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Abstract: The application of TiO2 nanorods in the field of ultraviolet (UV) photodetectors is hindered
by a high dark current, which is attributed to crystal surface defects and intrinsic excitation by
carrier thermal diffusion. Here, a photodetector based on polycrystalline perovskite MAPbCl3/TiO2

nanorods heterojunctions has been fabricated to overcome the shortcoming. The structure was
composed of horizontal MAPbCl3 polycrystalline and vertically aligned TiO2 nanorods array. Many
localized depletion regions at the MAPbCl3/TiO2 interface can reduce the dark current. The
TiO2/MAPbCl3 detector shows high performance including a high ratio of light-dark current of about
six orders of magnitude, which is much larger than that of the TiO2 detector. This study indicates the
potential in the TiO2/MAPbCl3 heterojunction to fabricate high-performance UV detectors.

Keywords: polycrystalline perovskite; MAPbCl3; TiO2 nanorods; heterojunction; dark current; UV
photodetector; high performance

1. Introduction

Ultraviolet (UV) photodetectors are widely used in ultraviolet communication, flame
detection and biological cell canceration detection [1–4]. Recently, various kinds of struc-
tures for UV photodetectors have been fabricated, such as Metal-Semiconductor-Metal
(MSM) [5–7], PN junction [8–10], Schottky [11,12] and heterojunction [13,14]. Among the
structures above, 1D nanowires and nanorods (TiO2 [15], ZnO [16], CdS [17], Ga2O3 [18]
and so on) have drawn considerable attention due to their significant advantages for UV
photodetector performance, including the stable spatial distribution of straightforward
nanochannels for electron transport and light scattering. However, the detectors often
suffer from a large dark current, which increases static power consumption and decreases
the ratio of photo-dark current [19,20].

Researchers have found that an advantage of the TiO2 nanorods array in the UV pho-
todetector is a reduction of the recombination probability of photogenerated electron–hole
pairs because of the surface trap states associated with adsorbed O2 molecules on the
surface of TiO2 nanorods [21]. Hakan Karaagac et al. fabricated a Schottky UV photode-
tector based on well-aligned TiO2 nanorod arrays, which exhibits high photosensitivity
and excellent spectral selectivity, but the dark current (1.2 × 10−7 A at reverse 1 V) was
relatively high [21].
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CH3NH3PbCl3 (MAPbCl3) absorbs UV light below 400 nm due to its 2.88–3.11 eV
bandgap [22–24] and has been applied in UV detection due to its high optical absorption
capacity, high carrier mobility, long carrier diffusion length and stability. UV detectors based
on MAPbCl3 single crystal show high properties, but the difficult fabrication technique
places a restriction on their development in photonic crystal structures [25–27]. Therefore,
polycrystalline MAPbCl3 film is preferred to compose the heterojunction. Jialin Yang
et al. have successfully studied how a polycrystalline CH3NH3PbCl3/ZnO heterojunction
improved UV photodetector performance compared to single ZnO, but the dark current
remained high [28]. Liu shuo et al. have fabricated a Ga2O3/polycrystalline MAPbCl3 UVA
photodetector with rapid response and recovery property, which nonetheless had a dark
current of 6.8 µA at −1.5 V bias [29].

In this work, a UV photodetector based on polycrystalline perovskite MAPbCl3/TiO2
nanorods array heterojunction has been successfully prepared. The UV photodetector with
many localized depletion regions at the MAPbCl3/TiO2 interface shows better performance
than that of pure TiO2, with improved dark current, light-dark current ratio and a shorter
response time. The results indicate that MAPbCl3/TiO2 heterojunction is a promising way
to improve UV photodetector performance.

