of correctly identified samples to the total number
of samples identified as that type, which measures the level of correct identification for
each type. Recall is the proportion of correctly identified samples to the total number
of samples that should have been identified as that type, measuring the completeness
of the experimental results. The F1-score is the harmonic mean of precision and recall.
Since precision and recall are often conflicting, the F1-score balances the two metrics to
simultaneously consider both precision and recall. The calculation formulas for accuracy,
precision, recall, and F1-score are as follows:

acc =
∑classes=8

i=1 correcti

N
(7)

Pi =
correcti
Numprei

(8)

Ri =
correcti

Numtruei

(9)

F1i = 2× Pi × Ri
Pi + Ri

(10)

where i represents the type of ship, i ∈ {1, 2, . . . , 8}; Pi represents the precision of samples
with the label i; Ri represents the recall of samples with the label i; F1i represents the
F1-score of samples with the label i; N represents the total number of samples; correcti
denotes the number of samples where both the label and the model’s classification result
are i; Numprei denotes the number of samples where the model’s classification result is i;
Numtruei denotes the number of samples where the label is i.

Since ship trajectory classification in our study is a multi-class problem, in order to
evaluate the overall performance of the model based on the classification results of all
classes, we adopts the macro average method. The macro average is calculated by taking
the arithmetic mean of precision, recall, and F1-score for each class. The specific calculation
formula is shown below:

Pmacro =
1
8

classes=8

∑
i=1

Pi

Rmacro =
1
8

classes=8

∑
i=1

Ri

F1macro =
1
8

classes=8

∑
i=1

F1i

(11)

where Pmacro represents the macro precision; Rmacro represents the macro recall; F1macro

represents the macro F1-score.
After several experimental tests and parameter comparisons, we set the number of

epochs for each model to 200, with a learning rate of 5× 10−4 and a batch size of 256.
Additionally, we configured the hyperparameters Tk, λ, and τ of JoCoR to replicate the
settings described in the original paper, where Tk affects the select rate of small-loss samples
per epoch in JoCoR, denoted as R(t) = 1−min{ t

TK
τ, τ}. It is worth noting that in A-JoCoR,
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we have discarded this hyperparameter and set R(t) = 1− τt. Tk was set to 10, λ was set to
0.1, and τ was set to the actual noise rate in the training set. This configuration signifies
that JoCoR initially learns from the entire training set and gradually reduces the proportion
of samples it learns from as epochs progress. Starting from the 10th epoch, it exclusively
focuses on learning from a proportion of small-loss samples defined by 1− τ, and this
proportion remains constant thereafter.

3.2. Experimental Design

This section consists of three main parts: (1) experimental testing of the impact of
different sample abandonment rate τ values on the classification performance of JoCoR;
(2) exploration of the reasonable range for setting the adaptive learning rate ρ in the
noise rate adaptive learning mechanism; and (3) solving the ship trajectory classification
problem with noisy labels using the A-JoCoR approach based on the 1D-CNN model. The
experimental results are compared with JoCoR and 1D-CNN to validate the effectiveness
of the proposed method.

3.2.1. The Impact of Noise Rate Estimation on the Effectiveness of JoCoR

To explore the importance of accurately estimating the noise rate for the small-loss
sample selection strategy, we take JoCoR as an example. In this experiment, the sample
abandonment rate τ is equivalent to the estimated noise rate. We set the sample aban-
donment rate τ to correspond to 0.1, 0.2, . . . , 0.8, with an actual noise rate µ of 0.5. Each
experiment is repeated five times to test the influence of different estimated noise rates on
the JoCoR classification performance under the same noise rate dataset.

The test accuracy curves of JoCoR trained on a 50% symmetrically noise dataset for
different values of τ are shown in Figure 7. The solid line represents the average accuracy
over five experiments, and the shaded area represents the STD band.

Figure 7. The test accuracy of JoCoR trained on a 50% symmetrically noise dataset for different values
of τ.

It can be observed that estimating the noise rate below or above the actual noise rate of
the dataset will both decrease the effectiveness of JoCoR. When the estimated noise rate is
lower than the actual noise rate (0.5), the model is prone to overfitting during training due
to the presence of a significant proportion of noisy data in the retained samples. As a result,
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the test accuracy curve shows an initial increase followed by a decrease. The greater the
difference between the estimated noise rate and the actual noise rate, the larger the decline
in test accuracy. On the other hand, when the estimated noise rate is higher than the actual
noise rate, the model has insufficient training data due to a smaller number of retained
samples. This leads to poor training performance and significant fluctuations in the results.

