Identification of Paddy Croplands and Its Stages Using Remote Sensors: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Year of Publication and Presence of Machine Learning
3.2. Journals and Conference Proceedings
3.3. Location
3.4. Data Source and Sensors
3.4.1. Data Source
3.4.2. Sensors
3.5. Approach
3.6. Study of Paddy Stages
3.6.1. Multispectral Approach
3.6.2. Radar Approach
3.7. Accuracy Assessment Techniques
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD. OECD-FAO Agricultural Outlook 2022–2031. In OECD-FAO Agricultural Outlook; OECD: Paris, France, 2022; ISBN 9789264588707. [Google Scholar]
- Zhi, F.; Dong, Z.; Guga, S.; Bao, Y.; Han, A.; Zhang, J.; Bao, Y. Rapid and Automated Mapping of Crop Type in Jilin Province Using Historical Crop Labels and the Google Earth Engine. Remote Sens. 2022, 14, 4028. [Google Scholar] [CrossRef]
- Dar, M.H.; Waza, S.A.; Shukla, S.; Zaidi, N.W.; Nayak, S.; Hossain, M.; Kumar, A.; Ismail, A.M.; Singh, U.S. Drought Tolerant Rice for Ensuring Food Security in Eastern India. Sustainability 2020, 12, 2214. [Google Scholar] [CrossRef] [Green Version]
- Shofiyati, R.; Takeuchi, W.; Sofan, P.; Darmawan, S.; Awaluddin; Supriatna, W. Indonesian Drought Monitoring from Space. A Report of SAFE Activity: Assessment of Drought Impact on Rice Production in Indonesia by Satellite Remote Sensing and Dissemination with Web-GIS. IOP Conf. Ser. Earth Environ. Sci. 2014, 20, 012048. [Google Scholar] [CrossRef]
- Raksapatcharawong, M.; Veerakachen, W.; Homma, K.; Maki, M.; Oki, K. Satellite-Based Drought Impact Assessment on Rice Yield in Thailand with SIMRIW-RS. Remote Sens. 2020, 12, 2099. [Google Scholar] [CrossRef]
- Fu, X.; Zhao, G.; Wu, W.; Xu, B.; Li, J.; Zhou, X.; Ke, X.; Li, Y.; Li, W.; Zhou, C.; et al. Assessing the Impacts of Natural Disasters on Rice Production in Jiangxi, China. Int. J. Remote Sens. 2022, 43, 1919–1941. [Google Scholar] [CrossRef]
- Islam, M.M.; Matsushita, S.; Noguchi, R.; Ahamed, T. A Damage-Based Crop Insurance System for Flash Flooding: A Satellite Remote Sensing and Econometric Approach. Asia-Pac. J. Reg. Sci. 2022, 6, 47–89. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Ma, Y.; Kong, X.; Zhang, X.; Zhang, D. Mapping Ratoon Rice Planting Area in Central China Using Sentinel-2 Time Stacks and the Phenology-Based Algorithm. Remote Sens. 2020, 12, 3400. [Google Scholar] [CrossRef]
- Singha, M.; Dong, J.; Sarmah, S.; You, N.; Zhou, Y.; Zhang, G.; Doughty, R.; Xiao, X. Identifying Floods and Flood-Affected Paddy Rice Fields in Bangladesh Based on Sentinel-1 Imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 166, 278–293. [Google Scholar] [CrossRef]
- Wu, W.; Wang, W.; Meadows, M.E.; Yao, X.; Peng, W. Cloud-Based Typhoon-Derived Paddy Rice Flooding and Lodging Detection Using Multi-Temporal Sentinel-1&2. Front. Earth Sci. 2019, 13, 682–694. [Google Scholar] [CrossRef]
- Stroppiana, D.; Boschetti, M.; Azar, R.; Barbieri, M.; Collivignarelli, F.; Gatti, L.; Fontanelli, G.; Busetto, L.; Holecz, F. In-Season Early Mapping of Rice Area and Flooding Dynamics from Optical and SAR Satellite Data. Eur. J. Remote Sens. 2019, 52, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Sianturi, R.; Jetten, V.G.; Ettema, J.; Sartohadi, J. Distinguishing between Hazardous Flooding and Non-Hazardous Agronomic Inundation in Irrigated Rice Fields: A Case Study Fromwest Java. Remote Sens. 2018, 10, 1003. [Google Scholar] [CrossRef] [Green Version]
- Dao, P.D.; Liou, Y.A. Object-Based Flood Mapping and Affected Rice Field Estimation with Landsat 8 OLI and MODIS Data. Remote Sens. 2015, 7, 5077–5097. [Google Scholar] [CrossRef] [Green Version]
- Asilo, S.; de Bie, K.; Skidmore, A.; Nelson, A.; Barbieri, M.; Maunahan, A. Complementarity of Two Rice Mapping Approaches: Characterizing Strata Mapped by Hypertemporal MODIS and Rice Paddy Identification Using Multitemporal SAR. Remote Sens. 2014, 6, 12789–12814. [Google Scholar] [CrossRef] [Green Version]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y. Satellite-Based Investigation of Flood-Affected Rice Cultivation Areas in Chao Phraya River Delta, Thailand. ISPRS J. Photogramm. Remote Sens. 2013, 86, 77–88. [Google Scholar] [CrossRef]
- Liou, Y.A.; Sha, H.C. Using MODIS Imagery to Estimate the Damage of Rainfed Rice in Northeastern Thailand. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 6601–6604. [Google Scholar]
- Kwak, Y.; Shrestha, B.B.; Yorozuya, A.; Sawano, H. Rapid Damage Assessment of Rice Crop After Large-Scale Flood in the Cambodian Floodplain Using Temporal Spatial Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3700–3709. [Google Scholar] [CrossRef]
- Li, M.; Zhang, T.; Tu, Y.; Ren, Z.; Xu, B. Monitoring Post-Flood Recovery of Croplands Using the Integrated Sentinel-1/2 Imagery in the Yangtze-Huai River Basin. Remote Sens. 2022, 14, 690. [Google Scholar] [CrossRef]
