Multifunctional THz Graphene Antenna with 360∘ Continuous ϕ-Steering and θ-Control of Beam
Abstract
:1. Introduction
2. Antenna Description
3. Graphene Parameters
4. Symmetry Analysis
4.1. The Full 3D Symmetry of the Antenna
4.2. Effect of Dielectric Substrates on Antenna Symmetry
4.3. Effect of Chemical Potentials on Antenna Symmetry
4.4. Resulting Symmetry of Antenna
4.5. Symmetry of Currents and Fields: Group
4.6. Symmetry of Currents and Fields: Groups and
5. Qualitative Analysis of the Currents and Fields
6. Pre-Optimization Design of Graphene Dipole Antenna (Without Reflectors)
7. Design of Graphene Dipole Antenna with Reflectors
8. Numerical Simulations and Equivalent Circuit Analysis
8.1. Comparison of Radiation Patterns of the Graphene Dipole Antenna and Quasi-Omnidirectional Antenna with Reflectors
8.2. Operation States and Characteristics of the Antenna
8.3. Near Field in the Antenna
8.4. Circuit Representation of Graphene Dipole Antenna with Reflectors
8.5. Effect of Substrates and Base and θ-Control of RP
9. Discussion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Chang, B.; Xue, J.; Cao, X.; Xu, H.; He, H.; Cui, W.; He, Z. Sensing and slow light applications based on graphene metasurface in terahertz. Diam. Relat. Mater. 2022, 123, 108881. [Google Scholar] [CrossRef]
- Auton, G.; But, D.B.; Zhang, J.; Hill, E.; Coquillat, D.; Consejo, C.; Nouvel, P.; Knap, W.; Varani, L.; Teppe, F.; et al. Terahertz Detection and Imaging Using Graphene Ballistic Rectifiers. Nano Lett. 2017, 17, 7015–7020. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.S. Chapter 4—Terahertz Spectroscopy: Advances and Applications. In Molecular and Laser Spectroscopy; Gupta, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 65–85. [Google Scholar]
- Ullah, Z.; Witjaksono, G.; Nawi, I.; Tansu, N.; Irfan Khattak, M.; Junaid, M. A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications. Sensors 2020, 20, 1401. [Google Scholar] [CrossRef] [Green Version]
- Dmitriev, V.; Rodrigues, N.R.N.M.; de Oliveira, R.M.S.; Paiva, R.R. Graphene Rectangular Loop Antenna for Terahertz Communications. IEEE Trans. Antennas Propag. 2020, 69, 3063–3073. [Google Scholar] [CrossRef]
- Shihzad, W.; Ullah, S.; Ahmad, A.; Abbasi, N.A.; Choi, D.y. Design and Analysis of Dual-Band High-Gain THz Antenna Array for THz Space Applications. Appl. Sci. 2022, 12, 9231. [Google Scholar] [CrossRef]
- Chemweno, E.; Kumar, P.; Afullo, T. Design of high-gain wideband substrate integrated waveguide dielectric resonator antenna for D-band applications. Optik 2023, 272, 170261. [Google Scholar] [CrossRef]
- Grigorenko, A.; Polini, M.; Novoselov, K. Graphene plasmonics. Nat. Photonics 2012, 6, 749–758. [Google Scholar] [CrossRef]
- Gonçalves, P.A.D.; Peres, N.M.R. An Introduction to Graphene Plasmonics; World Scientific Publishing: Singapore, 2016. [Google Scholar]
- Dash, S.; Patnaik, A.; Kaushik, B.K. Performance enhancement of graphene plasmonic nanoantennas for THz communication. IET Microwaves Antennas Propag. 2019, 13, 71–75. [Google Scholar] [CrossRef]
- Rudrapati, R. Graphene: Fabrication Methods, Properties, and Applications in Modern Industries. In Graphene Production and Application; Ameen, S., Akhtar, M.S., Shin, H.S., Eds.; IntechOpen: London, UK, 2020; Chapter 2. [Google Scholar]
- Goyal, R.; Vishwakarma, D.K. Design of a graphene-based patch antenna on glass substrate for high-speed terahertz communications. Microw. Opt. Technol. Lett. 2018, 60, 1594–1600. [Google Scholar] [CrossRef]
- Ye, R.; James, D.K.; Tour, J.M. Laser-induced graphene: From discovery to translation. Adv. Mater. 2019, 31, 1803621. [Google Scholar] [CrossRef]
