Skylight Polarization Pattern Simulator Based on a Virtual-Real-Fusion Framework for Urban Bionic Polarization Navigation
Abstract
:1. Introduction
2. Urban Skylight Polarization Simulator
2.1. Virtual Part
2.2. Real Part
2.3. Fusion Part
3. Experiments and Results
3.1. The Measurement Experiments and Results
3.2. The Calibration Experiments and Results
3.3. Fusion Results
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tin Leung, K.; Whidborne, J.F.; Purdy, D.; Dunoyer, A. A Review of Ground Vehicle Dynamic State Estimations Utilising GPS/INS. Veh. Syst. Dyn. 2011, 49, 29–58. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, S. On Misalignment between Magnetometer and Inertial Sensors. IEEE Sens. J. 2016, 16, 6288–6297. [Google Scholar] [CrossRef]
- Dupeyroux, J.; Serres, J.R.; Viollet, S. AntBot: A Six-Legged Walking Robot Able to Home like Desert Ants in Outdoor Environments. Sci. Robot. 2019, 4, eaau0307. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Kong, F.; Xu, H.; Guo, X.; Li, H.; Ruan, Y.; Cao, S.; Guo, Y. Biomimetic Polarized Light Navigation Sensor: A Review. Sensors 2023, 23, 5848. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Guo, Y.; Zhang, J.; Fan, X.; Guo, X. Review on Bio-Inspired Polarized Skylight Navigation. Chin. J. Aeronaut. 2023, in press. [CrossRef]
- Rossel, S.; Wehner, R. How Bees Analyse the Polarization Patterns in the Sky—Experiments and Model. J. Comp. Physiol. A 1984, 154, 607–615. [Google Scholar] [CrossRef]
- Muller, M.; Wehner, R. Path Integration in Desert Ants, Cataglyphis Fortis. Proc. Natl. Acad. Sci. USA 1988, 85, 5287–5290. [Google Scholar] [CrossRef]
- Coulson, K. Polarization and Intensity of Light in the Atmosphere; A Deepak Pub: Hampton, VA, USA, 1988. [Google Scholar]
- Liang, H.; Bai, H.; Liu, N.; Sui, X. Polarized Skylight Compass Based on a Soft-Margin Support Vector Machine Working in Cloudy Conditions. Appl. Opt. 2020, 59, 1271. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Bai, H.; Hu, K.; Lv, X. Bioinspired Polarized Skylight Orientation Determination Artificial Neural Network. J. Bionic Eng. 2022, 20, 1141–1152. [Google Scholar] [CrossRef]
- Wang, X.; Gao, J.; Roberts, N.W. Bio-Inspired Orientation Using the Polarization Pattern in the Sky Based on Artificial Neural Networks. Opt. Express 2019, 27, 13681. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, N.; Li, D.; Wang, F.; Zhang, B.; Wang, C.; Shen, C.; Ren, J.; Xue, C.; Liu, J. Novel Robust Skylight Compass Method Based on Full-Sky Polarization Imaging under Harsh Conditions. Opt. Express 2016, 24, 15834. [Google Scholar] [CrossRef]
- Gkanias, E.; Risse, B.; Mangan, M.; Webb, B. From Skylight Input to Behavioural Output: A Computational Model of the Insect Polarised Light Compass. PLoS Comput. Biol. 2019, 15, e1007123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyontai, S.U.G. Performance of Machine Learning Algorithms and Diversity in Data. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 210, p. 4019. [Google Scholar]
- Brownlee, J. Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transforms in Python; Machine Learning Mastery: Vermont, Australia, 2020. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; ISBN 0262337371. [Google Scholar]
- Lu, H.; Zhao, K.; You, Z.; Huang, K. Real-Time Polarization Imaging Algorithm for Camera-Based Polarization Navigation Sensors. Appl. Opt. 2017, 56, 3199. [Google Scholar] [CrossRef] [PubMed]
- Giudicotti, L.; Brombin, M. Data Analysis for a Rotating Quarter-Wave, Far-Infrared Stokes Polarimeter. Appl. Opt. 2007, 46, 2638–2648. [Google Scholar] [CrossRef]
- Gerhart, G.R. Rapid 4-Stokes Parameter Determination Using a Motorized Rotating Retarder. Opt. Eng. 2006, 45, 098002. [Google Scholar] [CrossRef]
- Fan, C.; Hu, X.; He, X.; Zhang, L.; Wang, Y. Multicamera Polarized Vision for the Orientation with the Skylight Polarization Patterns. Opt. Eng. 2018, 57, 043101. [Google Scholar] [CrossRef]