- Sun, J.; Yuan, L.; Dong, Y.; Guo, W.; Wang, J.; Liang, J.; Cui, H.; Song, X. Regional-Scale Monitoring of Rice Flood Disaster Based on Multi-Temporal Remote Sensing Images. In Proceedings of the 2018 7th International Conference on Agro-Geoinformatics, Agro-Geoinformatics, Hangzhou, China, 6–9 August 2018. [Google Scholar]
- Dong, J.; Xiao, X. Evolution of Regional to Global Paddy Rice Mapping Methods: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 119, 214–227. [Google Scholar] [CrossRef]
- Nelson, A.; Setiyono, T.; Rala, A.B.; Quicho, E.D.; Raviz, J.V.; Abonete, P.J.; Maunahan, A.A.; Garcia, C.A.; Bhatti, H.Z.M.; Villano, L.S.; et al. Towards an Operational SAR-Based Rice Monitoring System in Asia: Examples from 13 Demonstration Sites across Asia in the RIICE Project. Remote Sens. 2014, 6, 10773–10812. [Google Scholar] [CrossRef] [Green Version]
- Mohite, J.D.; Sawant, S.A.; Kumar, A.; Prajapati, M.; Pusapati, S.V.; Singh, D.; Pappula, S. Operational near Real Time Rice Area Mapping Using Multi-Temporal Sentinel-1 Sar Observations. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, XLII-4, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.B.; Wagner, W. European Rice Cropland Mapping with Sentinel-1 Data: The Mediterranean Region Case Study. Water 2017, 9, 392. [Google Scholar] [CrossRef]
- Ni, R.; Tian, J.; Li, X.; Yin, D.; Li, J.; Gong, H.; Zhang, J.; Zhu, L.; Wu, D. An Enhanced Pixel-Based Phenological Feature for Accurate Paddy Rice Mapping with Sentinel-2 Imagery in Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 178, 282–296. [Google Scholar] [CrossRef]
- Qiu, B.; Li, W.; Tang, Z.; Chen, C.; Qi, W. Mapping Paddy Rice Areas Based on Vegetation Phenology and Surface Moisture Conditions. Ecol. Indic. 2015, 56, 79–86. [Google Scholar] [CrossRef]
- Ramadhani, F.; Pullanagari, R.; Kereszturi, G.; Procter, J. Automatic Mapping of Rice Growth Stages Using the Integration of Sentinel-2, Mod13q1, and Sentinel-1. Remote Sens. 2020, 12, 3613. [Google Scholar] [CrossRef]
- Tan, S.; Wu, B.; Zhang, X. Mapping Paddy Rice in the Hainan Province Using Both Google Earth Engine and Remote Sensing Images. J. Geo-Inf. Sci. 2019, 21, 937–947. [Google Scholar]
- Wang, Y.; Zhang, Z.; Zuo, L.; Wang, X.; Zhao, X.; Sun, F. Mapping Crop Distribution Patterns and Changes in China from 2000 to 2015 by Fusing Remote-Sensing, Statistics, and Knowledge-Based Crop Phenology. Remote Sens. 2022, 14, 1800. [Google Scholar] [CrossRef]
- Franch, B.; San Bautista, A.; Fita, D.; Rubio, C.; Tarrazó-Serrano, D.; Sánchez, A.; Skakun, S.; Vermote, E.; Becker-Reshef, I.; Uris, A. Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data. Remote Sens. 2021, 13, 4095. [Google Scholar] [CrossRef]
- Pazhanivelan, S.; Kannan, P.; Christy Nirmala Mary, P.; Subramanian, E.; Jeyaraman, S.; Nelson, A.; Setiyono, T.; Holecz, F.; Barbieri, M.; Yadav, M. Rice Crop Monitoring and Yield Estimation through COSMO Skymed and TerraSAR-X: A SAR-Based Experience in India. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Pazhanivelan, S.; Ragunath, K.P.; Sudarmanian, N.S.; Kumaraperumal, R.; Setiyono, T.; Quicho, E.D. Integrating Time-Series SAR Data and ORYZA Crop Growth Model in Rice Area Mapping and Yield Estimation for Crop Insurances. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Gaiser, T.; Judex, M.; Hiepe, C.; Kuhn, A. Regional Simulation of Maize Production in Tropical Savanna Fallow Systems as Affected by Fallow Availability. Agric. Syst. 2010, 103, 656–665. [Google Scholar] [CrossRef]
- Guo, Y.; Song, W. Spatial Distribution and Simulation of Cropland Abandonment in Wushan County, Chongqing, China. Sustainability 2019, 11, 1367. [Google Scholar] [CrossRef] [Green Version]
- Nkwasa, A.; Chawanda, C.J.; Jägermeyr, J.; Van Griensven, A. Improved Representation of Agricultural Land Use and Crop Management for Large-Scale Hydrological Impact Simulation in Africa Using SWAT+. Hydrol. Earth Syst. Sci. 2022, 26, 71–89. [Google Scholar] [CrossRef]
- Boschetti, M.; Nutini, F.; Manfron, G.; Brivio, P.A.; Nelson, A. Comparative Analysis of Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems. PLoS ONE 2014, 9, 8741. [Google Scholar] [CrossRef] [PubMed]
- Koppa, N.; Amarnath, G. Geospatial Assessment of Flood-Tolerant Rice Varieties to Guide Climate Adaptation Strategies in India. Climate 2021, 9, 151. [Google Scholar] [CrossRef]
- Kwak, Y.; Shrestha, B.B.; Yorozuya, A.; Sawano, H. Near Real-Time Assessment of Rice Crop Damage in the Cambodian Floodplain Using MODIS Time-Series Images. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 5087–5090. [Google Scholar]
- Wang, H.; Fang, X.; Guo, W.; Liu, Y.; Luan, Q.; Zhang, S.; Gao, Y. Evaluation and Mapping of Rice Flood Damage Using Domestic Remotely Sensed Data in China. In Proceedings of the International Conference on Computer Technologies in Agriculture, Jilin, China, 12–15 August 2017; pp. 143–151. [Google Scholar]