- Catania, F.; Marras, E.; Giorcelli, M.; Jagdale, P.; Lavagna, L.; Tagliaferro, A.; Bartoli, M. A Review on Recent Advancements of Graphene and Graphene-Related Materials in Biological Applications. Appl. Sci. 2021, 11, 614. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Novotny, L.; van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Chu, Q.-X.; Li, Y. Reconfigurable dipole antenna array with shared parasitic elements for 360∘ beam steering. Int. J. Microw. Comput.-Aided Eng. 2020, 30, e22435. [Google Scholar]
- Perruisseau-Carrier, J. Graphene for antenna applications: Opportunities and challenges from microwaves to THz. In Proceedings of the 2012 Loughborough Antennas & Propagation Conference (LAPC), Leicestershire, UK, 12–13 November 2012; pp. 1–4. [Google Scholar]
- Yang, Y.-J.; Wu, B.; Zhao, Y.-T.; Chi-Fan. Dual-band beam steering THz antenna using active frequency selective surface based on graphene. EPJ Appl. Metamat. 2021, 8, 1–7. [Google Scholar] [CrossRef]
- Wu, Y.; Qu, M.; Jiao, L.; Liu, Y.; Ghassemlooy, Z. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns. AIP Adv. 2016, 6, 065308. [Google Scholar] [CrossRef] [Green Version]
- Dash, S.; Psomas, C.; Patnaik, A.; Krikidis, I. An ultra-wideband orthogonal-beam directional graphene-based antenna for THz wireless systems. Sci. Rep. 2022, 12, 22145. [Google Scholar] [CrossRef]
- Rodrigues, N.R.N.M.; de Oliveira, R.M.S.; Dmitriev, V. Smart Terahertz Graphene Antenna: Operation as an Omnidirectional Dipole and as a Reconfigurable Directive Antenna. IEEE Antennas Propag. Mag. 2018, 60, 26–40. [Google Scholar] [CrossRef]
- Varshney, G. Reconfigurable graphene antenna for THz applications: A mode conversion approach. Nanotechnology 2020, 31, 135208. [Google Scholar] [CrossRef]
- Al-Shalaby, N.A.; Elhenawy, A.S.; Zainud-Deen, S.H.; Malhat, H.A. Electronic Beam-Scanning Strip-Coded Graphene Leaky-Wave Antenna Using Single Structure. Plasmonics 2021, 16, 1427–1438. [Google Scholar]
- Basiri, R.; Zareian-Jahromi, E.; Aghazade-Tehrani, M. A reconfigurable beam sweeping patch antenna utilizing parasitic graphene elements for terahertz applications. Photonics Nanostruct.-Fundam. Appl. 2022, 51, 101044. [Google Scholar] [CrossRef]
- Shalini, M.; Madhan, M.G. Photoconductive bowtie dipole antenna incorporating photonic crystal substrate for Terahertz radiation. Opt. Commun. 2022, 517, 128327. [Google Scholar] [CrossRef]
- Nissiyah, G.J.; Madhan, M.G. A narrow spectrum terahertz emitter based on graphene photoconductive antenna. Plasmonics 2019, 14, 2003–2011. [Google Scholar]
- Khaleel, S.A.; Hamad, E.K.; Parchin, N.O.; Saleh, M.B. Programmable Beam-Steering Capabilities Based on Graphene Plasmonic THz MIMO Antenna via Reconfigurable Intelligent Surfaces (RIS) for IoT Applications. Electronics 2022, 12, 164. [Google Scholar]
- Jiang, Z.; Wang, Y.; Chen, L.; Yu, Y.; Yuan, S.; Deng, W.; Wang, R.; Wang, Z.; Yan, Q.; Wu, X.; et al. Antenna-integrated silicon–plasmonic graphene sub-terahertz emitter. APL Photonics 2021, 6, 066102. [Google Scholar]
- Chen, P.Y.; Alù, A. A terahertz photomixer based on plasmonic nanoantennas coupled to a graphene emitter. Nanotechnology 2013, 24, 455202. [Google Scholar] [CrossRef]
- Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K.S.; Ferrari, A. Rayleigh imaging of graphene and graphene layers. Nano Lett. 2007, 7, 2711–2717. [Google Scholar] [CrossRef] [Green Version]
