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Abstract: Computer vision plays a significant role in mobile robot navigation due to the wealth
of information extracted from digital images. Mobile robots localize and move to the intended
destination based on the captured images. Due to the complexity of the environment, obstacle
avoidance still requires a complex sensor system with a high computational efficiency requirement.
This study offers a real-time solution to the problem of extracting corridor scenes from a single image
using a lightweight semantic segmentation model integrating with the quantization technique to
reduce the numerous training parameters and computational costs. The proposed model consists of
an FCN as the decoder and MobilenetV2 as the decoder (with multi-scale fusion). This combination
allows us to significantly minimize computation time while achieving high precision. Moreover, in
this study, we also propose to use the Balance Cross-Entropy loss function to handle diverse datasets,
especially those with class imbalances and to integrate a number of techniques, for example, the
Adam optimizer and Gaussian filters, to enhance segmentation performance. The results demonstrate
that our model can outperform baselines across different datasets. Moreover, when being applied to
practical experiments with a real mobile robot, the proposed model’s performance is still consistent,
supporting the optimal path planning, allowing the mobile robot to efficiently and effectively avoid
the obstacles.

Keywords: computer vision; mobile robot; navigation; obstacle avoidance; semantic segmentation

1. Introduction

Mobile robots (MRs) safely navigate their environments by recognizing obstacles in
real time. MR’s navigation assistance systems detect obstacles through laser scanners [1],
sensors [2], and cameras [3]. The navigation systems of complex environments are pro-
hibitively expensive, as they require a considerable amount of computing power [2,3]. The
use of Lidar or cameras has become widespread recently. Lidar automatically measures
the distance to obstacles, detects the object’s boundary regions, and maintains an MR’s
perception of the environment [4]. However, environmental conditions such as lighting,
fog, or rain can negatively influence the process of collecting Lidar data.

Furthermore, many kinds of obstacles in indoor environments block or decline laser
beams, making the representation of moving environments problematic [5]. To overcome
the limitation of Lidar in indoor environments, Lidar can be combined with other sensors
or camera systems to improve the data collection ability [4–7]. Alternatively, cameras offer
inexpensive scene data to detect any object [8,9]. Due to the prevalence of affordable, high-
precision monocular cameras, previously existing drawbacks have been eliminated. Thus,
real-time image segmentation and MR’s path planning have been accomplished [8,10].

Semantic segmentation utilizing deep learning (DL) is a fundamental challenge in
many vision-based applications [11–15], including scene interpretation, object detection,
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and mobile robot perception. Rusli et al. [16] used a Canny edge algorithm, and Houghline
transforms to navigate MRs, where the road and obstacles had been detected by vanishing
points. Minae et al. [17] investigated DL-based semantic segmentation, demonstrating
remarkable performance in experimental segmented images to address the lack of training
datasets for evaluating performance. However, the procedure achieved a high processing
speed but had relatively low accuracy when environmental factors changed. To enhance
the segmentation model’s performance, Shelhamer et al. [18] converted modern classifi-
cation networks (AlexNet, VGGNet, and GoogLeNet) into fully convolutional networks
(FCN). With the same objective, Wang et al. [19,20] introduced a convolutional neural
network (CNN) of Adaptive Feature Fusion Unet. However, the use of VGG-FCN models
such as [18] or Unet [19] is unsuitable for infrastructure deployment due to their high
computational cost.

In this paper, we propose a novel lightweight segmentation model that integrates
an FCN decoder and MobilenetV2 encoder for semantic segmentation supporting mobile
robot navigation. By leveraging a trained model from antecedent networks and multi-
scale fusion in the decoder block, the segmentation process is highly accurate with a low
computation time. Specifically, with the use of MobilenetV2, our approach reduces the need
for extensive training parameters, from 22 million to 3.3 million in IRDC, in comparison
with our previous works [7,10]. Additionally, we enhance performance and computational
efficiency via the Adam optimizer. To ensure high-quality input images, we pre-process
the dataset with Gaussian blur and Gaussian noise. Importantly, we propose to use the
Balanced Cross-Entropy loss function to better handle unbalanced datasets. This results
in a more efficient and effective segmentation model that enables the design of the MR’s
optimal path planning algorithm, which incorporates local search algorithms to avoid
static and dynamic obstacles while tracking global path planning. The experimental results
demonstrate that the proposed model can outperform baselines in terms of accuracy and
mIoU across three published image datasets. On top of that, the efficacy of the model is
maintained when it is tested using a self-collected TaQuangBuu library dataset. Based on
this, we could effectively apply perspective correction to construct the MR’s frontal view.
In the frontal view, MRs can use the local search algorithms to detect obstacles and track
the global path for real-time movement. In practical experiments, it is proved that by using
the proposed segmentation model, the smoothness of MR’s trajectory is enhanced while
maintaining the minimum changing steering angle in comparison to previous works [7,10].