- Shams Esfandabadi, H.; Ghamary Asl, M.; Shams Esfandabadi, Z.; Gautam, S.; Ranjbari, M. Drought Assessment in Paddy Rice Fields Using Remote Sensing Technology towards Achieving Food Security and SDG2. Br. Food J. 2022, 124, 4219–4233. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Hudait, M.; Patel, P.P. Crop-Type Mapping and Acreage Estimation in Smallholding Plots Using Sentinel-2 Images and Machine Learning Algorithms: Some Comparisons. Egypt. J. Remote Sens. Space Sci. 2022, 25, 147–156. [Google Scholar] [CrossRef]
- Ramadhani, F.; Pullanagari, R.; Kereszturi, G.; Procter, J. Mapping of Rice Growth Phases and Bare Land Using Landsat-8 OLI with Machine Learning. Int. J. Remote Sens. 2020, 41, 8428–8452. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Cheng, Y.S.; Toscano, P.; Syu, C.H.; Guo, H.Y.; Chen, S.L.; Liu, T.S.; Zhang, Y.T.; et al. Exploiting Sentinel-1 Data and Machine Learning–Based Random Forest for Collectively Mapping Rice Fields in Taiwan. Appl. Geomat. 2022, 14, 405–419. [Google Scholar] [CrossRef]
- Thorp, K.R.; Drajat, D. Deep Machine Learning with Sentinel Satellite Data to Map Paddy Rice Production Stages across West Java, Indonesia. Remote Sens. Environ. 2021, 265, 112679. [Google Scholar] [CrossRef]
- Sitokonstantinou, V.; Koukos, A.; Drivas, T.; Kontoes, C.; Papoutsis, I.; Karathanassi, V. A Scalable Machine Learning Pipeline for Paddy Rice Classification Using Multi-Temporal Sentinel Data. Remote Sens. 2021, 13, 1769. [Google Scholar] [CrossRef]
- O’Shea, K.; LaRoe, J.; Vorster, A.; Young, N.; Evangelista, P.; Mayer, T.; Carver, D.; Simonson, E.; Martin, V.; Radomski, P.; et al. Improved Remote Sensing Methods to Detect Northern Wild Rice (Zizania palustris L.). Remote Sens. 2020, 12, 3023. [Google Scholar] [CrossRef]
- Oyoshi, K.; Tomiyama, N.; Okumura, T.; Sobue, S.; Sato, J. Mapping Rice-Planted Areas Using Time-Series Synthetic Aperture Radar Data for the Asia-RiCE Activity. Paddy Water Environ. 2016, 14, 463–472. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, L.; Wang, Z.; Tian, M. Rice Fields Mapping Using Multi-Temporal GF-6 Remote Sensing Images. In Proceedings of the 2022 10th International Conference on Agro-Geoinformatics, Agro-Geoinformatics, Quebec City, QC, Canada, 11–14 July 2022. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 5906. [Google Scholar] [CrossRef] [PubMed]
- Andreo-Martínez, P.; Ortiz-Martínez, V.M.; Salar-García, M.J.; Veiga-del-Baño, J.M.; Chica, A.; Quesada-Medina, J. Waste Animal Fats as Feedstock for Biodiesel Production Using Non-Catalytic Supercritical Alcohol Transesterification: A Perspective by the PRISMA Methodology. Energy Sustain. Dev. 2022, 69, 150–163. [Google Scholar] [CrossRef]
- Abusaada, H.; Elshater, A. Notes on Developing Research Review in Urban Planning and Urban Design Based on PRISMA Statement. Soc. Sci. 2022, 11, 391. [Google Scholar] [CrossRef]
- Chennapragada, L.; Sullivan, S.R.; Hamerling-Potts, K.K.; Tran, H.; Szeszko, J.; Wrobleski, J.; Mitchell, E.L.; Walsh, S.; Goodman, M. International PRISMA Scoping Review to Understand Mental Health Interventions for Depression in COVID-19 Patients. Psychiatry Res. 2022, 316, 114748. [Google Scholar] [CrossRef]
- Taggio, N.; Aiello, A.; Ceriola, G.; Kremezi, M.; Kristollari, V.; Kolokoussis, P.; Karathanassi, V.; Barbone, E. A Combination of Machine Learning Algorithms for Marine Plastic Litter Detection Exploiting Hyperspectral PRISMA Data. Remote Sens. 2022, 14, 3606. [Google Scholar] [CrossRef]
- Hameed, A.A.; Mohamed Shariff, A.R. Bin Paddy Monitoring in Seberang Perak, Malaysia Using Multi-Temporal Sentinel-1 Data. IOP Conf. Ser. Earth Environ. Sci. 2020, 540, 012070. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.; Li, X.; Liu, Y.; Cai, Y.; Lin, H. Classification of Paddy Rice Using a Stacked Generalization Approach and the Spectral Mixture Method Based on MODIS Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2264–2275. [Google Scholar] [CrossRef]
- Luo, C.; Liu, H.-J.; Fu, Q.; Guan, H.-X.; Ye, Q.; Zhang, X.L.; Kong, F.C. Mapping the Fallowed Area of Paddy Fields on Sanjiang Plain of Northeast China to Assist Water Security Assessments. J. Integr. Agric. 2020, 19, 1885–1896. [Google Scholar] [CrossRef]
- Zheng, H.; Zhou, X.; He, J.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Early Season Detection of Rice Plants Using RGB, NIR-G-B and Multispectral Images from Unmanned Aerial Vehicle (UAV). Comput. Electron. Agric. 2020, 169, 5223. [Google Scholar] [CrossRef]
- Liu, L.; Huang, J.; Xiong, Q.; Zhang, H.; Song, P.; Huang, Y.; Dou, Y.; Wang, X. Optimal MODIS Data Processing for Accurate Multi-Year Paddy Rice Area Mapping in China. GIScience Remote Sens. 2020, 57, 687–703. [Google Scholar] [CrossRef]
- Talema, T.; Hailu, B.T. Mapping Rice Crop Using Sentinels (1 SAR and 2 MSI) Images in Tropical Area: A Case Study in Fogera Wereda, Ethiopia. Remote Sens. Appl. 2020, 18, 100290. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, P.; Xu, Y.; Zhou, Z.; Luo, X.; Lan, Y.; Zhao, G.; Sanchez-Azofeifa, A.; Laakso, K. Assessing the Operation Parameters of a Low-Altitude UAV for the Collection of NDVI Values over a Paddy Rice Field. Remote Sens. 2020, 12, 1850. [Google Scholar] [CrossRef]
