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Abstract: Edge detection is a crucial step in many computer vision tasks, and in recent years, models
based on deep convolutional neural networks (CNNs) have achieved human-level performance in
edge detection. However, we have observed that CNN-based methods rely on pre-trained backbone
networks and generate edge images with unwanted background details. We propose four new fusion
difference convolution (FDC) structures that integrate traditional gradient operators into modern
CNNs. At the same time, we have also added a channel spatial attention module (CSAM) and an
up-sampling module (US). These structures allow the model to better recognize the semantic and
edge information in the images. Our model is trained from scratch on the BIPED dataset without any
pre-trained weights and achieves promising results. Moreover, it generalizes well to other datasets
without fine-tuning.

Keywords: edge detection; deep learning; contour detection; boundary detection; segmentation

1. Introduction

Edge detection, as a traditional computer vision task, aims to identify prominent
changes in brightness or discontinuous regions in an image, making it an important research
area in feature extraction. It provides fundamental information for many advanced visual
tasks, such as image segmentation [1,2], contour extraction [3], object detection [4–6], and
2D object recognition [7]. With the advancement of deep learning, new domains, such
as medical image analysis and remote sensing, have emerged, which often require an
edge detection system. Consequently, the edge detection problem has been reexamined
to address challenges such as complex backgrounds, inconsistent annotation labels, and
speed improvements.

The primary objective of edge detection is to identify points in an image with signif-
icant brightness variations, which are closely related to the semantic clues of the image.
Obtaining appropriate low-level or high-level image features through suitable methods
is crucial. Early traditional methods can be categorized into two main types: The first
type involves utilizing first-order or second-order operators, which rely on the gradient or
derivative information of the image to extract edge information. Commonly used opera-
tors include Robert, Prewitt, Sobel [8], Canny [9], and generalized Laplacian of Gaussian
(gLOG) [10]. The second type involves the manual design of features related to natural
boundaries, such as brightness, color, and texture, which are then used to train classifiers.
Examples of such methods include Pb and gPb [11]. These traditional methods remain
effective in scenarios in which high accuracy is not required. For instance, the traditional
approach of using pixel grayscale gradients is employed to determine the edges of the
images [5].
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In the era of deep learning, with the remarkable success of deep convolutional net-
works in image classification and other domains, convolutional neural networks (CNNs)
have been widely applied to edge or contour detection in images. Based on the structure
of these networks, they can be categorized into three major types. Non-end-to-end deep
learning models are one type; N4-Fields [12] is a commonly used method. Another type,
end-to-end multi-scale deep learning models, is represented by the holistically-nested edge
detection (HED) [13]. Numerous studies have made improvements to this model, such as
RDS [14], CASENet [15], and DexiNed [16]. A third type, encoder–decoder architectures,
includes CEDN [17] and EDTER [18] as common examples. In addition to these main-
stream methods, there are several important research directions, including lightweight
models such as Pidinet [19], unsupervised learning models [20], and multi-task learning
models [21]. These network structures are mostly based on multi-level feature extraction
and fusion, along with well-designed training modes using appropriate loss functions,
resulting in promising results.

However, in recent years, few network structures for edge detection have integrated
traditional gradient operators into modern convolutional neural networks. In some stud-
ies, such as GSCNN [22], the Canny operator is introduced to reduce the loss of image
resolution caused by network depth and pooling operations. Pidinet [19] proposes a new
convolutional difference structure (PDC) to achieve lightweight and efficient edge detection
models. However, the aforementioned deep learning models have the following limitations.
The edges generated by these models are typically multi-pixel edges. Although there are
methods to generate thin edges by modifying the loss function [23], they may also extract
unnecessarily detailed edge information from the background, resulting in suboptimal
results. Therefore, most of these models require non-maximum suppression (NMS) to be
applied during evaluation. These models are susceptible to noise and texture, leading to
the highlighting of more unnecessary texture information in the final results.

We have noticed that most previous methods were trained and tested on commonly used
datasets for boundary detection or semantic segmentation, such as BSDS [24], MDBD [25],
NYUD [26], and PASCAL [27]. However, these datasets suffer from missing or incorrect
annotations of edges, and some of them are not specifically designed for edge detection.

To address the aforementioned issues, this paper proposes modifications to the Xcep-
tion model and trains it from scratch without relying on pre-trained model weights. The
proposed approach achieves promising results (ODS 0.857) on the BIPED dataset [16] and
demonstrates good generalization to other datasets without fine-tuning. Figure 1 shows
two examples of edge detection. The main contributions of this paper are as follows:

(1) Improvement of the original PDC structure by adding a vanilla convolutional layer.
This enhancement allows for better extraction of both semantic and edge information
from images, reducing the impact of texture information and noise while maintaining
similar computational cost and memory usage to the original model.

(2) Introduction of an oblique fusion differential convolutional structure, which ad-
dresses the challenge of accurately identifying oblique edges in the presence of
complex edge information. This novel structure improves upon previous methods
that struggled with such oblique edge detection.