It is worth noting that when τ is set to 0.6, it achieves a similar effect to the actual
noise rate of the dataset, albeit with a slightly slower convergence speed. This suggests that
choosing a slightly higher value of τ than the actual noise rate helps filter out more noisy
data without adversely affecting the model’s training performance due to a small number
of retained samples. This idea is further supported by subsequent experiments. Therefore,
it can be concluded that the selection of the value of τ is crucial for the effectiveness of the
robust classification framework, and its appropriate range lies between the actual noise
rate of the dataset and a slightly higher value.

3.2.2. The Impact of Adaptive Learning Rate ρ on Model Training

This section explores the reasonable values for the adaptive learning rate ρ through
comparative experiments. Following the small-loss sample selection strategy in robust
classification frameworks such as JoCoR, we set R(t) to decrease starting from 1 and set
τ1 = 0. We examine the effects of different ρ values, namely 0.5, 0.1, 0.05, and 0.01, on
model training. The experiments are conducted using A-JoCoR on a 50% symmetrically
noise dataset, repeated five times, with the remaining parameters set the same as in JoCoR.
The curves depicting the changes in model training, validation, and test accuracy, as well
as the sample abandonment rate τ, for the four different ρ settings, are shown in Figure 8.

Figure 8. The accuracy and noise estimation curves of A-JoCoR under different ρ settings.
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It can be observed that when ρ is set to 0.5 and 0.1, the variation curve of the sample
abandonment rate τ shows a noticeable trend of initially increasing and then decreasing.
This indicates that setting a larger ρ value results in a lower proportion of initially retained
samples. As the model’s validation accuracy improves, the model starts to learn from
a larger proportion of small-loss samples. On the other hand, when ρ is set to 0.01, the
model exhibits significant overfitting in the early stages. This suggests that setting a smaller
ρ value delays the growth of τ too much, leading to the inclusion of more noise data in
the early retained small-loss samples. When ρ is set to 0.05, the accuracy curve of the
model shows an initial increase followed by a decrease and then another increase. We
speculate that this may be due to slight overfitting in the early training stages. However,
as τ increases, the model’s sample selection proportion decreases, effectively filtering out
some noise data that contributes to overfitting. This allows the model to continue learning
from clean data. Based on the final results, the model’s accuracy is superior and more
stable when ρ is set to 0.05. Therefore, it is concluded that the noise rate adaptive learning
mechanism performs well when ρ is set to 0.05.

Based on the above analysis, we conclude that setting ρ to 0.05 allows the noise rate
adaptive learning mechanism to gradually filter out noise data for the model without
hindering its learning of simple samples in the early stages. Additionally, it enables
dynamic adjustment of the proportion of small-loss sample selection based on the model’s
training progress.

3.2.3. Comparison of the Performance of A-JoCoR, JoCoR and 1D-CNN

In this section, we conducted five repeated experiments using 1D-CNN, JoCoR, and
A-JoCoR on datasets with different levels of noise. These datasets include a 30% symmetric
noise dataset, a 50% symmetric noise dataset, a 70% symmetric noise dataset, and a 40%
asymmetric noise dataset. We calculated the mean and STD of the experimental results
under different conditions.

We retained the output models of 1D-CNN, JoCoR, and A-JoCoR at the best performing
epoch in terms of the average validation accuracy on various noise rate datasets. Based
on the confusion matrices of these models’ predictions on the test set, macro precision,
recall, and F1-score were calculated to evaluate the overall classification performance of
the models. The results are shown in Table 3.

Table 3. The macro precision, recall, and F1-score of 1D-CNN, JoCoR, and A-JoCoR on each noise
rate dataset.

Model Pmacro Rmacro F1macro

30% Symmetric Noise
1D-CNN 70.29 ± 1.20 69.53 ± 1.21 69.54 ± 1.15

JoCoR 77.23 ± 0.14 76.94 ± 0.18 77.08 ± 0.15
A-JoCoR 78.03 ± 0.29 77.61 ± 0.28 77.82 ± 0.27

50% Symmetric Noise
1D-CNN 63.80 ± 3.15 62.44 ± 2.13 62.42 ± 2.84

JoCoR 71.04 ± 1.36 70.69 ± 1.53 70.86 ± 1.44
A-JoCoR 72.58 ± 0.88 72.28 ± 0.93 72.43 ± 0.89

70% Symmetric Noise
1D-CNN 51.48 ± 2.09 50.94 ± 2.25 49.76 ± 2.18

JoCoR 36.32 ± 4.76 46.08 ± 4.03 40.92 ± 4.52
A-JoCoR 59.91 ± 2.42 58.15 ± 2.22 59.01 ± 2.25