The main contributions of the proposed approach are as follows:

- Integration of a lightweight FCN decoder (with multi-scale fusion) and MobilenetV2
encoder for efficient segmentation.

- Further enhance performance and computational efficiency by using the Adam opti-
mizer and quantization. In addition, data preprocessing is also improved with the use
of appropriate filters.

- Replacement of the Binary Cross Entropy loss function with the Balanced Cross-
Entropy loss function for better handling of unbalanced datasets.

- The proposed model is compared with a number of baselines across several datasets,
followed by a practical evaluation with a mobile robot.

The paper is organized as follows: Section 2 provides related works. The proposed
model is introduced in Section 3. Section 4 presents the experiment and results. Section 5
concludes the paper.

2. Related Works

In this section, we present several encoder-decoder architectures, i.e., SegNet, Enet, and
U-Net, used in semantic segmentation tasks. These architectures are the main inspiration for
us to introduce IRDC-Net for real-time mobile robot navigation. Since these architectures
are based on the concept of Fully Convolutional Networks (FCNs), this section will be
initiated with the description of FCNs.
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2.1. Fully Convolutional Networks (FCNs)

CNNs have traditionally been used to classify images by employing convolutional
layers for feature extraction and fully connected layers for classification [21]. However,
in the image segmentation problem, the goal is to predict the label for each pixel instead
of classifying the entire image. One of the well-known segmentation models is the FCN
network [22,23], which replaces fully connected layers with 1 × 1 convolutional layers
to generate an output with a similar size to the input. As a result, the FCN network
can take input images of varying sizes and produce a segmented heatmap for the entire
image. Its network, in fact, comprises two main components: the encoder and the decoder.
The encoding process uses convolutional layers to extract meaningful image features and
reduce the output size. The decoder, on the other hand, uses deconvolutional (transposed
convolution) layers and skip connections, to generate a high-resolution, segmented heatmap
with a high degree of detail.

2.2. SegNet

SegNet [24] is a CNN architecture specifically designed for segmentation. Its archi-
tecture is at identifying and classifying regions within an image and assigning labels to
each pixel. The coding part of SegNet uses convolutional layers to extract features from an
input image. The decoding part, using deconvolution layers, reconstructs the segmented
image from the high-level representation obtained from the decoder. One of the distinctive
features of SegNet is the use of “skip connections”, which allows information to be retained
from the encryption layers and passed to the decryption layers [25]. As the result, the
recovery of the final segmented image’s detail can be enhanced.

2.3. ENet

ENet (Efficient Neural Network) [26] is another CNN-based segmentation model. It
is a lightweight and optimized network for real-time image processing on devices with
limited computational resources, such as embedded applications and mobile devices. It has
a unique architecture designed to reduce its parameters, increase computation speed, and
maintain a high level of segmentation quality. ENet utilizes various techniques, including
sparse connections, pointwise connections, and block pooling techniques, to decrease the
size of computational graphs, decrease computational burden, and increase training speed
and forecasting [27].

2.4. U-Net

U-Net [19] is an extensively used CNN architecture for image segmentation. The U-Net
network has a unique architecture consisting of an encoder and decoder. The encoding part
of U-Net uses convolutional and pooling layers to extract image features and reduce output
size. Specifically, U-Net’s architecture includes many successive convolutional layers with
decreasing size and an increasing number of channels to generate an image’s high-level
feature map. U-Net’s decoding section utilizes deconvolution (transposed convolution)
layers to expand the input and reconstruct the segmented image. In addition, U-Net
integrates data from multiple encryption layers using skip connections to pass information
from encryption to decryption. The combination of the encoding and decoding portions of
U-Net contributes to the creation of a unique “U” network architecture, which resembles
the shape of the underlying structure (U-shape) and is therefore referred to as U-Net [20].