(3) We have incorporated a channel spatial attention module and an upsampling model,
empowering the model to dynamically capture crucial information within each
channel, suppress background noise, and extract image features across various scales
and levels.
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Figure 1. Examples of our edge detection. Our method extracts clear boundaries and edges by
exploiting both global and local cues. (a,e): Two randomly selected images from the test set of the
BIPED dataset; (b,f): The edge images obtained through the method presented in our paper; (c,d,g,h):
Enlarged detail images of edge images.

The remaining sections of the paper are organized as follows: Section 2 provides an
overview of related research in the field of image edge detection. Section 3 presents, in
detail, the proposed network architecture and the fusion difference convolution structure,
along with their respective roles within the network. Section 4 describes the datasets used
in the experiments, the evaluation metrics employed, and the experimental designs. Finally,
Section 5 concludes the paper, summarizes the key findings, and suggests directions for
future work.

2. Related Work

As a subtask of many advanced computer vision tasks, edge detection has been
extensively studied in recent years. In the following sections, we will introduce the relevant
research work that is related to our study.

Traditional Methods. Early edge detection algorithms were primarily based on care-
fully designed operators or filters using the local patterns of edges. They can be categorized
into first-order operators, second-order operators, and others. Commonly used first-order
operators include Roberts, Prewitt [28], Sobel [8], and Scharr. Commonly used second-
order operators include Laplacian and LOG [10]. In addition, the Canny operator is a
widely used edge detection operator, which remains highly effective in tasks with less
stringent accuracy requirements. The principle behind these operators is to exploit the sig-
nificant pixel transitions at image edges, where neighboring pixels exhibit large variations
in their intensity values. In the operators, this manifests as the direction of the gradient
that represents the maximum rate of grayscale change. These operators represent the
earlier works, and modern developments have introduced numerous complex operators
tailored for specific tasks. For example, the use of anisotropic Gaussian derivatives has
been proposed to address corner detection. Another major category of traditional methods
used for image segmentation is active contour models, such as the active contour-based
image segmentation approach [29].

Biomimetic Approaches. Biomimetic edge detection methods are inspired by the visual
systems of humans and other animals, aiming to simulate the perception and processing
of edges in biological vision systems. These methods typically utilize image processing
algorithms and computational models to mimic the functioning principles of biological
neurons. Most biomimetic approaches aim to construct cortical cells, or nCRFs, to suppress
noise and handle texture edges. For example, [30] improved the extraction of coarse
contours and implemented texture suppression through multi-scale processing. Notably,
some papers integrated nCRFs into deep learning methods for contour detection in natural
images and achieved an ODS of 0.76 [31] on the BSDS500 dataset.
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Deep Learning Methods. Due to certain limitations in terms of the speed and accuracy
of traditional edge detection algorithms, deep-learning-based edge detection algorithms
have gained significant attention in recent years. These algorithms leverage the charac-
teristics of deep learning, such as multi-scale feature fusion, cascading mechanisms, and
multi-task learning, to achieve higher accuracy and robustness. Based on the network archi-
tectures, the mainstream edge detection algorithms can be categorized into the following
two types. The first type is based on the VGG16 network architecture, inspired by the fully
convolutional network (FCN) [32]. Xie et al. introduced the pioneering end-to-end edge
deep model called HED [13], which utilized side branches and fusion branches to compute
losses and generate the final edge maps. Subsequent studies [33,34] made improvements to
this model to obtain more accurate edge maps. The second type is based on the Transformer
network architecture, which captures the complete image context and detailed local clues
to extract meaningful and clear edge maps. An example of a commonly used model in this
category is EDTER [18]. There are many research studies that utilize CNN models for edge
detection. For instance, CNNs have been extensively employed in bridge rivet identification
tasks, where they demonstrate remarkable performance [6] Both of the above-mentioned
model types typically employ large backbone networks as pre-training models, which often
results in high computational costs. To address this issue, some research works have made
improvements. For instance, Pidinet [19] adopts an efficient backbone network and a given
lateral structure for training, while LFFD [35] improves the relationship between effective
receptive fields and facial features, proposing a fast face edge detection method.

3. Proposed Approach

This section introduces the specific network architecture. The overall network ar-
chitecture in this paper is inspired by previous works [13,16,19,36]. We incorporate the
four proposed fusion differential convolution (FDC) structures into the Xception network,
replacing the separable convolutions in the original network architecture. Additionally,
we introduce a channel spatial attention module (CSAM) before certain MaxPool layers to
eliminate background noise. Finally, an up-sampling module (US) is introduced to avoid
the loss of edge information that may occur as the network deepens, ultimately generating
edge images.

In this section, we will introduce our network structure from three aspects: the overall
neural network architecture, our newly proposed fusion difference convolution structure,
and the loss function used in the network.