2. Materials and Methods
2.1. Preparation of TiO2 One-Dimensional Nanorods Array Film on FTO

TiO2 nanorods array film was prepared on the surface of the FTO (fluorine-doped
tinoxide) substrate by a low-temperature hydrothermal method. First, FTO substrate (15 Ω
per square) was cleaned in acetone, ethanol and deionized water and dried in a nitrogen
stream. Subsequently, 10 mL of toluene, 1 mL of tetrabutyltitanate [Ti(OC4H9)4], 0.2 mL of
titanium tetrachloride and 1 mL hydrochloric acid (37%) were added in a sealed Teflon-lined
stainless steel autoclave (23 mL). Then, the substrate was placed in the autoclave, heated at
150 ◦C for 5 h and air-cooled to room temperature (25 ◦C). After washing with deionized
water, a uniform nanorods array was obtained. The TiO2 growing system in this experiment
is a mixed solution composed of Ti(OC4H9)4, Ti(OH)4, HCl and H2O. Ti(OC4H9)4 is a lipid
with a boiling point of 310 ◦C. Due to the effect of HCl, Ti(OC4H9)4 does not hydrolyze
at room temperature, but it will hydrolyze with water at high temperature and pressure.
The polar H2O was adsorbed on the transparent, which is a conductive glass substrate of
FTO with the same polarity. Ti(OC4H9)4 then moved to the surface of FTO and hydrolyzed
with H2O to generate Ti(OH)4. Then, Ti(OH)4 combined with each other and underwent
a polycondensation reaction to generate TiO2 and a small amount of H2O. The TiO2
nanorods grew firmly on the surface of FTO and the small amount of H2O generated by
the condensation polymerization reaction continued to adsorb on the FTO surface or on
the grown hydrophilic TiO2 layer, like other H2O. The reaction continued until the TiO2
nanorods array film generated on FTO [30].

2.2. Preparation of TiO2 Nanorods/MAPbCl3 Heterojunction on FTO

Polycrystalline MAPbCl3 film was prepared by a one-step spin-coating method
with antisolvent-assisting. First, 1 mL dimethyl sulfoxide (DMSO) and 1 mL N, N-
Dimethylformamide (DMF) were mixed, and then 0.135 g MACl and 0.566 g PbCl2 were
weighed and added to the above solution and stirred for 30 min until the solution became
completely transparent to obtain MAPbCl3 precursor solution (1 mol/L) [23]. Then, 75 µL
solution was coated on TiO2 film by rotation for 30 s at 3000 rpm. Next, a drop of toluene
was put on the TiO2 film and spun for 20 s. Finally, it was dried at 80 ◦C for 5 h. Finally,
two Ag paste pads were deposited directly on the film and FTO, respectively, to make a
Schottky photodiode UV detector. The active area of the electrode is about 0.25 mm2.
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2.3. Material Characterization and Device Measurement

The morphology of the prepared films was characterized by a scanning electron
microscope (SEM JEOS JSM-6700F). X-ray diffraction (XRD) patterns were performed using
a Shimadzu XRD-6000 diffractometer (Shimadzu, Kyoto, Japan). A Shimadzu UV-3600
Pharma Spec UV spectrophotometer was used to obtain the UV-Vis absorption spectra.
The photoelectric performances were analyzed by a program-controlled semiconductor
characterization system (Keithley 2450 Source Meter, Solon, OH, USA). The light source
was provided by a 30 W deuterium lamp, and a monochromatic lamp was used to provide
monochromatic light.

3. Results and Discussion

The UVA photodetector with the structure of FTO/TiO2 nanorods array/polycrystalline
perovskite MAPbCl3 is shown in Figure 1. TiO2 nanorods/perovskite MAPbCl3 hetero-
junctions worked as the active layer. FTO and Ag served as electrodes (A mask plate with
a hollow circular pattern (about 0.25 mm2) was used to mask the material. Silver paste
electrodes were coated on the FTO and the material, respectively, and the leads were led out
for testing. Then, the whole device was dried at 75 ◦C for 15 min to stabilize the electrodes.
Then, two red and black wires were led out from the Keithley 2450, with the red wire
(positive) connected to the Ag above the FTO and the black wire (negative) connected to
the Ag above the semiconductor).

Sensors 2023, 21, x FOR PEER REVIEW 3 of 12 
 

 

2.3. Material Characterization and Device Measurement 
The morphology of the prepared films was characterized by a scanning electron mi-

croscope (SEM JEOS JSM-6700F). X-ray diffraction (XRD) patterns were performed using 
a Shimadzu XRD-6000 diffractometer (Shimadzu, Kyoto, Japan). A Shimadzu UV-3600 
Pharma Spec UV spectrophotometer was used to obtain the UV-Vis absorption spectra. 
The photoelectric performances were analyzed by a program-controlled semiconductor 
characterization system (Keithley 2450 Source Meter, Solon, OH, USA). The light source 
was provided by a 30 W deuterium lamp, and a monochromatic lamp was used to provide 
monochromatic light. 