3. Lightweight Semantic Segmentation FCN-MobilenetV2

FCN-MobilenetV2′s architecture and model training comprised most of the lightweight
semantic segmentation systems. Sections 3.1–3.3 describe additional information of net-
work architecture, model training, and quantization for this proposed method.
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3.1. Network Architecture

The proposed model is based on the MobilenetV2 network [28], as shown in Figure 1.
Model input is a form of 224 × 224 images, and 15 inverted residual (IR) blocks are used to
extract image features. In comparison to the conventional residual mechanism, the feature
extraction process is improved by increasing the number of convolutional layers in the
intermediate layers. In addition, the IR blocks are connected to depth-wise conv (DC)
classes to reduce the number of model parameters.
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Deepwise Convolution and (b) the detailed architecture of Inverted Residuals.

The IRDC-Net architecture, which consists of the IR and DC is depicted in Figure 2.
The first layer presents a 1 × 1 convolution with Relu6 activation function. The second
layer is identical to the following 3 × 3 depthwise convolution as a DC to reduce its
parameters. Following this, the third layer is 1 × 1 convolution without any activation
function. “Linear” block is replaced by “Relu” Block. The architecture uses two residual
blocks with “stride = 1” and “stride = 2” to serve intermediate layers. The difference
between IR and the original one lies in the adjustment of the skip connection used in
MobilenetV2. The IR requires fewer input and output channels for each residual block
(bottleneck layer) [28], as shown in Figure 3.
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The IR blocks in IRDC-Net compress linked the layers where the skip connections are
connected. In contrast, the original residuals used in ResNet [29,30] have input and output
channels that are more than that of the intermediate layers. In Figure 3c,d, linear bottleneck
and inverted residual blocks between bottlenecks are also recommended in addition to
MobileNetV2 depth-separable structures.

As for DC, instead of using a single kernel (filter) to conduct convolution computations
on the entire input channel, it employs a different kernel for each input channel. This allows
us to reduce the number of parameters and computations, as we only need to compute
the convolution on a single channel at a time rather than on all channels. We can use a
standard convolution layer; features from separate channels can be combined.

In the proposed semantic segmentation model, the decoder’s architecture is con-
structed as follows:

- 1 conv2d layer (1280 × 1000 × 7 × 7): Synthesized feature output from the classifier
class of MobileNet.

- 1 class conv2d (1280, num_classes, kernel_size = 1): This layer condenses the
model’s features.
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- 1 class convTranpos2D (numclass, numclass): Scale output of the model.
- 1 Class ConvTranpos2D: This scales the output of the model. Build a model based

on FCN network architecture, help upscaling output equal to input size, and classify
each image pixel into separate classes.

3.2. Model Training

The proposed model was trained on four datasets (Figure 4), which include CitySpaces
(5000 images) [31], KITTI (400 images) [32], Duckie-dataset collected from Ducktown
(1200 images) [33], and TaQuangBuu’s dataset consisting of 1200 images collected from Ta
Quang Buu library supplied in the Data Availability Statement.
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Our experiments are carried out with the following configuration: Python 3.11.0;
TensorFlow 1.4 framework; a computer with Core I7 11th generation processor 2.50 GHz,
Nvidia 2080TI graphics card with 12 GB VRAM, 32 GB RAM, and a 64-bit operating system.

According to the actual data of the TaQuangBuu library image updating the self-
collected images in [7,10], the ratio of pixels that should be on the path to pixels that should
be obstacles is quite high. In our previous studies [7,10], the Binary Cross Entropy loss
function for two classes, such as available and unavailable regions, was used. However, this
led to an imbalance in the data. When using the Binary Cross Entropy as loss function, the
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learning model tends to favor the object that appears more frequently in the data. Adding
more instances of the less dominant class to training data might potentially solve the
problem. Therefore, we propose to use the Balanced Cross-Entropy loss (BCE) function [34]
as in Equation (1):

LBalanced−CE(y, ŷ) = {β× y log(ŷ) + (1− β)× (1− y) log(1− ŷ)} (1)

where ŷ is the class SoftMax probability and y is the ground truth of the corresponding
prediction. β = 1− y

H×W , and H×W presents the total of pixels in the image. Furthermore,
β is used for adjusting the number of false negatives and false positives as follows: reducing
the number of false negatives when β > 1 or reducing the number of false positives
when β < 1.