- Hosseininejad, S.E.; Neshat, M.; Faraji-Dana, R.; Lemme, M.; Haring Bolivar, P.; Cabellos-Aparicio, A.; Alarcon, E.; Abadal, S. Reconfigurable THz Plasmonic Antenna Based on Few-Layer Graphene with High Radiation Efficiency. Nanomaterials 2018, 8, 577. [Google Scholar] [CrossRef] [Green Version]
- Barybin, A.A.; Dmitriev, V.A. Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics; Rinton: Princeton, NJ, USA, 2002. [Google Scholar]
- Overvig, A.C.; Malek, S.C.; Carter, M.J.; Shrestha, S.; Yu, N. Selection rules for quasibound states in the continuum. Phys. Rev. B 2020, 102, 035434. [Google Scholar] [CrossRef]
- Martí, I.L.; Kremers, C.; Cabellos-Aparicio, A.; Jornet, J.M.; Alarcón, E.; Chigrin, D.N. Scattering of terahertz radiation on a graphene-based nano-antenna. In Proceedings of the AIP Conference Proceedings. American Institute of Physics, Bad Honnef, Germany, 26–28 October 2011; Volume 1398, pp. 144–146. [Google Scholar]
- Cao, Y.S.; Jiang, L.J.; Ruehli, A.E. An equivalent circuit model for graphene-based terahertz antenna using the PEEC method. IEEE Trans. Antennas Propag. 2016, 64, 1385–1393. [Google Scholar] [CrossRef]
- Llatser, I.; Kremers, C.; Cabellos-Aparicio, A.; Jornet, J.M.; Alarcón, E.; Chigrin, D.N. Graphene-based nano-patch antenna for terahertz radiation. Photonics Nanostruct.-Fundam. Appl. 2012, 10, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Llatser, I.; Kremers, C.; Chigrin, D.N.; Jornet, J.M.; Lemme, M.C.; Cabellos-Aparicio, A.; Alarcon, E. Radiation characteristics of tunable graphennas in the terahertz band. Radioengineering 2012, 21, 946–953. [Google Scholar]
- Zhang, B.; Zhang, J.; Liu, C.; Wu, Z.P.; He, D. Equivalent resonant circuit modeling of a graphene-based bowtie antenna. Electronics 2018, 7, 285. [Google Scholar] [CrossRef] [Green Version]
- Rakheja, S.; Sengupta, P.; Shakiah, S.M. Design and Circuit Modeling of Graphene Plasmonic Nanoantennas. IEEE Access 2020, 8, 129562–129575. [Google Scholar] [CrossRef]
- Garcia, M.E.C.; de Oliveira, R.M.S.; Rodrigues, N.R.N.M. Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass Substrate. J. Microwaves, Optoelectron. Electromagn. Appl. 2022, 21, 11–34. [Google Scholar]
- Christensen, J.; Manjavacas, A.; Thongrattanasiri, S.; Koppens, F.H.L.; de Abajo, F.J.G. Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons. ACS Nano 2012, 6, 431–440. [Google Scholar]
- Correas-Serrano, D.; Gomez-Diaz, J.S.; Perruisseau-Carrier, J.; Alvarez-Melcon, A. Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans. Nanotechnol. 2014, 13, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Powell, M.J.D. Approximation Theory and Methods; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- de Oliveira, R.M.S.; Rodrigues, N.R.N.M.; Dmitriev, V. FDTD Formulation for Graphene Modeling Based on Piecewise Linear Recursive Convolution and Thin Material Sheets Techniques. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 767–770. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics, The Finite-Difference Time-Domain Method, 3rd ed.; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Gevorgian, S.; Berg, H. Line Capacitance and Impedance of Coplanar-Strip Waveguides on Substrates with Multiple Dielectric Layers. In Proceedings of the 2001 31st European Microwave Conference, London, UK, 24–26 September 2001; pp. 1–4. [Google Scholar]
- Binns, K.J.; Lawrenson, P.J. Analysis and Computation of Electric and Magnetic Field Problems; Pergamon International Library of Science, Technology, Engineering and Social Studies: 2013. Available online: https://www.sciencedirect.com/book/9780080166384/analysis-and-computation-of-electric-and-magnetic-field-problems (accessed on 28 July 2023).