- Pazhanivelan, S.; Kaliaperumal, R.; Ramalingam, K.; Pazhanivelan, S.; Ragunath, K.P.; Sudarmanian, N.S.; Kumaraperumal, R.; Setiyono, T.; Quicho, E.D. Remote Sensing Based Rice Crop Insurances as an Operational Service in India Using Sentinel 1A and and ORYZA Crop Simulation. In Proceedings of the 40th Asian Conference on Remote Sensing, Daejeon, Republic of Korea, 14–18 October 2019. [Google Scholar]
- Garkusha, S.; Skazhennik, M.; Kiselev, E.; Chizhikov, V.; Petrushin, A. Research of Rice Crops in Krasnodar Region by Remote Sensing Data. E3S Web Conf. 2020, 175, 01004. [Google Scholar] [CrossRef]
- Roberto Valverde-Arias, O.; Esteve, P.; María Tarquis, A.; Garrido, A. Remote Sensing in an Index-Based Insurance Design for Hedging Economic Impacts on Rice Cultivation. Nat. Hazards Earth Syst. Sci. 2020, 20, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Guan, Q.; Li, L.; Zhang, H.; Liu, C.; Zhang, L. Phenology-Based Rice Paddy Mapping Using Multi-Source Satellite Imagery and a Fusion Algorithm Applied to the Poyang Lake Plain, Southern China. Remote Sens. 2020, 12, 1022. [Google Scholar] [CrossRef] [Green Version]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Guo, H.Y. Classification of Multitemporal Sentinel-2 Data for Field-Level Monitoring of Rice Cropping Practices in Taiwan. Adv. Space Res. 2020, 65, 1910–1921. [Google Scholar] [CrossRef]
- Xiao, W.; Xu, S.; He, T. Mapping Paddy Rice with Sentinel-1/2 and Phenology-, Object-Based Algorithm—A Implementation in Hangjiahu Plain in China Using Gee Platform. Remote Sens. 2021, 13, 990. [Google Scholar] [CrossRef]
- Ali, A.M.; Savin, I.; Poddubskiy, A.; Abouelghar, M.; Saleh, N.; Abutaleb, K.; El-Shirbeny, M.; Dokukin, P. Integrated Method for Rice Cultivation Monitoring Using Sentinel-2 Data and Leaf Area Index. Egypt. J. Remote Sens. Space Sci. 2021, 24, 431–441. [Google Scholar] [CrossRef]
- Kang, J.; Yang, X.; Wang, Z.; Huang, C.; Wang, J. Collaborative Extraction of Paddy Planting Areas with Multi-Source Information Based on Google Earth Engine: A Case Study of Cambodia. Remote Sens. 2022, 14, 1823. [Google Scholar] [CrossRef]
- Fontanelli, G.; Lapini, A.; Santurri, L.; Pettinato, S.; Santi, E.; Ramat, G.; Pilia, S.; Baroni, F.; Tapete, D.; Cigna, F.; et al. Early-Season Crop Mapping on an Agricultural Area in Italy Using X-Band Dual-Polarization SAR Satellite Data and Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6789–6803. [Google Scholar] [CrossRef]
- Murthy, C.S.; Poddar, M.K.; Choudhary, K.K.; Pandey, V.; Srikanth, P.; Ramasubramanian, S.; Senthil Kumar, G. Paddy Crop Insurance Using Satellite-Based Composite Index of Crop Performance. Geomat. Nat. Hazards Risk 2022, 13, 310–336. [Google Scholar] [CrossRef]
- Pradhan, S.; Dhar, A.; Tiwari, K.N. Sustainability of Boro Rice Cultivation in the Canal Irrigated Command Area of India. J. Water Clim. Chang. 2022, 13, 3083–3099. [Google Scholar] [CrossRef]
- Du, M.; Huang, J.; Wei, P.; Yang, L.; Chai, D.; Peng, D.; Sha, J.; Sun, W.; Huang, R. Dynamic Mapping of Paddy Rice Using Multi-Temporal Landsat Data Based on a Deep Semantic Segmentation Model. Agronomy 2022, 12, 1583. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Xun, L.; Wang, J.; Wu, Z.; Henchiri, M.; Zhang, S.; Zhang, S.; Bai, Y.; Yang, S.; et al. Evaluating the Effectiveness of Machine Learning and Deep Learning Models Combined Time-Series Satellite Data for Multiple Crop Types Classification over a Large-Scale Region. Remote Sens. 2022, 14, 2341. [Google Scholar] [CrossRef]
- Li, B.; Peng, S.; Shen, R.; Yang, Z.-L.; Yan, X.; Li, X.; Li, R.; Li, C.; Zhang, G. Development of a New Index for Automated Mapping of Ratoon Rice Areas Using Time-Series Normalized Difference Vegetation Index Imagery. Pedosphere 2022, 32, 576–587. [Google Scholar] [CrossRef]
- Gerardo, R.; de Lima, I.P. Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal. Agriculture 2022, 12, 1490. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Panjala, P.; Teluguntla, P.; Yamano, T.; Mohammed, I. Multiple Agricultural Cropland Products of South Asia Developed Using Landsat-8 30 m and MODIS 250 m Data Using Machine Learning on the Google Earth Engine (GEE) Cloud and Spectral Matching Techniques (SMTs) in Support of Food and Water Security. GIScience Remote Sens. 2022, 59, 1048–1077. [Google Scholar] [CrossRef]
- Prasomphan, S. Rice Bacterial Infection Detection Using Ensemble Technique on Unmanned Aerial Vehicles Images. Comput. Syst. Sci. Eng. 2023, 44, 991–1007. [Google Scholar] [CrossRef]
- Wang, L.; Ma, H.; Li, J.; Gao, Y.; Fan, L.; Yang, Z.; Yang, Y.; Wang, C. An Automated Extraction of Small- and Middle-Sized Rice Fields under Complex Terrain Based on SAR Time Series: A Case Study of Chongqing. Comput. Electron. Agric. 2022, 200, 107232. [Google Scholar] [CrossRef]