3.1. Neural Network Architecture

The network architecture is shown in Figure 2. Overall, the backbone network is
inspired by the Xception network. Compared to the VGG16 backbone network, the Xception
backbone network allows real-time inference on devices with limited resources. This
advantage is due to the fact that VGG16 stacks more convolutional layers, resulting in a
relatively larger number of parameters, which demands more computational resources and
longer training times. Additionally, the VGG16 backbone heavily relies on well-initialized
pre-trained weights. If trained entirely from scratch without loading any pre-trained
weights, the performance of the actual edge detection images may not be ideal. On the
other hand, the network based on the Xception architecture, with the improvements we
made, can address this issue to a certain extent. The Xception backbone’s architecture
allows for more efficient and effective feature extraction, which is particularly beneficial
when training from scratch or with limited pre-training data. This improvement could lead
to better edge detection performance even without heavy reliance on pre-trained weights.
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Figure 2. Proposed architecture. The backbone network is inspired by Xception, where the depth-
wise separable convolution layers are replaced with regular convolutions and fusion difference
convolution (FDC). The network incorporates the channel spatial attention module. The output of
each main block is fed back to the upsampling block to generate intermediate edge maps, which are
further combined to produce the fused edge map. More details are given in Section 3.

However, unlike the original Xception network, we added an additional part at the
end of the network with 256 filters, which does not include any max-pooling operations.
While the depth-wise separable convolutions in Xception are more computationally efficient
under resource constraints, we believe that regular convolutions have stronger expressive
power when dealing with complex image features. Therefore, our model does not em-
ploy depthwise separable convolutions but instead commonly uses 3 × 3 convolutions.
Additionally, in the subsequent subsection, we present a total of four fusion difference
convolutional structures. We replace some of the regular convolutions with these structures.
For more specific details, please refer to the next subsection. It is important to note that
although we have four types of fusion convolutional structures, they are not used in parallel.
Instead, only one type is chosen to replace each original convolution. We have extensively
explored numerous combinations to optimize the model’s performance and attempted to
provide the reasons behind the optimal combination. For detailed information, please refer
to Section 4.

In order to enable the network to adaptively capture more important information
within channels and eliminate the influence of background noise, we introduced the channel
spatial attention module (CSAM) before the MaxPool layer. The specific structure can be
referred to in Figure 3. The steps are as follows: the M × H ×W feature map is nonlinearly
transformed using the ReLU activation function, and the results are sequentially fed into
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1 × 1 and 3 × 3 convolutional layers for convolutional operations. This generates an
attention weight map, which is then scaled by applying the Sigmoid activation function
to obtain the attention weights. Finally, the attention weights are multiplied element-wise
with the input feature map to obtain the final output. This structure encompasses reactions
from all dimensions of the feature map, enabling the model to highlight important spatial
positions while suppressing unimportant ones. This helps eliminate the texture details
introduced by background noise, resulting in cleaner feature maps.

Figure 3. Details of the channel spatial attention module (CSAM) and the upsampling module.

Additionally, we incorporated an up-sampling module in our network. We exper-
imented with three up-sampling methods: deconvolution, bilinear interpolation, and
unpooling. The experimental results showed that using deconvolution for up-sampling
yielded the best performance. We believe this is because deconvolution preserves spatial
information in the image. By learning trainable parameters, it adapts the up-sampling
operation based on the characteristics of the dataset. Furthermore, we believe it can avoid
the blurring or repeated textures introduced by interpolation methods. For specific ex-
perimental details, please refer to Section 4. The specific structure of our up-sampling
module can be seen in Figure 3. It consists of a 1 × 1 convolutional layer, a ReLU function,
and a deconvolution layer. The output channels of the deconvolution are the same as the
input channels, and the specified kernel size and padding size are used. Each up-sampling
operation doubles the spatial resolution. We repeat this module until the generated feature
map matches the ground truth. This module achieves spatial expansion of the feature
maps through up-sampling convolutional operations, allowing for up-sampling the low-
resolution feature maps to the same size as the input image for pixel-level predictions.

Regarding skip connections, our model is similar to the one proposed by Xception [36].
We align the number of channels using a 1 × 1 convolution and directly add the input
feature map to the output feature map, enabling the transfer of low-level detailed features to
higher layers and facilitating faster propagation of bottom-level information to subsequent
layers in the network. This structure enhances the generalization capability of our model,
improving its perception and expressive power.

3.2. Fusion Difference Convolution

Inspired by the improved local binary pattern difference (BIRD) [37] and the net-
work architecture in Pidinet [19], we made modifications to the existing pixel difference
convolution (PDC, Figure 4). First, we enhanced the three original PDCs by integrating
vanilla convolutions. This new structure, referred to as fused difference convolution, was
introduced to improve the original PDC by extracting more semantic information from the
image, thereby reducing noise and texture information in the final edge image. Addition-
ally, we proposed a novel type of difference convolution that strengthens the diagonal edge
information in image features, resulting in a more accurate generation of diagonal edges
compared to the original model.
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Figure 4. The difference convolution structure mentioned in Pidinet. These three structures integrate
traditional edge detection operators into the popular convolutional operations in modern cellular
neural networks, enhancing the ability to extract image gradient information and better obtaining
image edge information.