40% Asymmetric Noise
1D-CNN 70.71 ± 1.15 66.79 ± 1.97 65.97 ± 2.30

JoCoR 70.35 ± 0.69 66.17 ± 0.54 68.19 ± 0.60
A-JoCoR 74.12 ± 1.27 71.55 ± 1.85 72.81 ± 1.55

The training, validation, and testing accuracy curves of the three models on each noise
ratio dataset are shown in Figure 9. The solid line represents the mean accuracy of the five
experiments, and the shaded area represents the STD. The average test accuracy and STD
at the epoch with the best average validation accuracy for each model are shown in Table 4.
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Figure 9. The accuracy curves of 1D-CNN, JoCoR, and A-JoCoR on datasets with different noise ratios.
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Table 4. The average testing accuracy and STD of 1D-CNN, JoCoR, and A-JoCoR on datasets with
different noise ratios.

Noise Rate 1D-CNN JoCoR A-JoCoR

30% Symmetric Noise 69.54 ± 1.20 77.21 ± 0.17 77.62 ± 0.16
50% Symmetric Noise 62.48 ± 2.12 70.83 ± 1.36 72.23 ± 1.01
70% Symmetric Noise 50.95 ± 2.25 44.24 ± 4.14 58.24 ± 2.30

40% Asymmetric Noise 66.74 ± 1.97 66.16 ± 0.45 70.69 ± 1.73

From the experimental results, it can be observed that A-JoCoR outperforms the
original models on datasets with different noise ratios. In particular, it shows significant
improvements on the 70% symmetric noise dataset and the 40% asymmetric noise dataset.
Based on this, it can be concluded that the proposed noise ratio adaptive learning mecha-
nism not only allows existing robust learning methods based on small-loss sample selection
to adaptively estimate the noise ratio during training, but also significantly enhances model
performance, especially in high noise ratio and asymmetric noise scenarios.

4. Discussion

To further explain the effectiveness of the noise rate adaptive learning mechanism, we
analyzed the noise rate learning effect and the clean sample selection effect of A-JoCoR on
various noise ratio datasets.

4.1. Noise Rate Learning Effectiveness of the Noise Rate Adaptive Learning Mechanism

To evaluate the estimation effectiveness of the noise rate adaptive learning mechanism,
we conducted statistical analysis on the mean and mean square error of the estimated noise
rate σ in five experiments of A-JoCoR on the 30% symmetric noise dataset, 50% symmetric
noise dataset, 70% symmetric noise dataset, and 40% asymmetric noise dataset. The results
are shown in Figure 10.

Figure 10. The noise estimation variation curve of A-JoCoR on different noise ratio datasets.

It can be observed that the estimated noise rate σ of A-JoCoR has a certain deviation
from the true noise rate µ. The estimated noise rate tends to be approximately 10% higher
than the true noise rate. However, according to the experimental analysis in Section 3.2.1,
when the value of the sample abandonment rate τ is slightly higher than the true noise rate,
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it does not affect the effectiveness of JoCoR. Therefore, we believe that although there is
some error between the estimated noise rate σ and the true noise rate µ in our proposed
noise rate adaptive learning mechanism, it is within a reasonable range and does not impact
the robustness of the learning process.

4.2. Comparison of Clean Sample Selection Effectiveness between A-JoCoR and JoCoR

To examine the effectiveness of the noise rate adaptive learning mechanism on the
selection of clean samples, we conducted statistical analysis on the average proportion and
STD of clean samples selected by A-JoCoR in five experiments on the 30% symmetrically
noise dataset, 50% symmetrically noise dataset, 70% symmetrically noise dataset, and 40%
asymmetrically noise dataset. A comparison was made with the JoCoR model, which has
prior knowledge of the correct noise rates. The comparative results are shown in Figure 11.
We use label precision as the evaluation metric for the model’s clean sample selection effect,
which is calculated using the following formula:

labelprecision =
I

∑
i=1

cleani
selecti

(12)

where I represents the number of iterations, cleani represents the number of clean samples
selected among the small-loss samples in the i-th iteration, and selecti represents the total
number of small-loss samples selected in the i-th iteration.

The comparative results indicate that A-JoCoR improves the filtering effect of noisy
data compared to JoCoR in all contamination rate datasets, with particularly significant
improvements in the 70% symmetric noise dataset and 40% asymmetric noise dataset,
reaching 20% and 10% improvements, respectively. Based on its superior performance,
we believe that the contamination rate adaptive learning mechanism can be effectively
applied to deep learning problems with noisy labels, providing a significant enhancement
to existing robust learning methods based on small-loss sample selection.