- Waleed, M.; Mubeen, M.; Ahmad, A.; Habib-ur-Rahman, M.; Amin, A.; Farid, H.U.; Hussain, S.; Ali, M.; Qaisrani, S.A.; Nasim, W.; et al. Evaluating the Efficiency of Coarser to Finer Resolution Multispectral Satellites in Mapping Paddy Rice Fields Using GEE Implementation. Sci. Rep. 2022, 12, 13210. [Google Scholar] [CrossRef] [PubMed]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Duc, H.N.; Chang, L.Y. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam. Remote Sens. 2013, 6, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, M.; Nelson, A.; Nutini, F.; Manfron, G.; Busetto, L.; Barbieri, M.; Laborte, A.; Raviz, J.; Holecz, F.; Mabalay, M.R.O.; et al. Rapid Assessment of Crop Status: An Application of MODIS and SAR Data to Rice Areas in Leyte, Philippines Affected by Typhoon Haiyan. Remote Sens. 2015, 7, 6535–6557. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, J.; Zhang, K.; Li, X.; She, B.; Wei, C.; Gao, J.; Song, X. Rice Fields Mapping in Fragmented Area Using Multi-Temporal HJ-1A/B CCD Images. Remote Sens. 2015, 7, 3467–3488. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Huang, C.; Liu, G.; Meng, X.; Liu, Q. Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based Time-Series Similarity Measurement Based on DTW Distance. Remote Sens. 2016, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Lin, H.; Wang, G.; Sun, H.; Fu, J. Mapping Paddy Rice Using a Convolutional Neural Network (CNN) with Landsat 8 Datasets in the Dongting Lake Area, China. Remote Sens. 2018, 10, 1840. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Xiao, X.; Dong, J.; Kou, W.; Jin, C.; Qin, Y.; Zhou, Y.; Wang, J.; Menarguez, M.A.; Biradar, C. Mapping Paddy Rice Planting Areas through Time Series Analysis of MODIS Land Surface Temperature and Vegetation Index Data. ISPRS J. Photogramm. Remote Sens. 2015, 106, 157–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gumma, M.K.; Thenkabail, P.S.; Maunahan, A.; Islam, S.; Nelson, A. Mapping Seasonal Rice Cropland Extent and Area in the High Cropping Intensity Environment of Bangladesh Using MODIS 500m Data for the Year 2010. ISPRS J. Photogramm. Remote Sens. 2014, 91, 98–113. [Google Scholar] [CrossRef]
- Tornos, L.; Huesca, M.; Dominguez, J.A.; Moyano, M.C.; Cicuendez, V.; Recuero, L.; Palacios-Orueta, A. Assessment of MODIS Spectral Indices for Determining Rice Paddy Agricultural Practices and Hydroperiod. ISPRS J. Photogramm. Remote Sens. 2015, 101, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Torbick, N.; Salas, W.A.; Hagen, S.; Xiao, X. Monitoring Rice Agriculture in the Sacramento Valley, USA With Multitemporal PALSAR and MODIS Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 451–457. [Google Scholar] [CrossRef]
- Lasko, K.; Vadrevu, K.P.; Tran, V.T.; Justice, C. Mapping Double and Single Crop Paddy Rice with Sentinel-1A at Varying Spatial Scales and Polarizations in Hanoi, Vietnam. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 498–512. [Google Scholar] [CrossRef] [PubMed]
- More, R.S.; Manjunath, K.R.; Jain, N.K.; Panigrahy, S.; Parihar, J.S. Derivation of Rice Crop Calendar and Evaluation of Crop Phenometrics and Latitudinal Relationship for Major South and South-East Asian Countries: A Remote Sensing Approach. Comput. Electron. Agric. 2016, 127, 336–350. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Zhang, L. Spatial Domain Bridge Transfer: An Automated Paddy Rice Mapping Method with No Training Data Required and Decreased Image Inputs for the Large Cloudy Area. Comput. Electron. Agric. 2021, 181, 105978. [Google Scholar] [CrossRef]
- Brisco, B.; Li, K.; Tedford, B.; Charbonneau, F.; Yun, S.; Murnaghan, K. Compact Polarimetry Assessment for Rice and Wetland Mapping. Int. J. Remote Sens. 2013, 34, 1949–1964. [Google Scholar] [CrossRef] [Green Version]
- Manjunath, K.R.; More, R.S.; Jain, N.K.; Panigrahy, S.; Parihar, J.S. Mapping of Rice-Cropping Pattern and Cultural Type Using Remote-Sensing and Ancillary Data: A Case Study for South and Southeast Asian Countries. Int. J. Remote Sens. 2015, 36, 6008–6030. [Google Scholar] [CrossRef]
- Obico, M.R.O.; Paringit, E.C. Discriminating and Mapping Rice Ecosystems in Central Luzon Philippines using ENVISAT ASAR images. In Proceedings of the Asian Conference on Remote Sensing, Taipei, Taiwan, 3–7 October 2011. [Google Scholar]
- Singh, J.; Panigrahy, S.; Chakraborty, M.; Manjunath, K.R.; Sharma, S.A. Rice Crop Assessment and Monitoring Using SAR Data: Indian Experience and Its Extendibility to Asian Region. In Proceedings of the 33rd Asian Conference on Remote Sensing, Pattaya, Thailand, 26–30 November 2012. [Google Scholar]
- Khobkhun, B.; Prayote, A.; Rakwatin, P.; Dejdumrong, N. Rice Phenology Monitoring in Thailand using Time-Series MODIS Imagery. In Proceedings of the Asian Conference on Remote Sensing, Pattaya, Thailand, 26–30 November 2012. [Google Scholar]
- Son, N.-T.; Chen, C.-F.; Chen, C.-R. Satellite-Based Damage Assessment of Rice Growing Areas After The 2011 Tsunami in Japan. In Proceedings of the Asian Conference on Remote Sensing, Pattaya, Thailand, 26–30 November 2012. [Google Scholar]