In previous works, the extended local binary pattern (ELBP) has been proven effective
in utilizing computed local pixel difference vectors to identify potential clues in images,
complementing the visual task’s feature representation. Pidinet has already presented
three types of pixel difference convolution structures. However, directly replacing regular
convolutions with pixel difference convolutions leads to sensitivity to noise and loss of
semantic information in shallow layers. Specifically, if a pixel is a noise point, the resulting
pixel kernel within its eight-neighborhood during difference convolution is likely to be all
0 or all 1, rendering the original difference convolution structure ineffective. On the other
hand, although the PDC structure directly extracts gradient information from the image,
it tends to lose some of the original image’s semantic information in the shallow layers,
resulting in missing edges in certain detailed regions of the final generated image.

To address the aforementioned issues, we introduced vanilla convolution into the
difference convolution structure, controlled by hyperparameters θ1 and θ2, both ranging
from 0 to 1. These two convolutions share learnable weights. When θ1 = 1 and θ2 = 0,
the structure degenerates into vanilla convolution, while θ1 = 0 and θ2 = 1 results in
the PDC structure. This design allows us to tackle the two problems mentioned earlier.
When a pixel is a noise point in the image, the addition of vanilla convolution enables us to
learn meaningful image information. On the other hand, by relying on vanilla convolution,
we can obtain the desired image semantic information even in the shallow layers of the
network. The specific architecture can be seen in Figure 5.

On the other hand, we observed that in some existing network structures, such as
CED [38], RCF, and Pidinet, the generated edge maps often lack diagonal edge informa-
tion, or this information is blurred when dealing with complex texture or background
information (see Figure 6). Therefore, we designed a new fusion difference convolution
structure, incorporating the vanilla convolution as described earlier. This fusion difference
convolution structure can be referred to in Figure 7. By subtracting adjacent elements along
the main and off-diagonal, this structure enhances the gradient information for diagonal
edges, enriching the diagonal edge information while suppressing the surrounding texture
and background noise. From the experimental results, it is evident that the inclusion of this
structure effectively improves the ability to extract diagonal edge information from images.
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Figure 5. The fusion difference convolution (FDC). It introduces vanilla convolution into the original
difference convolution layer and utilizes a hyperparameter theta to control the summation. This
structure enables better extraction of both edge information and semantic information from the
feature maps.

(a) Image (b) GT (c) CED (d) RCF (e) Pidinet
Figure 6. An example of using CED, RCF, and Pidinet methods can be observed. When facing
partially slanted edges in an image, these methods may exhibit shortcomings such as missing edges
or the inclusion of unwanted background information.

Figure 7. A new differential convolutional structure is proposed to capture slanted edge information
in images.

In addition, following the approach of [19], we transformed the aforementioned four
fusion difference convolutions into vanilla convolutions. This transformation significantly
reduces the computational cost and memory footprint, allowing our model to perform
inference operations with almost the same computational complexity as the original vanilla
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convolution structure. Taking one of the fusion difference convolution structures depicted
in Figure 7 as an example, we applied the following equation for the conversion:

y = θ1 ∑
i

xiwi + θ2

[
1
2
(2x1 − x5)w1 +

1
2
(2x2 − x1 − x3)w2 + · · ·

]
=

[
θ1w1 +

θ2

2
[2w1 − w2 − w4]

]
x1 + [θ1w1 + θ2w2]x2 + · · ·

= ŵ1x1 + ŵ2x2 + · · · = ∑
i

ŵixi

(1)

The conversion formulas corresponding to the other three FDCs can be referred to in
Appendix A. By applying this transformation, we achieve comparable performance while
reducing the computational overhead associated with the fusion difference convolutions.

3.3. Loss Function

We adopt a weighted cross-entropy loss function similar to HED [13] for our network.
The use of a weighted cross-entropy loss function confers distinct advantages in addressing
class imbalance, particularly in edge detection tasks where class imbalances prevail. In most
cases, there are significantly fewer edge pixels than non-edge pixels in an image, leading
to an imbalanced class distribution. Therefore, employing the weighted cross-entropy
loss enables the model to focus more on the edge class, thereby enhancing edge detection
performance. Additionally, the weighting mechanism in the loss function balances the
gradients during training by treating different classes differently. As a result, the model
can converge more efficiently and achieve superior results.

We denote our network training set as:

S = {(Xn, Yn), n = 1, . . . , N} (2)

where Xn represents the preprocessed images, and Yn represents the binary edge labels of
Xn. Let W denote all the parameters of the network, and we define the parameters of each
side branch as:

w =
(

w(1), . . . , w(M)
)

(3)

The loss function can be defined as follows:

L(W, w) =
M

∑
m=1

αm`
(m)

(
W, w(m)

)
(4)

where αm represents the weights of each side branches’ loss function. Additionally, `(m)

denotes the loss function for each side branch, specifically the cross-entropy loss function,
which is defined as follows:

`(m)
(

W, w(m)
)
= −β ∑

j∈Y+

log Pr
(

yj = 1 | X; W, w(m)
)

−(1− β) ∑
j∈Y

log Pr
(

yj = 0 | X; W, w(m)
) (5)

where β represents the class balance weights for both positive and negative samples in
edge detection.