3. Results and Discussion 
The UVA photodetector with the structure of FTO/TiO2 nanorods array/polycrystal-

line perovskite MAPbCl3 is shown in Figure 1. TiO2 nanorods/perovskite MAPbCl3 het-
erojunctions worked as the active layer. FTO and Ag served as electrodes (A mask plate 
with a hollow circular pattern (about 0.25 mm2) was used to mask the material. Silver 
paste electrodes were coated on the FTO and the material, respectively, and the leads were 
led out for testing. Then, the whole device was dried at 75 °C for 15 min to stabilize the 
electrodes. Then, two red and black wires were led out from the Keithley 2450, with the 
red wire (positive) connected to the Ag above the FTO and the black wire (negative) con-
nected to the Ag above the semiconductor). 

 
Figure 1. Structure of the TiO2 nanorods array/MAPbCl3 heterojunction photodetector. 

The morphology of TiO2 one-dimensional nanorods array film on FTO and TiO2 na-
norods/MAPbCl3 heterojunctions on FTO is shown in Figure 2. Figure 2a,b show the top-
view and the sectional-view SEM images of the TiO2 one-dimensional nanorods array, 
respectively. It can be observed that the TiO2 nanorods array is uniform, compact and 
perpendicular to the substrate, which is conducive to the preparation of electronic devices. 
Figure 2c,d show the top-view and the sectional-view SEM images of the TiO2 nano-
rods/MAPbCl3 heterojunctions, respectively. It can be found that the polycrystalline MAP-
bCl3 film prepared by the one-step method covers the surface of TiO2 nanorods well. The 
thickness of MAPbCl3 film is about 0.467 μm, and the thickness of TiO2 nanorods film is 
about 2.178 μm. There are lots of grain boundaries in polycrystalline MAPbCl3, which 
could scatter carriers and thus lead to low mobility. The MAPbCl3 layer adheres to the 
TiO2 nanorods array layer, which contributes to the high performance of the detector. 

Figure 1. Structure of the TiO2 nanorods array/MAPbCl3 heterojunction photodetector.

The morphology of TiO2 one-dimensional nanorods array film on FTO and TiO2
nanorods/MAPbCl3 heterojunctions on FTO is shown in Figure 2. Figure 2a,b show
the top-view and the sectional-view SEM images of the TiO2 one-dimensional nanorods
array, respectively. It can be observed that the TiO2 nanorods array is uniform, compact
and perpendicular to the substrate, which is conducive to the preparation of electronic
devices. Figure 2c,d show the top-view and the sectional-view SEM images of the TiO2
nanorods/MAPbCl3 heterojunctions, respectively. It can be found that the polycrystalline
MAPbCl3 film prepared by the one-step method covers the surface of TiO2 nanorods well.
The thickness of MAPbCl3 film is about 0.467 µm, and the thickness of TiO2 nanorods film
is about 2.178 µm. There are lots of grain boundaries in polycrystalline MAPbCl3, which
could scatter carriers and thus lead to low mobility. The MAPbCl3 layer adheres to the
TiO2 nanorods array layer, which contributes to the high performance of the detector.
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Figure 2. (a) Surface SEM image of TiO2 one-dimensional nanorods array film on FTO. (b) Cross-
sectional SEM image of TiO2 one-dimensional nanorods array film on FTO. (c) Surface SEM image of
TiO2/MAPbCl3 heterojunction. (d) Cross-sectional SEM image of TiO2/MAPbCl3 heterojunction.

In Figure 3, which displays the XRD patterns of the TiO2 nanorods array and poly-
crystalline perovskite MAPbCl3, it can be observed that the crystal diffraction peaks are
very high, indicating that the obtained materials have good crystallization and clear crystal
particles. Figure 3a shows that the diffraction peaks of the obtained TiO2 correspond exactly
to the peaks of the standard rutile type TiO2 (JCPDS Card No.76-1938). The characteristic
diffraction peaks of MAPbCl3 generated by crystal planes (100), (110), (200), (210) and
(211) in Figure 3b are included, indicating that the prepared MAPbCl3 perovskite shows
consistency with the previously reported data of MAPbCl3 perovskite obtained through
the conventional crystallization technique [31].
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The optical characteristics of each layer in the photodetector were studied by ab-
sorption spectra and Tauc plots, as shown in Figure 4. Figure 4a shows the UV visible
absorption spectra of FTO/TiO2 and FTO/TiO2/MAPbCl3 from 300 nm to 600 nm. When
the photodetector operates, the illumination light enters from the FTO side. Radiation with
a wavelength below 300 nm is completely absorbed, and only radiation with a wavelength
above 300 nm can pass through the FTO substrate. Moreover, the active layer composed
of TiO2 or TiO2/MAPbCl3 absorbs radiation with a wavelength below 400 nm. TiO2 has
excellent absorption, from 330 to370 nm, and the absorption decreases over 370 nm, while
TiO2/MAPbCl3 has excellent absorption, from 330 to400 nm, and the absorption decreases
over 400 nm. One of the advantages of TiO2/MAPbCl3 is that it increases the detector’s
response range closer to 400 nm. Therefore, the radiation whose wavelengths distribute
between 300 nm and 400 nm can be collected by TiO2/MAPbCl3, as shown in the inset of
Figure 4b, which corresponds to the UVA range. As calculated in Figure 4b Tauc plots, the
bandgap width of rutile TiO2 is 3.05 eV and the bandgap width becomes 2.98 eV when
introducing MAPbCl3.
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The absorption edge of TiO2/MAPbCl3 shows a slighter redshift than that of TiO2,
indicating a narrower bandgap of TiO2/MAPbCl3, which will provide a possibility to
adjust the detector’s response range. The practical absorption edge of TiO2 was lower than
the theoretical value of pure rutile TiO2 (1240/3.0 = 413 nm). This may be attributed to the
size quantization of nanorods, which has been demonstrated by Brus [32]:

∆Eg =
π2h2

2R2

(
1

m∗
e
+

1
m∗

h

)
− 1.82e2

εR
+ polarizaitonterms (1)

where R is the radius of semiconductor particle, m∗
e and m∗

h are effective masses of the
electron and hole in the semiconductor, εR is the permittivity of rutile TiO2, h is the Planck
constant, ∆Eg is the bandgap difference between the original bulk size and nanoscale of the
same semiconductor material. According to this formula, the absorption edge will move to
the short wavelength as the particle size decreases [33].

The I–V characteristics of the UV detector based on FTO/TiO2, FTO/MAPbCl3 and
FTO/TiO2/MAPbCl3 in dark and under illumination are shown in Figure 5. The prepared
UV detectors have the characteristics of Schottky diodes, which exhibit nonlinear and
unsaturated behavior, as is shown in Figure 5d–f. Under forward bias, the dark current
increases rapidly and results in large noise. Therefore, we focus on the reverse charac-
teristics of the detector. For the UV detector based on FTO/TiO2, at −2 V bias, the dark
current is 1.557 × 10−6 A, and the photocurrent reaches 1.359 × 10−4 A under the irradia-
tion of 200 µW/cm2 at a wavelength of 350 nm UV light, as shown in Figure 5a. For the
UV detector based on FTO/MAPbCl3, at −2 V bias, the dark current is 1.043 × 10−9 A,
and the photocurrent reaches 1.561 × 10−7 A under the irradiation of 580 µW/cm2 at a
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wavelength of 390 nm UV light, as shown in Figure 5b. For the UV detector based on
FTO/TiO2/MAPbCl3, at −2 V bias, the dark current is 2.69 × 10−10 A and the photocurrent
reaches 1.632 × 10−4 A under the irradiation of 255 µW/cm2 at a wavelength of 360 nm
UV light, as shown in Figure 5c. The ratio of light to dark current is more than six orders of
magnitude, which proves that the optical properties of the TiO2/MAPbCl3 heterojunction
detector meet our requirements.
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Figure 6 shows I–V characteristics of FTO/TiO2/MAPbCl3 UV detector in dark and
at a wavelength of 360 nm UV light with various light intensity. All data were obtained
at −2 V bias. Under the irradiation of 120 µW/cm2, the dark current is 3.69 × 10−12 A
and the photocurrent reaches 3.621 × 10−6 A. Under the irradiation of 185 µW/cm2, the
dark current is 2.27 × 10−9 A and the photocurrent reaches 1.37 × 10−5 A. Under the
irradiation of 255 µW/cm2, the dark current is 2.69 × 10−10 A and the photocurrent reaches
1.632 × 10−4 A. Under the irradiation of 345 µW/cm2, the dark current is 1.516 × 10−9 A
and the photocurrent reaches 2.484 × 10−4 A. Compared with dark current of FTO/TiO2
UV detector, which is 10−6 A, the dark current of FTO/TiO2/MAPbCl3 UV detector
improved a lot, which changes from 10−9 A to 10−12 A. The photo current increased as
irradiation increased.