The Balanced Cross-Entropy (BCE) loss function offers the following advantages:

- Unbalanced Data Processing: In binary classification problems, the BCE function
addresses the issue of unbalanced data. It ensures that if the sample ratio between the
two classes is unequal, the smaller sample will be considered more significant. This
prevents the model from being biased towards the larger sample.

- Error balancing: The BCE function takes into account error levels in both classes. This
causes the model to strive to minimize the mean error for both classes, as opposed to
concentrating excessively on the minority class.

- Increased accuracy: By managing unbalanced data and equalizing errors, the BCE
function can improve model accuracy in binary classification problems. It serves to
balance class-based decisions and minimizes the impact of minority information.

Additionally, the BCE function can be applied to multilayer image segmentation
issues. The BCE function is maximally efficient with a variety of datasets, particularly
unbalanced datasets. Hence, path planning will function more effectively in a variety of
internal environments.

To optimize the balanced cross-entropy defined in Equation (1), the Adam optimizer [35]
was used. The model was trained with a learning rate of 0.001 and for 100 epochs. The
dataset was pre-processed with Gaussian blur [36] (as defined in Equation (2)) and Gaus-
sian noise [37] (as defined in Equation (3)) to ensure the quality of raw images before
passing them through the proposed segmentation model shown in Figure 5. By using
the aforementioned algorithms, the image quality will be altered, but it can create more
generalized datasets, enhancing the segmentation model’s quality.
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The Gaussian blur is an image filtering technique to calculate the transformation to
each pixel in the image using a Gaussian function. In two dimensions, each dimension is
shown below:

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (2)

where x: the horizontal distance from the origin; y: the vertical distance from the origin,
σ: the standard deviation of the Gaussian distribution. It is essential to observe that the
origin of these axes is centered (0, 0). Based on this formula, it generates a two-dimensional
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surface, the contours of which are concentric circles with a Gaussian distribution outward
from the center.

In digital image processing, Gaussian noise will be reduced using a spatial filter. An
undesirable consequence may be the blurring of fine-scaled image edges to smooth an
image, meaning that one must make details corresponding to the blocked high frequencies.
The probability density function p of a Gaussian random variable z is in Equation (3):

pG(z) =
1

σ
√

2π
e−

(z−µ)2

2σ2 (3)

where z: the grey level, µ: the mean grey value, and σ: the standard deviation.

3.3. Quantization

Quantization [38] is a technique that reduces the size and performance requirements
of a machine-learning model by representing its parameters with reduced precision. Param-
eters such as the weight and bias of a neural network are frequently represented with high
precision using floating-point data during the training phase of a machine-learning model.
However, this requires a large amount of storage and computational resources, which
can be a challenge when deploying the model on devices with limited resources, such as
mobile devices or embedded microcontrollers. By quantizing the model, in other words,
representing the model’s parameters as limited-precision integers or real-number data, the
storage size can be reduced while the computational performance is increased. This can be
achieved through quantization techniques such as weight quantization, activation quanti-
zation, or a combination of both. To minimize the model’s size, the model was converted
from FP32 (32-bit floating-point precision) to FP16 (16-bit floating-point precision) during
the training experiment shown in Figure 6. The quantization process typically includes two
main steps as follows: Precision Calibration; Layer and Tensor Fusion.
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Figure 6. Proposed quantization process.

- Precision Calibration: During training, FP32 (Floating Point 32) parameters and
activations will be converted to FP16. Optimizing it will decrease stagnation and
increase inference speed, but at the expense of a slight reduction in model accuracy. In
real-time recognition, accuracy and inference speed must sometimes be compromised.