- Li, Q.; Hu, Y.; Zhang, S.; Cao, J.; Hao, Q. Calibration and Image Processing Method for Polarized Skylight Sensor. In Optoelectronic Imaging and Multimedia Technology VII; Dai, Q., Shimura, T., Zheng, Z., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume 11550, pp. 75–83. [Google Scholar]
- Fan, Z.; Wang, X.; Jin, H.; Wang, C.; Pan, N.; Hua, D. Neutral Point Detection Using the AOP of Polarized Skylight Patterns. Opt. Express 2021, 29, 5665. [Google Scholar] [CrossRef] [PubMed]
- Tyo, J.S.; Goldstein, D.L.; Chenault, D.B.; Shaw, J.A. Review of Passive Imaging Polarimetry for Remote Sensing Applications. Appl. Opt. 2006, 45, 5453–5469. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Hu, Y.; Hao, Q.; Cao, J.; Cheng, Y.; Dong, L.; Huang, X. Skylight Polarization Patterns under Urban Obscurations and a Navigation Method Adapted to Urban Environments. Opt. Express 2021, 29, 42090. [Google Scholar] [CrossRef]
- Berry, M.V.; Dennis, M.R.; Lee, R.L. Polarization Singularities in the Clear Sky. New J. Phys. 2004, 6, 162. [Google Scholar] [CrossRef]
- Hošek, L.; Wilkie, A. Adding a Solar-Radiance Function to the Hošek-Wilkie Skylight Model. IEEE Comput. Graph. Appl. 2013, 33, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, J.; Fan, Z.; Roberts, N.W. An Analytical Model for the Celestial Distribution of Polarized Light, Accounting for Polarization Singularities, Wavelength and Atmospheric Turbidity. J. Opt. 2016, 18, 65601. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Bai, H.; Li, Z.; Cao, Y. Polarized Light Sun Position Determination Artificial Neural Network. Appl. Opt. 2022, 61, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Bai, H. Polarized Skylight Navigation Simulation (PSNS) Dataset. arXiv 2020, arXiv2007.13081. [Google Scholar]
- Walraven, R. Polarization Imagery. In Optical Polarimetry: Instrumentation and Applications; International Society for Optics and Photonics: Bellingham, WA, USA, 1977; Volume 112, pp. 164–167. [Google Scholar]
- North, J.A.; Duggin, M.J. Stokes Vector Imaging of the Polarized Sky-Dome. Appl. Opt. 1997, 36, 723–730. [Google Scholar] [CrossRef]
- Kannala, J.; Brandt, S.S. A Generic Camera Model and Calibration Method for Conventional Wide-Angle, and Fish-Eye Lenses. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1335–1340. [Google Scholar] [CrossRef] [Green Version]
Group | Internal Parameters | Distortion Coefficient | ||||||
---|---|---|---|---|---|---|---|---|
1 | 256.44 | 256.40 | 607.26 | 512.57 | 0.02029 | −0.00776 | 0.00235 | −0.00060 |
2 | 255.53 | 255.42 | 607.61 | 512.66 | 0.02211 | −0.00908 | 0.00507 | −0.00164 |
3 | 256.27 | 256.19 | 607.04 | 513.62 | 0.02016 | −0.00303 | 0.00093 | −0.00092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Dong, L.; Hu, Y.; Hao, Q.; Lv, J.; Cao, J.; Cheng, Y. Skylight Polarization Pattern Simulator Based on a Virtual-Real-Fusion Framework for Urban Bionic Polarization Navigation. Sensors 2023, 23, 6906. https://doi.org/10.3390/s23156906
Li Q, Dong L, Hu Y, Hao Q, Lv J, Cao J, Cheng Y. Skylight Polarization Pattern Simulator Based on a Virtual-Real-Fusion Framework for Urban Bionic Polarization Navigation. Sensors. 2023; 23(15):6906. https://doi.org/10.3390/s23156906
Chicago/Turabian StyleLi, Qianhui, Liquan Dong, Yao Hu, Qun Hao, Jiahang Lv, Jie Cao, and Yang Cheng. 2023. "Skylight Polarization Pattern Simulator Based on a Virtual-Real-Fusion Framework for Urban Bionic Polarization Navigation" Sensors 23, no. 15: 6906. https://doi.org/10.3390/s23156906
APA StyleLi, Q., Dong, L., Hu, Y., Hao, Q., Lv, J., Cao, J., & Cheng, Y. (2023). Skylight Polarization Pattern Simulator Based on a Virtual-Real-Fusion Framework for Urban Bionic Polarization Navigation. Sensors, 23(15), 6906. https://doi.org/10.3390/s23156906