- Hsiao, Y.-Y.; Chen, C.-F.; Chiang, S.-H.; Son, N.-T. Analysis of Damaged Rice Fields and Rice Restoration After The Great East Japan Tsunami Using Time-Series Modis Data. In Proceedings of the Asian Conference on Remote Sensing, Colombo, Sri Lanka, 17–21 October 2016. [Google Scholar]
- Sirisena, P.M.T.S.; Dammalage, T.L. Cultivated Paddy Area Identification And Rice Yield Estimation Using Free Satellite Images. In Proceedings of the Asian Conference on Remote Sensing, Colombo, Sri Lanka, 17–21 October 2016. [Google Scholar]
- Raviz, J.; Garcia, C.A.; Raviz, J.; Laborte, A.; Barbieri, M.; Mabalay, M.R.; Garcia, C.; Elena, J.; Bibar, A.; Mabalot, P.; et al. Mapping And Monitoring Rice Areas in Central Luzon, Philippines Using X and C-Band SAR Imagery. In Proceedings of the Asian Conference on Remote Sensing, Colombo, Sri Lanka, 17–21 October 2016. [Google Scholar]
- Nuevo, R.U.; Dorado, M. Monitoring of Rice in Small Paddy Fields Using Multi-Temporal Sentinel-1 Data CTU-DOST-NICER Cebu BioMeS Project View Project From Ridge to Reef: An Ecosystem-Based Approach to Conservation and Development View Project. In Proceedings of the Asian Conference on Remote Sensing, New Delhi, India, 23–27 October 2017. [Google Scholar]
- Charlemagne, L.; David, G.; Sarte, S.M.; Billy, V.; Danato, J.D.; Ballado, A.H. Application of Decision Tree-Based Support Vector Machine in Mapping Rice Fields Using Lidar Intensity and Height Metrics. In Proceedings of the Asian Conference on Remote Sensing, Colombo, Sri Lanka, 17–21 October 2016. [Google Scholar]
- Quicho, E.D.; Setiyono, T.; Maunahan, A.; Sagarika Satapathy, S.; Quicho, E.; Holecz, F. Application of Remote Sensing and Crop Modelling for Rice in Andhra Pradesh, India. In Proceedings of the Asian Conference on Remote Sensing, Daejeon, Republic of Korea, 14–18 October 2019. [Google Scholar]
- Miyaoka, K.; Maki, M.; Susaki, J.; Homma, K.; Yoshida, K.; Hongo, C. Detection of Rice-Planted Area Using Multi-Temporal ALOS/PALSAR Data. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 6777–6780. [Google Scholar]
- Rossi, C.; Erten, E. Generation of Rice Crops Temporal Change Maps with Differential TanDEM-x Interferometry. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 958–961. [Google Scholar]
- Courault, D.; Demarez, V.; Hossard, L.; Flamain, F.; Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Ruget, F. Comparison of Two Modeling Approaches to Simulate Rice Production in the Camargue Region Using Sentinel-2 Data. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Yokohama, Japan, 28 July–2 August 2019; ISBN 9781538691540. [Google Scholar]
- Zhang, C.; Zhang, H.; Du, J.; Zhang, L. Automated Paddy Rice Extent Extraction with Time Stacks of Sentinel Data: A Case Study in Jianghan Plain, Hubei, China. In Proceedings of the 2018 7th International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2018, Hangzhou, China, 6–9 August 2018. [Google Scholar]
- Du, M.; Huang, J.; Chai, D.; Lin, T.; Wei, P. Classification and Mapping of Paddy Rice Using Multi-Temporal Landsat Data with a Deep Semantic Segmentation Model. In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2021, Shenzhen, China, 26–29 July 2021. [Google Scholar]
- Nagano, T.; Ono, Y.; Kotera, A.; Singh, R. Detecting Fluctuation of Rice Cultivated Areas in Semi-Arid Regions by Combined Use of MODIS and Landsat Imageries. Hydrol. Res. Lett. 2015, 9, 107–112. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, S.; Shen, S.; Li, B. Assessment of ENVISAT ASAR Data for Rice Monitoring Based on Three Years Experiments. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2011, Nanjing, China, 24–26 June 2011; pp. 136–139. [Google Scholar]
- Gumma, M.K. Mapping Rice Areas of South Asia Using MODIS Multitemporal Data. J. Appl. Remote Sens. 2011, 5, 053547. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, C.; Zhang, Q. Identifying Paddy Fields with Dual-Polarization ALOS/PALSAR Data. Can. J. Remote Sens. 2011, 37, 103–111. [Google Scholar] [CrossRef]
- Cheng, Y.-X.; Huang, J.-F.; Han, Z.-L.; Guo, J.-P.; Zhao, Y.-X.; Wang, X.-Z.; Guo, R.-F. Cold Damage Risk Assessment of Double Cropping Rice in Hunan, China. J. Integr. Agric. 2013, 12, 352–363. [Google Scholar] [CrossRef]
- More, R.; Manjunath, K.R. Deducing Rice Crop Dynamics and Cultural Types of Bangladesh Using Geospatial Techniques. J. Indian Soc. Remote Sens. 2013, 41, 597–607. [Google Scholar] [CrossRef]
- Suwannachatkul, S.; Kasetkasem, T.; Chumkesornkulkit, K.; Rakwatin, P.; Chanwimaluang, T.; Kumazawa, I. Rice Cultivation and Harvest Date Identification Based on a Hidden Markov Model. In Proceedings of the 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2014, Nakhon Ratchasima, Thailand, 14–17 May 2014. [Google Scholar]