The introduction of TiO2/MAPbCl3 heterojunction plays an important role in light-
to-dark current ratio. The only difference between FTO/TiO2 and FTO/TiO2/MAPbCl3
detectors is the TiO2/MAPbCl3 active layer in the latter. The energy level diagrams and the
schematic band diagrams of TiO2/MAPbCl3 heterojunction are shown in Figure 7a [24,34].
A built-in electric field would be formed at the TiO2/MAPbCl3 interface [2,35,36]. The
TiO2/MAPbCl3 detector has characteristics similar to Schottky diode. That is, at forward
bias, the built-in electric field is weakened and current increases. At reversed bias, the
built-in electric field is enhanced and the current reduces. Compared to the TiO2 detector,
the dark current of TiO2/MAPbCl3 detector was reduced due to the built-in electric field of
the heterojunction. Furthermore, the TiO2/MAPbCl3 contact interface between horizontal
MAPbCl3 polycrystalline and vertically aligned TiO2 nanorods array can produce many
localized depletion regions, which contribute to lower dark current. What’s more, grain
boundaries in polycrystalline MAPbCl3 could scatter carriers in the dark and thus lower
mobility. Therefore, the dark current of TiO2/MAPbCl3 heterojunction UV detector is
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much lower than that of pure TiO2 UV detector. Under illumination, photogenerated
electron–hole pairs can be excited in two materials, which are separated by the built-in
electric field at the TiO2/MAPbCl3 interface. Electrons flow along the vertical downward
direction of the TiO2 nanorods, while holes are along the plane direction of the MAPbCl3
film, so it is difficult for recombination and the collection efficiency of carriers improves.
Halogen interstitial defects or MA on halogen antisite defects in polycrystalline MAPbCl3
create deep level defects that can trap holes and can be recombination centers affected by
the nonequilibrium carriers [37]. Therefore, under illumination, compared with a pure TiO2
UV detector, TiO2/MAPbCl3 UV detector produces more photogenerated carriers [38,39].
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Figure 7b displays the response and recovery characteristics of the detectors at −2 V
bias, obtained from measuring the voltage variation of a 1 MΩ load resistance in the test
circuit. The rise times of the TiO2 detector and TiO2/MAPbCl3 detector are 1.85 s and 0.48 s,
respectively, and the fall times are 1.92 s and 2.93 s, respectively. The reason why there is an
improvement in response characteristic is that the photogenerated electron–hole pairs are
rapidly separated by the built-in electric fields of many localized heterojunction regions, as
mentioned above. As for the TiO2/MAPbCl3 photodetector, more photogenerated carriers
make the recovery process slower.

Another important parameter for UV photodetector is spectral responsivity and De-
tectivity* under the irradiation of monochromatic UV light ranging from 310 nm to 450
nm. The spectral responsivity and Detectivity* of both detectors at −2 V bias are shown in
Figure 8. The responsivity R was calculated by [32]:

R =
Ip

A × E
(2)

in which E is the incident optical power, A is the effective photosensitive area of detector
and Ip is the photocurrent of the detector under irradiation of the corresponding incident
light. The Detectivity* D∗, which demonstrates the ability to detect weak signals from a
noise environment, is calculated by [40]:

D∗ =
R

(2eId/A)
1
2

(3)

where e is the electronic charge constant, and Id, which contributes to background noise, is
dark current at −2 V bias. Both TiO2 and TiO2/MAPbCl3 detectors exhibit well spectrum
selectivity for 310~450 nm and R and D∗ have increased when compared with the pure
TiO2 device. The response peak of TiO2/MAPbCl3 detector is 17.25 A/W at 360 nm, and
the corresponding D∗ is 9.2094 × 1011 Jones, which is higher than 15.5 A/W and the
corresponding D∗ 1.097 × 1010 Jones of pure TiO2 detector at 350 nm, respectively.
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The gain G represents the number of detected charge carriers per single incident
photon, and is given by [41]:

G =
Ip/q

ηPin/hυ
(4)

where η is quantum efficiency and hυ is the excitation energy. Taking TiO2/MAPbCl3 de-
tector for example, at −2 V bias and at 360 nm UV light, the photocurrent is 1.632 × 10−4 A
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and the irradiation is 255 µW/cm2. The energy of each photon is 1240/360 = 3.44 eV. The
incident light energy is 255 × 0.25 × 10−2 = 0.6375 µW. The number of photons per second
falling on the unit area of the device is 0.6375 µW/(1.602 × 10−19 × 3.44) = 1.157 × 1012.
Assuming that all photons are absorbed by the semiconductor surface, the photocurrent gen-
erated by these photons is supposed to be 1.157 × 1012 × 1.602 × 10−19 = 1.853 × 10−7 A,
so the gain of TiO2/MAPbCl3 detector is 1.632 × 10−4/1.853 × 10−7 = 881. The gain of TiO2
detector is 963. Both of these detectors have a large gain. Under illumination, the defects
of the metal/semiconductor interface will act as minority traps, thus mirroring an equal
amount of opposite charges inside the semiconductor and reducing the Schottky barrier
height. Therefore, more carriers pass through the barrier and obtain high photocurrent
and responsivity, which leads to a large gain. The reason why the gain of TiO2/MAPbCl3
heterojunction is less than pure TiO2 is because the detecting wavelength (360 nm) and the
corresponding irradiation power (255 µW/cm2) of TiO2/MAPbCl3 is larger than that of
TiO2 (wavelength (350 nm), the corresponding irradiation power (200 µW/cm2)). After
being calculated according to Formula (4) above, the gain of heterojunction is lower.