β =
∣∣Y−∣∣/∣∣Y+|+ |Y−

∣∣ (6)

(1− β) =
∣∣Y+

∣∣/∣∣Y+|+ |Y−
∣∣ (7)
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where |Y−| and |Y+| denote the edge and non-edge in the ground truth. Additionally,
Pr

(
yj | X; W, w(m)

)
represents the predicted edge values for the m-th side branch, which

have been mapped to (0, 1) using the sigmoid activation function.

4. Experiments
4.1. Datasets

The main training dataset used in this paper is the BIPED dataset. It consists of
258 street images, each with a high-definition resolution of 1280 × 720 pixels. These
images have been carefully processed and meticulously annotated by experts in the field of
computer vision. Furthermore, all results have undergone cross-validation, ensuring a low
possibility of erroneous or missing edges. The BIPED dataset is a publicly available dataset
and serves as a benchmark for evaluating our edge detection algorithm.

It is worth noting that many previous edge detection papers primarily utilized datasets
such as BSDS, MDBD, NYUD, and PASCAL. Among these datasets, only MDBD is specifi-
cally designed for edge detection tasks. However, the annotations in the MDBD dataset
suffer from missing and erroneous edges, which can penalize the edge detection network
during the training process. Therefore, in recent years, many papers have chosen to train
and validate their models using the BIPED dataset.

To assess the performance of our model, we conducted testing on the BIPED test
set. Additionally, to provide a comprehensive evaluation of the model’s performance, we
also conducted testing on four other datasets: BSDS, MDBD, NYUD, and PASCAL. It is
important to note that our model was not trained on these four datasets directly. Instead,
we used the pre-trained weights from the BIPED network for validation purposes. In
contrast, other methods have undergone training on at least one of the aforementioned
four datasets. Next, we will introduce the above four datasets in detail.

BSDS [24]. The Berkeley Segmentation Dataset is primarily used for image segmen-
tation and boundary detection. It has two versions, BSDS300 and BSDS500. Currently,
the majority of edge detection networks are trained and validated using the images from
BSDS300, and testing is performed using an additional 200 images. Each image in the BSDS
dataset is annotated by 3-6 annotators, and therefore, to obtain ground truth for the images,
an overlay operation is performed before training.

MDBD [25]. The Multicue Dataset for Boundary Detection is primarily used for edge
detection tasks. It comprises 100 high-definition images (1280 × 720) with meticulous
annotations. Typically, 80 randomly selected images are used as the training set, while
the remaining 20 images serve as the test set. In our work, we evaluated our model on a
randomly chosen subset of 20 images from this dataset.

NYUD [26]. The New York University Dataset is commonly used, with NYUD V2
being the preferred version. It contains 1449 images of size 640 × 480. Usually, 654 images
are selected as the training set, while the remaining images are used for testing and
validation. The dataset mainly consists of indoor scene data, which differs significantly
from outdoor scenes in the BIPED dataset. Therefore, our model did not achieve higher
metrics than previous networks in terms of ODS, OIS, and other evaluation measures.

PASCAL [27]. The Pascal Context dataset is primarily used for semantic image seg-
mentation tasks. The most commonly used version is PASCAL VOC 2012, which includes
11,530 images. This dataset only provides the true contour value of the image, so its eval-
uation index for edge detection tasks will be very low. We selected 500 images from this
dataset for testing our network.

4.2. Implementation Details

We randomly selected 50 images from the BIPED dataset for the test set, while the
remaining 208 images were used for the training set. Prior to training, data augmentation
was applied to these 208 images, which were originally sized at 1280 × 720. Each image
underwent rotation at various angles and was cropped using an internal square to obtain
a final size of 512 × 512. Additionally, the images underwent two rounds of gamma
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correction (0.3030 and 0.6060). This data augmentation process generated 100 new images
for each original image, resulting in a total of 20,800 images in our training set.

To obtain the best edge detection model, we experimented with various combinations
of hyperparameters θ1 and θ2. We achieved the optimal solution (ODS 0.857) when setting
θ1 = 0.3 and θ2 = 0.7. Please refer to Figure 8 for the corresponding curves. We believe
that this can be explained by the fact that in our model, a higher weight is assigned to the
FDC component. This difference convolution is better at extracting gradient information
from the images, which primarily reflects the edge information. This weighting allows
the model’s output to align more closely with the ground-truth edge information. On the
other hand, vanilla convolutions are more focused on capturing semantic information in
the images, helping to eliminate unnecessary textures and background noise. Therefore,
the weight assigned to this component is slightly lower.

Figure 8. Line chart of super parameter θ1, θ2, and ODS. The X-axis represents hyperparameters θ1

and θ2, and the Y-axis represents the output image ODS value. It can be seen that when θ1 = 0.3 and
θ2 = 0.7, the model reaches its optimal state.