4.3. Performance Exploration of Noise Rate Adaptive Learning Mechanism in Low-Noise Scenarios

Considering that the number of vessels involved in espionage activities and unlawful
behaviors is usually small in real-world scenarios, we further explored the performance
of the noise rate adaptive learning mechanism in low-noise scenarios. Specifically, we
conducted five repeated experiments on a 10% symmetric noise dataset using 1D-CNN,
JoCoR, and A-JoCoR. We retained the output models of 1D-CNN, JoCoR, and A-JoCoR
at the best performing epoch in terms of the average validation accuracy. Based on the
confusion matrices obtained from these models’ predictions on the test set, we calculated
the macro precision, recall, and F1-score, as shown in Table 5.

The training, validation, and testing accuracy curves of the three models on the 10%
symmetric noise dataset are shown in Figure 12. The solid line represents the mean accuracy
of the five experiments, and the shaded area represents the STD. The average test accuracy
and STD at the epoch with the best average validation accuracy for each model are shown
in Table 6.

From the above results, it can be observed that in low-noise scenarios, A-JoCoR
performs better than 1D-CNN but lower than JoCoR, which already knows the accurate
noise rate of the dataset. According to statistical analysis, A-JoCoR estimated the noise
rate to be 25.42%, which is higher than the true noise rate of the dataset. This discrepancy
between the estimated and true noise rates is the reason behind the lower performance of
A-JoCoR compared to JoCoR. When the dataset’s noise rate is high, this deviation may not
significantly affect the model’s classification performance. However, when the dataset’s
noise rate is at a lower level, this discrepancy could more noticeably affect the model’s
performance.
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Figure 11. Comparison of clean sample selection effectiveness between A-JoCoR and JoCoR on
different noise ratio datasets.

Table 5. The macro precision, recall, and F1-score of 1D-CNN, JoCoR, and A-JoCoR on the 10%
symmetric noise dataset.

Model Pmacro Rmacro F1macro

10% Symmetric Noise
1D-CNN 76.85 ± 1.09 75.98 ± 0.80 76.08 ± 0.78

JoCoR 81.85 ± 0.37 81.66 ± 0.39 81.67 ± 0.39
A-JoCoR 77.2 ± 1.56 77.24 ± 1.62 77.06 ± 1.58

Table 6. The average testing accuracy and STD of 1D-CNN, JoCoR, and A-JoCoR on the 10%
symmetric noise dataset.

Noise Rate 1D-CNN JoCoR A-JoCoR

10% Symmetric Noise 76.14 ± 0.98 81.83 ± 0.41 77.35 ± 1.62
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Figure 12. The accuracy curves of 1D-CNN, JoCoR, and A-JoCoR on the 10% symmetric noise dataset.

As shown in Figure 13, although A-JoCoR’s performance is lower than JoCoR, which
already knows the accurate noise rate of the dataset, in low-noise scenarios, A-JoCoR still
exhibits a significant advantage in filtering out noisy data. We speculate that selecting
a base model with better classification performance could be beneficial in improving A-
JoCoR’s performance in low-noise scenarios. This is because under the premise that the
model’s validation accuracy does not exceed the proportion of clean data in the dataset, a
higher validation accuracy will help A-JoCoR narrow the gap between the estimated noise
rate and the true noise rate, thus enhancing its overall performance.

Figure 13. Comparison of clean sample selection effectiveness between A-JoCoR and JoCoR on the
10% noise ratio dataset.

5. Conclusions

AIS data are susceptible to manipulation by vessel owners, and some illicit vessels may
intentionally falsify ship type information to conceal illegal fishing activities, espionage
operations, or other unlawful behaviors. Additionally, AIS data itself may suffer from data
recording or transmission errors, leading to inconsistencies between reported ship type
information and the actual situation. This label noise poses challenges for classification
tasks based on ship trajectories and poses a serious threat to maritime security.

To address this issue, we proposed a noise rate adaptive learning mechanism without
prior assumptions. We combined this mechanism with JoCoR to design a robust training
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paradigm called A-JoCoR. This paradigm allows the model to adaptively learn the noise
rate of the dataset during training, enabling dynamic adjustment of the selection ratio of
small-loss samples.

To evaluate the effectiveness of our proposed method on real ship trajectory datasets,
we used AIS data published by the Danish Maritime Authority as the original data. Through
preprocessing techniques, we constructed a ship trajectory dataset consisting of eight ship
types, with 10,000 samples per class and a total of 80,000 trajectories. Extensive experimental
results on this dataset demonstrated the effectiveness of our proposed method for ship
trajectory classification with noisy labels. Furthermore, thorough ablation studies clearly
show that using the noise rate adaptive learning mechanism leads to better clean sample
selection effects.
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