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series, and Products, 6th ed.; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Whitaker, J.C. (Ed.) The Electronics Handbook, 2nd ed.; Electrical Engineering Handbook; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Dmitriev, V.; Castro, W.; Melo, G.; Oliveira, C. Controllable graphene W-shaped three-port THz circulator. Photonics Nanostruct.-Fundam. Appl. 2020, 40, 100795. [Google Scholar]
- Huang, J.; Song, Z. Terahertz graphene modulator based on hybrid plasmonic waveguide. Phys. Scr. 2021, 96, 125525. [Google Scholar]
- Hou, H.; Teng, J.; Palacios, T.; Chua, S. Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides. Opt. Commun. 2016, 370, 226–230. [Google Scholar] [CrossRef]
- Hong, J.S.; Lancaster, M.J. Microstrip Filters for RF/Microwave Applications; Wiley Series in Microwave and Optical Engineering; John Wiley & Sons: Nashville, TN, USA, 2001. [Google Scholar]
- Li, D.; Huang, Y.; Shen, Y.C.; Khiabani, N. Effects of substrate on the performance of photoconductive THz antennas. In Proceedings of the 2010 International Workshop on Antenna Technology, Lisbon, Portugal, 1–3 March 2010; pp. 1–4. [Google Scholar]
- Adekoya, G.J.; Sadiku, R.E.; Ray, S.S. Nanocomposites of PEDOT:PSS with Graphene and its Derivatives for Flexible Electronic Applications: A Review. Macromol. Mater. Eng. 2021, 306, 1–21. [Google Scholar]
- Gomez-Diaz, J.; Moldovan, C.; Capdevila, S.; Romeu, J.; Bernard, L.; Magrez, A.; Ionescu, A.; Perruisseau-Carrier, J. Self-biased reconfigurable graphene stacks for terahertz plasmonics. Nat. Commun. 2015, 6, 6334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Yu, H.; Dai, T.; Jiang, J.; Wang, G.; Yang, L.; Wang, W.; Yang, J.; Jiang, X. Graphene-Based Floating-Gate Nonvolatile Optical Switch. IEEE Photonics Technol. Lett. 2016, 28, 284–287. [Google Scholar]
- Fuscaldo, W.; Burghignoli, P.; Baccarelli, P.; Galli, A. Graphene Fabry-Perot Cavity Leaky-Wave Antennas: Plasmonic Versus Nonplasmonic Solutions. IEEE Trans. Antennas Propag. 2017, 65, 1651–1660. [Google Scholar]
- McPherson, J.W.; Kim, J.; Shanware, A.; Mogul, H.; Rodriguez, J. Trends in the ultimate breakdown strength of high dielectric-constant materials. IEEE Trans. Electron Devices 2003, 50, 1771–1778. [Google Scholar] [CrossRef]
- Kong, W.; Kum, H.; Bae, S.H.; Shim, J.; Kim, H.; Kong, L.; Meng, Y.; Wang, K.; Kim, C.; Kim, J. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 2019, 14, 927–938. [Google Scholar]