The network model was implemented using PyTorch, with hyperparameters set as
θ1 = 0.3 and θ2 = 0.7. The initial learning rate was set to 1 × 10−4, and the training was
conducted for 17 epochs with a batch size of 16. All experiments were performed on an RTX
3090 GPU. The training time for the network was approximately 7.3 h. During inference,
the model achieved a processing speed of 28.8 fps on an RTX 3090 GPU.

The evaluation of edge detection has been well-defined in previous works. In this
paper, we consider widely used evaluation metrics, including optimal dataset scale (ODS),
optimal image scale (OIS), and average precision (AP). It should be pointed out that
unnecessary background information in the final generated edge image can to some extent
affect the above three evaluation indicators. Therefore, we provide the definitions of the
three indicators and the impact of background information here.

ODS: ODS evaluates the performance of an edge detection algorithm at different
threshold levels. It considers the numbers of true positives (correctly detected edge pixels),
false positives (incorrectly detected edge pixels), and true negatives (undetected edge
pixels) at different thresholds, calculating a comprehensive detection rate. Background
details can affect the ODS metric because complex or cluttered backgrounds may lead to
more false positives or obscure genuine edges, thus reducing the ODS score. OIS: OIS is
a variation of ODS, aiming to find an optimal threshold that maximizes edge detection
performance. OIS takes into account the performance under different image scales and
selects the best threshold accordingly. Background details can also influence the OIS metric
because the complexity of the background may affect the saliency of edges at different
scales, impacting the choice of the optimal threshold.
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AP: AP is a metric used to evaluate object detection and edge detection tasks. It primar-
ily assesses the balance between precision and recall at different thresholds. Background
details can similarly affect the AP metric as complex backgrounds may lead to inaccurate
edge localization, reducing the algorithm’s precision.

In edge detection models, precision refers to the probability that the machine-generated
boundary pixels in edge detection are true boundary pixels. Recall, on the other hand,
represents the probability of detecting true boundary pixels in edge detection out of all the
true boundary pixels.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where TP stands for true positive, FP stands for false positive, and FN stands for false
negative. ODS refers to selecting a fixed threshold value, denoted as η, that maximizes
the F-score on the dataset. OIS, on the other hand, involves selecting the threshold value,
denoted as η, for each image individually to maximize its F-score.

4.3. Results

To achieve the best performance of our model, we conducted extensive experiments
on two modules: FDC and US. First, we discuss the experiments on the FDC module. It
should be noted that we have a total of four FDC variants and one vanilla convolution,
making a total of five convolution layers to replace the original convolution layers in
Xception. However, trying all possible combinations to find the optimal solution is clearly
impractical. Therefore, we only explored a subset of combinations and attempted to
provide insights into the potential optimal solution of the model. Experimental data can
be referred to in Table 1. It can be observed that replacing all convolution layers with
our FDC module does not improve the model’s performance. Instead, it performs worse
than using vanilla convolutions alone. We speculate that this may be due to two reasons.
Firstly, the extensive use of FDC modules may only effectively extract gradient features
from the images. Although we incorporate vanilla convolutions into the FDC module, as
the network goes deeper, the extracted image features become increasingly blurry, thus
neglecting other crucial image features. Secondly, shallow layers of the network require
vanilla convolutions to rapidly acquire semantic information from the images and pass it to
the subsequent layers. By directly using the FDC module, the network might inadvertently
discard some useful feature information in the shallow layers, making it challenging to
recover this information.

The optimal configuration found to be most effective is [C,A]×2-[R,D]×1. This means
that each type of FDC is used in the model, and they will extract gradient information from
different encoding directions in the image. This diverse incorporation of FDC types enriches
the model’s feature information, leading to the generation of more accurate edge images.
By employing a combination of different FDC types, our model benefits from a broader
range of gradient information, which improves its ability to produce more precise edge
detection results. This finding supports the effectiveness of the selected configuration and
reinforces the significance of employing a variety of FDC types in the model architecture.

Moving on to the consideration of the up-sampling (US) module, we experimented
with three approaches: deconvolution, bilinear interpolation, and unpooling, as discussed
in detail in Section 3. The experimental results can be found in Table 2. Overall, we
observed that the differences between these three up-sampling methods were not significant.
However, using deconvolution for up-sampling yielded slightly better results compared
to the other two methods. Therefore, in the subsequent discussions of the experimental
results, we validate the model using the best-performing configuration as indicated by the
aforementioned metrics.
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Table 1. Possible configurations of our method. ’C’, ’A’, ’R’, ’D’, and ’V’, respectively, represent
the four FDC modules and vanilla convolutions we provide. We have a total of 11 convolutional
layers that can be replaced. If there is no special indication, the first 2 and last 3 layers of the
network are vanilla convolutions. Therefore, the replacement mentioned above is hidden for less
than 11 convolutional layers in the table.