- Layer and Tensor Fusion: Layer and tensor merge are performed to optimize GPU
memory and bandwidth by merging nodes vertically, horizontally, or both. Vertical
merging involves joining successive kernel processes, while horizontal merging in-
volves merging layers with the same layer size and input but differing weights into a
single layer.
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4. Experimental Results and Discussion
4.1. Quantitative Results

The proposed method was evaluated using three datasets, including CitySpaces’
dataset (5000 images) [31], KITTI’s dataset (400 images) [32], and Duckie’s dataset collected
from Ducktown (1200 images) [33]. In addition, we collected a set of 1200 additional
authentic images from the Ta Quang Buu library to enhance the dataset. There were sets of
three specifications (Accuracy, Loss, and mIoU) considered for the segmentation model’s
requirements. Many comparisons with previous methods were carried out.

Based on the input images of CitySpaces shown in Figure 4a, the segmented images in
different conditions of environment had still been guaranteed with robust performance in
Figure 7.
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In addition, a number of baselines that have a similar encoder’s architecture were
considered for evaluation, such as DSSPN [39], SqueezeNAS [40], and SaGe [41]. During
the training process, the parameters and activation functions were represented in FP32.
Consequently, switching to FP16 reduces latency and substantially reduces the model’s size.
In fact, when converting to FP16, some weights will be reduced due to the smaller range
of FP16 compared to FP32, resulting in a modest but insignificant decrease in accuracy.
Table 1 illustrates that our segmentation model achieves the highest mIoU among the FCN
models using the same Cityspaces’ dataset. Furthermore, our lightweight segmentation
using reduced training parameters obtained higher validated mIoU, ranging from 2 to
10 percent. The accuracy and performance of the proposed segmentation model are ensured
to construct the MR’s frontal view later.
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Table 1. The comparison among our proposed segmentation model with other models using Citys-
paces’ dataset.

Model Validated mIoU

DSSPN [39] 77.8%

SqueezeNAS [40] 72.4%

SaGe [41] 76.9%

IRDC-Net: Lightweight Segmentation 78.1%

We conducted a comparison between our proposed model and existing segmentation
models using the KITI dataset. Figure 4b shows the input images from the KITTI dataset,
and Figure 8 demonstrates that the robust segmentation performance of the proposed
method is still guaranteed. Moreover, the comparison with baselines such as SDNet [42],
SFRSeg [43], and APMoE seg ROB [44] was also performed to prove the positive perfor-
mance of the proposed methods. Table 2 presents the results of this comparison, showing
that the proposed method outperforms the best-performing method, SDNet [39], by nearly
3% in terms of mIoU. Due to the expansion of our dataset with more challenging images
and the extensive use of training data, our improved segmentation model using the quanti-
zation technique could acquire a more accurate representation of the environment and a
faster training process. Thus, these achievements will strongly support constructing the
MR’s frontal view. Finally, optimal path planning will be successfully designed.
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Table 2. The comparison among our proposed segmentation model with other models using
KITTI- dataset.

Model Validated mIoU

SDNet [42] 79.62%

SFRSeg [43] 77.91%

APMoE seg ROB [44] 78.11%

IRDC-Net: Lightweight Segmentation 81.11%
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Furthermore, we self-gathered real-time images, finding it somewhat challenging to
reflect upon. Next, 1200 images were collected from Ducktown’s dataset. The obtained
experimental results have proven the feasibility of the proposed model’s application in
realistic environments. In changing light conditions, our proposed model could correctly
classify ground and non-ground regions, a circumstance that had typically been challenging
for humans. This was because color-shifting training was undertaken, which enabled our
network to operate effectively in low-light mode. Given the prevalence of corners and
intersections in interior environments, the following examples were more intuitive for MRs.
We executed the final performance evaluation on a background image containing numerous
objects. Our network accurately anticipated the ground limit under challenging conditions,
proving the robustness performance of segmented images, as depicted in Figure 9.
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(a) raw images and (b) segmented images.

The proposed model’s performance has been consolidated and compared with the
previous segmentation FCN-VGG 16 [7] on the same dataset, as shown in Table 3. In this
case, we expanded the dataset with more challenging images. Then, to train the model
more effectively, data augmentation was extensively used, resulting in a more accurate
representation of the environment, followed by significant performance improvements.

Table 3. The comparison of proposed segmentation model with FCN-VGG 16 [7] using Ducktown’s
dataset.