The statistical results of the photodetectors’ performance parameters are given in
Figure 9. The photo and dark currents at −2 V bias of TiO2 and TiO2/MAPbCl3 photode-
tectors are shown in box plots. We have fabricated about eight TiO2 detectors, and two
detectors have good performance like the results above. For example, the ratio of light to
dark current at −2 V bias is bigger than two orders of magnitude, and the ratio of others is
smaller towards one order of magnitude. The smallest dark current at −2 V bias is close to
10−6 A. The reason why the performance of TiO2 detectors is not stable is due to fabrication
process of the devices. In this work, the FTO substrate we used is 1.5 cm × 4 cm so as to be
put within the 25 mL autoclave and be faced down. Then TiO2 nanorods array film can
grow on the conductive layer of FTO during a hydrothermal process. Usually, this film
covers all the area of the conductive layer, and there are lots of defects in TiO2 nanorods
film, which leads to relatively high dark and photo currents. If the TiO2 film didn’t form
well on FTO substrate, the performance of UV detector would be poor.
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We have fabricated about fifteen TiO2/MAPbCl3 detectors and four of them have good
performance. That is, the ratio of light to dark current at −2 V bias is bigger than six orders
of magnitude, and the ratio of others is smaller from four to two orders of magnitude. The
smallest dark current at −2 V bias is close to 10−11 A. Because the perovskite MAPbCl3
might not be stable in the atmosphere (H2O, O2), and the fabrication process of MAPbCl3
might also influence the quality of film, the performance of TiO2/MAPbCl3 detectors is not
stable compared to our other device with different structures and fabrication procedure
(such as MSM detectors with sol-gel method). We have fabricated many detectors and
choose the detectors with relatively good performances.

Table 1 lists the dark current and responsive performances comparison between some
reported TiO2 based UV detectors. It is clear that the TiO2/MAPbCl3-based UV detector
shows a high responsivity and detectivity*, a fast response speed and a low dark current.

Table 1. Comparison chart of recent achievements in relation to TiO2-based UV detectors.

Materials Fabrication
Technique Dark Current (µA) Λ (nm) Responsivity

(A/W)
Detectivity*

(Jones) Rise Time (s) Fall Time (s) Ref

TiO2/CuI nanorods
array

4.10 × 10−4 A at 0
V 410 4.5 × 10−3 1.08 × 1011 0.33 0.22 [42]

TiO2/3-BiOCl nanotube 7.49 × 10−3 A at
−5 V 350 7.92 1.42 × 1013 17.3 1.68 [43]

TiO2/MoO3
Sol-gel
method 2.856 at −1 V 352 108 × 10−3 2.26 × 1010 1.82 1.42 [44]

Ga2O3/MAPbCl3 amorphous 6.8 at −1.5 V 398 4.96 × 10−3 5.4 × 1010 3.21 0.067 [29]

TiO2/MAPbCl3
nanorods

array 2.69 × 10−4 at −2 V 360 17.25 9.2094 × 1011 0.48 2.93 This Work

4. Conclusions

A high-performance UVA photodetector based on a polycrystalline perovskite MAPbCl3/TiO2
nanorods heterojunction has been fabricated successfully. MAPbCl3 polycrystalline per-
ovskite film forms a good heterojunction with TiO2 one-dimensional nanorods by one-
step spin-coating method with antisolvent-assisting. The special structure makes the
TiO2/MAPbCl3 contact interface produce plenty of localized depletion regions. Responsiv-
ity and response properties were also improved. Therefore, we successfully improved the
performance of pure TiO2 UV photodetector by introducing a TiO2/MAPbCl3 heterojunc-
tion. These results indicate that the TiO2/MAPbCl3 heterojunction detector is a potential
candidate for UV detection.
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