Architecture V×11 C×11 A×11
ODS/OIS 0.802/0.811 0.711/0.721 0.678/0.624

Architecture C×7 C×5-D×2 R×5-D×2
ODS/OIS 0.817/0.819 0.818/0.821 0.744/0.748

Architecture C×4-[A,R,D]×1 D×4-[C,A,R]×1 [A,R]×2-[C,D]×1
ODS/OIS 0.855/0.850 0.813/0.824 0.719/0.732

Architecture [C,D]×2-[A,R]×1 baseline [C,A]×2-[R,D]×1
ODS/OIS 0.850/0.848 0.829/0.841 0.857/0.854

Table 2. Evaluation indicators for different up-sampling methods where US-rp means that the anti-
pooling operation is used to realize the up-sampling, US-b means that the Bilinear interpolation
is used to realize the up-sampling, and US-dc means that the deconvolution is used to realize the
up-sampling.

US Method ODS OIS AP

US-rp 0.849 0.852 0.892
US-b 0.855 0.851 0.890

US-dc 0.857 0.854 0.897

We conducted training on the BIPED dataset, and it is worth noting that our model
was trained completely from scratch without utilizing pre-trained weights from backbone
networks. We have provided relevant data for each output, as shown in Table 3. The
experimental results are presented in Table 4. In comparison to HED, RCF, BDCN, and
Pidinet, which incorporate pre-trained weights from backbone networks, our approach
outperforms them in terms of performance. Specifically, we achieved a performance of 0.829
vs. 0.857 in ODS and 0.841 vs. 0.854 in OIS for our method compared to HED. Although
our method slightly lags behind Pidinet in terms of the OIS metric, we still achieved a 0.4%
improvement in ODS, and a 0.5% improvement in AP. At the same time, compared to our
baseline (HED), we achieved a 3.3% improvement in ODS, a 1.5% improvement in OIS, and
a 3.2% improvement in AP. In order to provide a more intuitive evaluation of our model,
we have drawn recall precision, as shown in Figure 9.

Table 3. Quantitative evaluation of the 7 predictions of our method on BIPED test dataset.

Outputs ODS OIS AP

Outputs 1(ŷ1) 0.722 0.751 0.718
Outputs 2(ŷ2) 0.738 0.779 0.781
Outputs 3(ŷ3) 0.827 0.799 0.843
Outputs 4(ŷ4) 0.846 0.836 0.859
Outputs 5(ŷ5) 0.851 0.838 0.869
Outputs 6(ŷ6) 0.854 0.841 0.892

Edge Map 0.857 0.854 0.897
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Table 4. Train with BIPED dataset and compare the evaluation indicators obtained between methods.

Methods ODS OIS AP

HED [13] 0.829 0.841 0.869
RCF [39] 0.841 0.859 0.882

BDCN [40] 0.839 0.853 0.887
Pidinet [19] 0.853 0.860 0.893

Ours 0.857 0.854 0.897

Figure 9. Precision–recall curves of our models and some competitors on BIPED dataset.

To provide a fairer comparison with previous methods, we conducted validation on
four datasets: MDBD, BSDS500, NYUD, and PASCAL. The detailed results can be found
in Table 5 and Figure 10. We categorized the datasets into two types: edge detection
datasets and contour/boundary detection/segmentation datasets. It can be observed that
our method achieved comparable results to previous methods only on the MDBD dataset
but fell short of ideal results on the other datasets. There are several reasons for this. The
main reason is that our model was not trained on these datasets but rather validated using
the model trained on the BIPED dataset. In contrast, other methods were trained at least
once on the respective datasets and may have undergone extensive fine-tuning experiments.
Additionally, the MDBD dataset is the only carefully annotated edge dataset among the four,
and its images share more similarities with the BIPED dataset in terms of scenes. Therefore,
the weights of our trained model may be more biased toward recognizing edges in similar
scenes. Lastly, the other datasets are not specifically designed for edge detection, which
means their evaluation metrics penalize the edge images obtained by our model. Hence,
we reasonably speculate that when we carefully annotate images from the other datasets,
our model will achieve similar or even higher performance compared to previous models.
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Table 5. The performance of the network in this article on other datasets (values from other ap-
proaches come from the corresponding publications).

Dataset Methods ODS OIS AP

Edge Detection Dataset

MDBD [25] HED [13] 0.841 0.864 0.887
RCF [39] 0.851 0.862 -

BDCN [40] 0.855 0.856 0.887
Pidinet [19] 0.845 0.861 0.890

Ours 0.857 0.851 0.893

Contour/Boundary Detection/Segmentation Datasets

BSDS500 [24] HED [13] 0.788 0.808 0.811
RCF [39] 0.806 0.823 -

BDCN [40] 0.82 0.838 0.840
Pidinet [19] 0.807 0.823 0.832

Ours 0.730 0.778 0.747

NYUD [26] HED [13] 0.720 0.761 0.786
RCF [39] 0.743 0.757 -

BDCN [40] 0.749 0.751 0.781
Pidinet [19] 0.741 0.744 0.778

Ours 0.602 0.615 0.490

PASCAL [27] CED [38] 0.726 0.750 0.778
HED [13] 0.514 0.542 0.389
RCF [39] 0.501 0.526 -

Ours 0.515 0.539 0.385

Figure 10. Results from the proposed approach. We have provided two examples for each dataset.
We can see that our edge image results show good overall and detailed performance on BIPED
dataset. Since we did not train on MDBD, BSDS, and PASCAL, they will not extract accurate edges
from all images on the corresponding test set. We have only selected some well performing images
for display.