Model Accuracy Validated mIoU

Binary Segmentation FCN-VGG 16 [7] 97.1% 71.8%

IRDC-Net: Lightweight Segmentation 98.3% 74.2%

Finally, the authors continuously self-collected more than one thousand two hundred
images from the TaQuangBuu library. The image input’s size was 960 × 1280. The final
network performance evaluation was executed on a background image with numerous
obstacles and intersections in Figure 10.
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Figure 10. Segmentation results of specific scene number 690, 430, 730 and 380 in TaQuangBuu’s dataset
consisting of obstacles, corners, and intersections with (a) raw images and (b) segmented images.

Figure 11 illustrates the Accuracy, Loss, and mIoU diagrams in both the training and
validation process. The diagrams depict the performance metrics when input images were
taken from four datasets of CitySpaces, KITTI, Duck-town, and TaQuangBuu library, as
shown in Figure 12.
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Figure 12. The comparison between our IRDC-Net and other methods.

After undergoing color-shifting training, IRDC-Net’s performance is well remained
when changing from low-light to dark scenarios. Indoor environments are full of corners
and crossroads, making the following scenario more obvious to mobile robots. In Figure 13,
the ground boundary in these challenging scenarios is reliably predicted by our network.
Twelve snapshots from (a) to (l) of Figure 13 show illustrating the MR turning left to reach
the goal point with the support of the local search algorithm.
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4.2. Mobile Robot’s Frontal View

Firstly, based on the camera’s focal length, the point coordinates will be converted
into the image plane. The relationship between the image plane and image coordination is
shown in Figure 14.
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Then, image coordinates can be rewritten in homogeneous coordination in Equation (4):(
x y 1

)
=
(

f XC
ZC

f YC
ZC

1
)

(4)

The transformation matrix projection from 3D image coordinates (XC, YC, ZC) to 2D
image plane (x, y):  fX

fY
Z

 =

 f 0 0 0
0 f 0 0
0 0 1 0




X
Y
Z
1

 (5)

Obtaining the result of Equation (5) yields the output of point coordinates in the image
plane: P = (x, y). Then, the transformation from the image plane to the pixel plane will be
carried out as follows in Figure 15.
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Figure 15. Image plane to pixel plane transformation.

The affine transformation is a translation in the 2D plane from Image Plane coordination
(x, y) to Pixel Plane coordination (u, v) with

(
Ox, Oy

)
: the image center (in Equation (6)):x + Ox = f XC

ZC
+ Ox

y + Oy = f YC
ZC

+ Oy

(6)

Next, the pinhole camera model is derived with the help of homogenous coordinates
and projective space. This model describes how to map a three-dimensional scene onto a
two-dimensional picture with the help of the following Equation (7):

u
v
ω

 =

 fx 0 0 0
0 fy cy 0
0 0 1 0




r11 r13 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1




X
Y
Z
1

 (7)

The first transformation matrix presents an extrinsic camera matrix defining the
camera’s position in the 3D environment. The second transformation matrix presents the
intrinsic camera matrix converting the image plane (x,y) to the pixel plane (u,v).

Moreover, in Figure 16, the authors use homography transformation to correct the
perspective distortion, setting up the pixel plane to plan the MR’s path in order to present
the relationship between world coordination (W: 4 × 1) and the image plane (p: 3 × 1). The
expression of Equation (8) describes the transformation as follows:

p = Mint ×Mext ×W (8)

where Mint is the matrix of Intrinsic parameters (3 × 4) and Mext is the matrix of Extrinsic
parameters (4 × 4). Using the mappings between 3D object points (points stated in the
object frame) and the projected 2D image points (points in the object seen in the image), we
can determine the camera’s orientation. As for Equation (5), the treated image as a ground
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surface Z = 0, if the camera poses [45], is fixed to the MR (rotating only on Z-axis) shown
in Equation (9). u

v
1

 ∼
 f 0 0 0

0 f 0 0
0 0 1 0

×


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

×


x
y
0
1

 (9)

For the planar surface Z = 0, the expression (9) can be rewritten as the following
(Equation (10)): u

v
1

 ∼
h11 h12 h13

h21 h22 h23
h31 h32 h33

×
x

y
1

 = H ×

x
y
1

 (10)

Based on Equations (4)–(10), the mobile robot’s frontal view is designed to plan the
MR’s path. All steps are summarized in Figure 16.
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Figure 16. Homography transformation from the image plane to the actual ground region.