- Wijesingha, J.S.J.; Deshapriya, N.L.; Samarakoon, L. Rice Crop Monitoring and Yield Assessment with MODIS 250m Gridded Vegetation Product: A Case Study in Sa Kaeo Province, Thailand. ISPRS J. Photogramm. Remote Sens. 2015, 40, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.; Rao, M.N.; Mohammed, I.A.; Whitbread, A.M. Mapping Rice-Fallow Cropland Areas for Short-Season Grain Legumes Intensification in South Asia Using MODIS 250 m Time-Series Data. Int. J. Digit. Earth 2016, 9, 981–1003. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.F.; Son, N.T.; Chen, C.R.; Chang, L.Y.; Chiang, S.H. Rice Crop Mapping Using Sentinel-1A Phenological Metrics. ISPRS J. Photogramm. Remote Sens. 2016, 41, 863–865. [Google Scholar]
- Kim, M.; Ko, J.; Jeong, S.; Yeom, J.-M.; Kim, H.-O. Monitoring Canopy Growth and Grain Yield of Paddy Rice in South Korea by Using the GRAMI Model and High Spatial Resolution Imagery. GIScience Remote Sens. 2017, 54, 534–551. [Google Scholar] [CrossRef]
- Yang, Z.; Shao, Y.; Li, K.; Liu, Q.; Liu, L.; Brisco, B. An Improved Scheme for Rice Phenology Estimation Based on Time-Series Multispectral HJ-1A/B and Polarimetric RADARSAT-2 Data. Remote Sens. Environ. 2017, 195, 184–201. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, J.; Zhu, X.; Pan, Y.; Liu, H. A Highly Efficient Temporal-Spatial Probability Synthesized Model from Multi-Temporal Remote Sensing for Paddy Rice Identification. Eur. J. Remote Sens. 2017, 50, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Nurtyawan, R.; Saepuloh, A.; Harto, A.B.; Wikantika, K.; Kondoh, A. Satellite Imagery for Classification of Rice Growth Phase Using Freeman Decomposition in Indramayu, West Java, Indonesia. Hayati 2018, 25, 126–137. [Google Scholar] [CrossRef]
- Liu, W.; Dong, J.; Xiang, K.; Wang, S.; Han, W.; Yuan, W. A Sub-Pixel Method for Estimating Planting Fraction of Paddy Rice in Northeast China. Remote Sens. Environ. 2018, 205, 305–314. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.; Ye, H.; Ruan, C.; Xing, N.; Geng, Y.; Dong, Y.; Peng, D. Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using Planetscope Datasets. Sensors 2018, 18, 1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, M.A.; Paguirigan, N.M.; Raviz, J.; Mabalay, M.R.; Alosnos, E.; Villano, L.; Asilo, S.; Arocena, A.; Maloom, J.; Laborte, A. The Rice Planting Window in the Philippines: An Analysis Using Multi-Temporal SAR Imagery. ISPRS J. Photogramm. Remote Sens. 2019, 42, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Rosle, R.; Che’ya, N.N.; Roslin, N.A.; Halip, R.M.; Ismail, M.R. Monitoring Early Stage of Rice Crops Growth Using Normalized Difference Vegetation Index Generated from UAV. IOP Conf. Ser. Earth Environ. Sci. 2019, 355, 012066. [Google Scholar] [CrossRef]
- Lee, D.; Park, J. Analysis of Vegetation Characteristics of Regional Soybean and Paddy Rice Fields Using UAV Images and Farm Maps. IOP Conf. Ser. Earth Environ. Sci. 2019, 611, 012086. [Google Scholar] [CrossRef]
- Suppayasan, P.; Anantakarn, K. Rice Crop Mapping and GIS Analysis for Policy Implementation. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2019, 10, 10A18N. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Parida, B.R. Paddy Acreage Mapping and Yield Prediction Using Sentinel-Based Optical and SAR Data in Sahibganj District, Jharkhand (India). Spat. Inf. Res. 2019, 27, 399–410. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, Y.; Song, M.; Ding, Y.; Lin, F.; Liang, D.; Zhang, D. Use of Unmanned Aerial Vehicle Imagery and Deep Learning Unet to Extract Rice Lodging. Sensors 2019, 19, 3859. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, J.; Bai, Y.; Zhang, S.; Yang, S.; Yao, F. Integrating Remote Sensing-Based Process Model with Environmental Zonation Scheme to Estimate Rice Yield Gap in Northeast China. Field Crops Res. 2020, 246, 7682. [Google Scholar] [CrossRef]
- Chhapariya, K.; Kumar, A.; Upadhyay, P. Kernel-Based MPCM Algorithm with Spatial Constraints and Local Contextual Information for Mapping Paddy Burnt Fields. J. Indian Soc. Remote Sens. 2021, 49, 1743–1754. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, F.; Luo, M.; Liang, S.; Zhao, C.; Feng, X. Characteristic Analysis of Lodging Rice and Study of the Multi-Spectral Remote Sensing Extraction Method. Chin. J. Eco-Agric. 2021, 29, 751–761. [Google Scholar] [CrossRef]
- Manfron, G.; Crema, A.; Boschetti, M.; Confalonieri, R. Testing Automatic Procedures to Map Rice Area and Detect Phenological Crop Information Exploiting Time Series Analysis of Remote Sensed MODIS Data. Proc. SPIE 2012, 8531, 85311E. [Google Scholar]
- Courault, D.; Hossard, L.; Demarez, V.; Dechatre, H.; Irfan, K.; Baghdadi, N.; Flamain, F.; Ruget, F. STICS Crop Model and Sentinel-2 Images for Monitoring Rice Growth and Yield in the Camargue Region. Agron. Sustain. Dev. 2021, 41, 49. [Google Scholar] [CrossRef]
- Huang, X.; Runkle, B.R.K.; Isbell, M.; Moreno-García, B.; McNairn, H.; Reba, M.L.; Torbick, N. Rice Inundation Assessment Using Polarimetric UAVSAR Data. Earth Space Sci. 2021, 8, 1554. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.R. Remote Sensing for Environmental Monitoring. In Environmental Monitoring and Characterization; Academic Press: Cambridge, MA, USA, 2004; pp. 183–206. [Google Scholar] [CrossRef]