4.4. Ablation Study

To demonstrate the effectiveness of our model and identify the optimal model archi-
tecture, we conducted ablation experiments on the BIPED dataset. In Tables 1 and 2, we
provided potential optimal solutions for the up-sampling module (using deconvolution)
and FDC module, respectively. It can be observed that both modules contribute to the
performance improvement of our model, as indicated by the results.

In this section, we focused on conducting ablation experiments on three modules:
FDC, CSAM, and US. The experimental results can be found in Table 6. It is evident that all
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three modules lead to performance improvements in our model. We noticed that removing
the US module from the network did not result in a significant drop in ODS/OIS values.
This may be attributed to the fact that the skip connections in the network have already
conveyed some shallow-level image features to the higher layers. However, incorporating
the US module still enhances the performance of our model, indicating its value. On
the other hand, we observed that the inclusion of the CSAM module does not cause a
significant decrease in ODS/OIS values compared to its exclusion. Hence, when dealing
with edge detection tasks that have lower accuracy requirements, it is advisable to consider
removing the CSAM attention module to lighten the network.

Table 6. The results of the ablation experiment. The models are trained with BIPED training set and
evaluated on BIPED [16].

FDC CSAM US ODS/OIS

5 X X 0.802/0.811
5 5 X 0.792/0.804
X 5 X 0.841/0.836
X X 5 0.839/0.835
X X X 0.857/0.854

5. Conclusions

In conclusion, our contributions can be summarized in three parts.
1. We proposed four novel fusion difference convolution (FDC) structures. Among

them, we introduced a new differential convolution to address the weakness of previous
methods in recognizing complex oblique edges. These four FDC structures, by combining
differential convolutions with vanilla convolutions, achieved more accurate and robust
edge detection.

2. We presented an improved model based on Xception. By incorporating the FDC,
CSAM, and US modules, our model was able to be trained from scratch with limited
data and ultimately achieved performance surpassing human-level accuracy. This break-
through deviated from the conventional practice of relying on pre-trained backbone net-
work weights, such as VGG16, in edge detection networks.

3. We conducted training and validation on the carefully annotated BIPED dataset,
as well as extensive edge detection experiments on the MDBD, BSDS500, NYUD, and
PASCAL datasets. Our experimental results demonstrated that our network architecture
achieved promising performance. Overall, our contributions lie in the development of
novel FDC structures, the improvement of the Xception-based model with FDC, CSAM,
and US modules, and the thorough evaluation of our approach on multiple datasets.

We envision the application of our model in practical industrial production to replace
some manual labor. Additionally, as mentioned in Section 1, edge detection is a subtask of
many advanced visual tasks, such as semantic segmentation or object detection. We aim
for our model to be applied in these related tasks as well. By leveraging the accurate and
stable edge detection capabilities of our model, we believe we can contribute to improving
the performance and efficiency of various computer vision applications.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Average Precision
CNN Convolutional Neural Network
CSAM Channel Spatial Attention Module
FDC Fusion Difference Convolution
FN False Negative
FP False Positive
GT Ground Truth
ODS Optimal Dataset Scale
OIS Optimal Image Scale
PDC Pixel Difference Convolution
ReLU Rectified Linear Unit
TP True Positive
US Up-Sampling Module

Appendix A

In Section 3, we have provided a formula for converting FDC to vanilla convolution.
Here, we provide the remaining three formulas for converting FDC to vanilla convolution.

y = θ1 ∑
i

xiwi + θ2 ·∑
i
(xi − x5)wi

= (θ1w1 + θ2w1)x1 + (θ1w2 + θ2w2)x2 + · · ·
= ŵ1x1 + ŵ2x2 + . . . = ∑

i
ŵixi

(A1)

y = θ1 ∑
i

xiwi + θ2[(x1 − x2)w1 + (x2 − x3)w2 + · · · ]

= [θ1w1 + θ2(w1 − w4)]x1 + [θ1w2 + θ2(w2 − w1)]x2 + · · ·
= ŵ1x1 + ŵ2x2 + . . . = ∑

i
ŵixi

(A2)

y = θ1 ∑
i

xiwi + θ2[(x1 − x7)w1 + (x3 − x8)w2 + · · · ]

= (θ1w1 + θ2w1)x1 + (θ1w2 + θ2w2)x3 + . . .

= ŵ1x1 + ŵ2x2 + . . . = ∑
i

ŵixi

(A3)
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