Finally, applying homography parameters estimation H with the relation between
perspective plane one (x, y) and perspective plane two (x′, y′) [7,10]: x = h11×x′+h12×y+h13

h31×x′+h32×y+1

y = h21×x′+h22×y+h23
h31×x′+h32×y+1

(11)

Thus, using two sets of four known points (x, y) and (x′, y′) to calculate the H matrix,
any four points of the pixel plane in the MR’s frontal view will be wholly obtained in
Figure 17. Furthermore, the homography transformation for the bird’s eye view of MR
is shown in Figure 18. Using the checkerboard in Figure 19a, the authors perform the
perspective correction of MR’s frontal views (see Figure 19b). Based on the segmented
image, the allowance moving areas will be proportional to the ground coordinate. The
positions of MR and obstacles are entirely determined to design the path planning in
Figure 19c,d.
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4.3. Practical Results

In comparison to a previous study [10], the same optimal MR’s strategy [10] was
used. However, in this study, the proposed FCN-MobilenetV2 model was utilized to obtain
segmented images, facilitating constructing the available area for movement, as depicted
in Figure 20.
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Figure 20. Mobile robot with Jetson nano and monocular camera.

Furthermore, a dedicated local search algorithm was designed to increase the safety
of obstacle avoidance when the MR successfully tracks the global path, as shown in
Figure 21. After analyzing the new results compared with those obtained in [7], we
could draw the conclusion that semantic segmentation is necessary when constructing
the ground’s frontal perspective. This enables the planning of the most efficient path for
MR. The practical experiments conducted in this study focused on enhancing methods for
recognizing collision-free zones in local search areas based on the given global path.
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Figure 21. MR tracks the path based on the proposed semantic segmentation model.

Since the camera pose was fixed to the MR, a smooth trajectory would affect the
performance of the proposed semantic segmentation. In other words, our proposed model
would ensure better results compared to previous FCN-VGG 16 [7] with model parameters
in Table 3. When being tested on multiple datasets, our proposed model exhibited a
remarkable quality enhancement, as shown in Figure 12. Table 4 presented the relationship
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between changing the steering angle and the accuracy of proposed model, considering
the fixed camera pose. It demonstrated that as the steering angle increases, the accuracy
of the model decreases significantly. Therefore, our improved semantic segmentation
would ensure the smoothness of MR’s trajectory and maintain the minimum changes in
the steering angle, as depicted in Figure 22. Thus, a smooth trajectory with low steering
angle changing would improve the performance of our lightweight semantic segmentation
FCN-MobilenetV2 in MR’s movement.

Table 4. The comparison of the proposed segmentation model with previous segmentation models [7].

Frontal View of Mobile Robot Steering Angle Changing (Rad) Accuracy (%)

When rotating around X axis

0.00 100

0.01 96.5

0.02 93.2

0.03 91.4

0.04 88.6

0.05 85.3

0.07 82.5

0.09 81.1

When rotating around Y axis

0.00 100

0.03 99

0.05 94.6

0.07 92.4

0.09 90.2

0.1 87.8

0.12 83.2

0.15 80.1
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5. Conclusions

This paper proposes a real-time solution to extract corridor scenes from a single image
supporting mobile robot navigation. Specifically, a lightweight semantic segmentation
model that integrates a quantization technique is introduced to improve the segmentation
accuracy while achieving a low computational cost. The evaluation results are compared
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with recent methods to demonstrate the feasibility of the proposed method. Moreover, our
proposed lightweight semantic segmentation FCN-MobilenetV2 can be significantly better
in terms of precision and computation time, compared to the previous semantic segmenta-
tion FCN-VGG-16. The practical result shows the successful tracking of the mobile robot’s
path with a lower 0.05 rad steering angle change. Indeed, our proposed segmentation
model is trained and updated from binary classes to multi-classed to identify a wide variety
of internal barriers accurately. Therefore, in a real situation, path planning will work better
in a variety of indoor settings. In addition, the segmented results will support the local
search algorithm in mobile robot path planning. Finally, the safety and avoidance abilities
of MR are enhanced against static and dynamic obstacles in unknown environments.
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