- Rouse, R.W.H.; Haas, J.A.W.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Hatfield, J.L.; Prueger, J.H. Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteristics at Different Growth Stages under Varying Management Practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, M.F.; Apfl, G.M. Télédétection et Systèmes d’information Géographique. Hydrol. Sci. J. 1996, 41, 593–607. [Google Scholar] [CrossRef] [Green Version]
- Pirowski, T.; Szypuła, B.; Marciak, M. Interpretation of Multispectral Satellite Data as a Tool for Detecting Archaeological Artifacts (Navkur Plain and Karamleis Plain, Iraq). Archaeol. Anthropol. Sci. 2022, 14, 166. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment Anything. arXiv 2023, arXiv:2304.02643. [Google Scholar]
Feature | Data Type | Description |
---|---|---|
Title | Text | Article title |
Author | Text | Authors’ names |
Year | Categorical | Year of publication |
Journal | Text | Journal of publication |
DOI | URL | Article’s DOI link |
Keywords | Text | Article’s keywords |
Region | Categorical | Continent in which the study was carried out |
Country | Text | Country in which the study was carried out |
Data source | Text | General type of data source used (e.g., multispectral, multisource and radar) |
Sensor | Text | List of sensors used (e.g., Sentinel-2, Sentinel-1, Landsat-8, etc.) |
Accuracy assessment method | Text | Accuracy assessment method used (overall accuracy, correlation (), user’s accuracy, etc.) |
Machine learning | Categorical | Shows if machine learning was used in the article, possible answers (Yes/No) |
Approach | Text | Approach on how remote sensing data was used (e.g., remote sensing-based approach, machine learning, model input, etc.) |
Stage of maturity | Text | It classifies the method used to classify/extract/map/identify paddy in various stages of maturity (nursery, vegetative phase, reproductive phase, and harvesting phase) |
Main constraints | Text | Main constraints identified by the article regarding the methodology or sensor used |
Location | Literature Number | Reference |
---|---|---|
Asia | 101 | [2,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,22,25,26,28,30,31,36,37,38,39,42,43,44,45,46,48,49,55,56,57,58,59,61,62,65,66,69,71,72,74,75,77,78,79,80,81,82,83,84,85,86,87,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,108,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134] |
Europe | 12 | [11,23,29,35,63,70,76,88,106,107,135,136] |
North America | 6 | [47,73,89,109,137] |
Africa | 2 | [60,68] |
South America | 1 | [64] |
Satellite (Sensor) | Literature Number | Reference |
---|---|---|
Terra and Aqua (MODIS) | 47 | [2,4,5,6,12,13,14,15,17,25,28,36,39,56,59,64,65,67,74,75,77,80,81,82,85,86,87,88,89,98,108,110,112,114,116,117,118,129,132] |
Sentinel-2 (MSI) | 29 | [5,8,9,10,18,24,26,29,42,45,46,60,63,66,67,68,69,71,72,76,80,92,104,107,108,130,133,134,136] |
Sentinel-1 (C-SAR) | 28 | [9,10,11,18,22,23,26,31,44,45,46,47,55,60,62,67,69,71,79,80,90,101,102,103,104,119,126,130] |
Landsat-8 (OLI) | 20 | [2,6,7,11,13,19,39,43,47,57,65,72,73,77,80,85,104,108,109,122] |
Vegetation Index | Formula | Literature Number | References |
---|---|---|---|
Normalized Difference Vegetation index (NDVI) | 30 | [2,4,5,7,13,16,17,24,49,61,63,64,65,76,84,86,88,91,99,100,108,112,117,125,127,129,134,135] | |
Enhanced Vegetation Index (EVI) | 25 | [4,8,11,12,13,16,17,25,36,37,59,65,66,81,82,83,86,89,98,100,108,114,117,134,135] | |
Land Surface Water Index (LSWI) | 14 | [8,16,25,36,65,66,86,89,114,124,135] |
Accuracy Assessment Technique | Literature Number | Reference |
---|---|---|
Overall Accuracy (OA) | 67 | [2,7,8,10,11,12,14,15,18,19,22,23,24,25,26,30,31,43,44,49,56,57,58,62,65,67,69,70,72,73,74,75,77,79,80,81,83,84,85,86,87,89,90,93,95,98,99,100,101,103,104,105,108,109,112,113,117,118,119,122,123,124,125,128,135,137] |
Correlation Coefficient | 29 | [4,6,13,14,18,25,28,29,39,68,73,75,77,79,81,82,84,85,86,87,91,94,98,100,110,112,119,126,129,132] |
Root Mean Square Error (RMSE) | 5 | [59,75,120,132,136] |
Omission Error (OE) | 4 | [11,45,110,135] |
Median Absolute Error (MAE) | 3 | [59,120,132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Urrutia, M.; Arbelo, M.; Gil, A. Identification of Paddy Croplands and Its Stages Using Remote Sensors: A Systematic Review. Sensors 2023, 23, 6932. https://doi.org/10.3390/s23156932
Fernández-Urrutia M, Arbelo M, Gil A. Identification of Paddy Croplands and Its Stages Using Remote Sensors: A Systematic Review. Sensors. 2023; 23(15):6932. https://doi.org/10.3390/s23156932
Chicago/Turabian StyleFernández-Urrutia, Manuel, Manuel Arbelo, and Artur Gil. 2023. "Identification of Paddy Croplands and Its Stages Using Remote Sensors: A Systematic Review" Sensors 23, no. 15: 6932. https://doi.org/10.3390/s23156932
APA StyleFernández-Urrutia, M., Arbelo, M., & Gil, A. (2023). Identification of Paddy Croplands and Its Stages Using Remote Sensors: A Systematic Review. Sensors, 23(15), 6932. https://doi.org/10.3390/s23156932