- Meng, Y.; Feng, J.; Han, S.; Xu, Z.; Mao, W.; Zhang, T.; Kim, J.S.; Roh, I.; Zhao, Y.; Kim, D.H.; et al. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater. 2023, 8, 498–517. [Google Scholar] [CrossRef]
e | Current j | Field E | Field H | ||||
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | ||||
1 | 1 | ||||||
1 | 1 | ||||||
1 | 1 |
A | A | A | |
A | B | B | |
B | A | B | |
B | B | A |
e | Current j | Field E | Field H | ||
---|---|---|---|---|---|
A | 1 | 1 | |||
B | 1 | , | , | , |
e | Current j | Field E | Field H | ||
---|---|---|---|---|---|
A | 1 | 1 | , | , | |
B | 1 | , |
e | Current j | Field E | Field H | ||
---|---|---|---|---|---|
A | 1 | 1 | , | , | |
B | 1 | , |
e | Current j | Field E | Field H | ||
---|---|---|---|---|---|
A | 1 | 1 | , | ||
B | 1 | , | , |
Parameter | Dimension () | Parameter | Dimension () |
---|---|---|---|
29.32 | 50 | ||
46.92 | 50 | ||
45 | 50 | ||
45 | 50 | ||
80 | 0.33 | ||
80 | 5 |
State | FBR | Maximum Gain | (dB) | (%) | Chemical Potential of Reflectors | HPBW () | Symmetry Elements | Radiation Pattern | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1.04 | −6.38 | 46.2 | eV, eV | – | , , | ||
1 | 9.73 | 0.93 | −8.49 | 38.9 | eV, eV, (flipped lobe if permuted), eV, eV | 239 | |||
2 | 17.3 | 1.51 | −10.8 | 49.3 | eV, eV, (flipped lobe if permuted), eV, eV | 183 | |||
3 | 1 | 1.63 | −10.4 | 51.6 | eV, eV, eV | 79 | , , | ||
4 | 1 | 0.86 | −7.85 | 29.1 | eV, eV, eV | 73 | , , | ||
5 | 17.8 | 1.42 | −7.83 | 27.9 | eV, eV, eV, eV | 120 | |||
BSR () | 10.1 | 1.22 | −10.7 | 39.5 | eV, eV, eV, eV | 134 |
Chemical Potentials | |
---|---|
0 | eV, eV, eV, and eV |
45 | eV, eV, eV, eV, and eV |
90 | eV, eV, eV, and eV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitriev, V.; de Oliveira, R.M.S.; Paiva, R.R.; Rodrigues, N.R.N.M. Multifunctional THz Graphene Antenna with 360∘ Continuous ϕ-Steering and θ-Control of Beam. Sensors 2023, 23, 6900. https://doi.org/10.3390/s23156900
Dmitriev V, de Oliveira RMS, Paiva RR, Rodrigues NRNM. Multifunctional THz Graphene Antenna with 360∘ Continuous ϕ-Steering and θ-Control of Beam. Sensors. 2023; 23(15):6900. https://doi.org/10.3390/s23156900
Chicago/Turabian StyleDmitriev, Victor, Rodrigo M. S. de Oliveira, Rodrigo R. Paiva, and Nilton R. N. M. Rodrigues. 2023. "Multifunctional THz Graphene Antenna with 360∘ Continuous ϕ-Steering and θ-Control of Beam" Sensors 23, no. 15: 6900. https://doi.org/10.3390/s23156900
APA StyleDmitriev, V., de Oliveira, R. M. S., Paiva, R. R., & Rodrigues, N. R. N. M. (2023). Multifunctional THz Graphene Antenna with 360∘ Continuous ϕ-Steering and θ-Control of Beam. Sensors, 23(15), 6900. https://doi.org/10.3390/s23156900