Near Infrared Spectroscopy for Prediction of Yeast and Mould Counts in Black Soldier Fly Larvae, Feed and Frass: A Proof of Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Experiment 1—Rearing of BSFL Using Homogenous Waste
2.1.2. Experiment 2—Rearing of BSFL Using Heterogenous Waste
2.1.3. Post-Harvest Processing of BSFL
2.2. Determination of Yeast and Mould
2.3. NIR Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Yeast and Mould Counts
3.2. Principal Component Analysis
3.3. Descriptive and Cross Validation Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erhard, A.L.; Águas Silva, M.; Damsbo-Svendsen, M.; Menadeva Karpantschof, B.-E.; Sørensen, H.; Bom Frøst, M. Acceptance of insect foods among Danish children: Effects of information provision, food neophobia, disgust sensitivity, and species on willingness to try. Food Qual. Prefer. 2023, 104, 104713. [Google Scholar] [CrossRef]
- Ismail, B.P.; Senaratne-Lenagala, L.; Stube, A.; Brackenridge, A. Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Anim. Front. 2020, 10, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Less, J.F.; Wang, L.; Yan, T.; Kiron, V.; Kaushik, S.J.; Lei, X.G. Meeting Global Feed Protein Demand: Challenge, Opportunity, and Strategy. Annu. Rev. Anim. Biosci. 2019, 7, 221–243. [Google Scholar] [CrossRef] [PubMed]
- OECD; Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2021–2030; OECD Publishing: Paris, France, 2021. [Google Scholar]
- FAO. Greenhouse Gas Emissions from Agrifood Systems: Global, Regional and Country Trends, 2000–2020; FAOSTAT Analytical Brief No. 50; FAO: Rome, Italy, 2022; p. 12. [Google Scholar]
- Kim, T.K.; Yong, H.I.; Kim, Y.-B.; Kim, H.-W.; Choi, Y.-S. Edible Insects as a Protein Source: A Review of Public Perception, Processing Technology, and Research Trends. Food Sci. Anim. Resour. 2019, 39, 521–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolasa-Więcek, A. Modeling greenhouse gas emissions from livestock farming in Poland with the use of stepwise multiple regression. J. Res. Appl. Agric. Eng. 2013, 58, 78–85. [Google Scholar]
- van Huis, A. Insects as Food in sub-Saharan Africa. Int. J. Trop. Insect Sci. 2003, 23, 163–185. [Google Scholar] [CrossRef]
- Kaya, C.; Generalovic, T.N.; Ståhls, G.; Hauser, M.; Samayoa, A.C.; Nunes-Silva, C.G.; Roxburgh, H.; Wohlfahrt, J.; Ewusie, E.A.; Kenis, M.; et al. Global population genetic structure and demographic trajectories of the black soldier fly, Hermetia illucens. BMC Biol. 2021, 19, 94. [Google Scholar] [CrossRef]
- Liew, C.S.; Yunus, N.M.; Chidi, B.S.; Lam, M.K.; Goh, P.S.; Mohamad, M.; Sin, J.C.; Lam, S.M.; Lim, J.W.; Lam, S.S. A review on recent disposal of hazardous sewage sludge via anaerobic digestion and novel composting. J. Hazard. Mater. 2022, 423, 126995. [Google Scholar] [CrossRef]
- Fowles, T.M.; Nansen, C. Insect-based bioconversion: Value from food waste. In Food Waste Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 321–346. [Google Scholar]
- Amicarelli, V.; Lagioia, G.; Bux, C. Global warming potential of food waste through the life cycle assessment: An analytical review. Environ. Impact Assess. Rev. 2021, 91, 106677. [Google Scholar] [CrossRef]
- Shumo, M.; Osuga, I.M.; Khamis, F.M.; Tanga, C.M.; Fiaboe, K.K.M.; Subramanian, S.; Ekesi, S.; van Huis, A.; Borgemeister, C. The nutritive value of black soldier fly larvae reared on common organic waste streams in Kenya. Sci. Rep. 2019, 9, 10110. [Google Scholar] [CrossRef] [Green Version]
- Nyakeri, E.; Ogola, H.; Ayieko, M.; Amimo, F. Valorisation of organic waste material: Growth performance of wild black soldier fly larvae (Hermetia illucens) reared on different organic wastes. J. Insects Food Feed. 2017, 3, 193–202. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, W.; Lu, X.; Zhu, F.; Liu, W.; Wang, X.; Lei, C. Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw. J. Clean. Prod. 2019, 230, 974–980. [Google Scholar] [CrossRef]
- Gold, M.; Cassar, C.M.; Zurbrügg, C.; Kreuzer, M.; Boulos, S.; Diener, S.; Mathys, A. Biowaste treatment with black soldier fly larvae: Increasing performance through the formulation of biowastes based on protein and carbohydrates. Waste Manag. 2020, 102, 319–329. [Google Scholar] [CrossRef]
- Phaengphairee, P.; Boontiam, W.; Wealleans, A.; Hong, J.; Kim, Y.Y. Dietary supplementation with full-fat Hermetia illucens larvae and multi-probiotics, as a substitute for antibiotics, improves the growth performance, gut health, and antioxidative capacity of weaned pigs. BMC Vet. Res. 2023, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Nampijja, Z.; Kiggundu, M.; Kigozi, A.; Lugya, A.; Magala, H.; Ssepuuya, G.; Nakimbugwe, D.; Walusimbi, S.S.; Mugerwa, S. Optimal substitution of black soldier fly larvae for fish in broiler chicken diets. Sci. Afr. 2023, 20, e01636. [Google Scholar] [CrossRef]
- Maranga, B.; Kagali, R.; Mbogo, K.; Orina, P.; Munguti, J.; Ogello, E. Growth Performance of African Catfish (Clarias gariepinus) Fed on Diets Containing Black Soldier Fly (Hermetia illucens) Larvae Under Aquaponic System. Aquac. Stud. 2022, 23. Available online: https://www.aquast.org/uploads/pdf_565.pdf (accessed on 1 June 2023). [CrossRef]
- FAO; IFIF. Good Practices for the Feed Sector—Implementing the Codex Alimentarius Code of Practice on Good Animal Feeding; FAO: Rome, Italy, 2020; p. 140. [Google Scholar]
- Dairy Australia. Mould and Mycotoxin Risks in Feed; Dairy Australia: Melbourne, VIC, Australia, 2022. [Google Scholar]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Campbell, M.; Ortuño, J.; Stratakos, A.C.; Linton, M.; Corcionivoschi, N.; Elliott, T.; Koidis, A.; Theodoridou, K. Impact of Thermal and High-Pressure Treatments on the Microbiological Quality and In Vitro Digestibility of Black Soldier Fly (Hermetia illucens) Larvae. Animals 2020, 10, 682. [Google Scholar] [CrossRef] [Green Version]
- Kamau, E.; Mutungi, C.; Kinyuru, J.; Imathiu, S.; Affognon, H.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Changes in chemical and microbiological quality of semi-processed black soldier fly (Hermetia illucens L.) larval meal during storage. J. Insects Food Feed. 2020, 6, 417–428. [Google Scholar] [CrossRef]
- Were, G.J.; Irungu, F.G.; Ngoda, P.N.; Affognon, H.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M.; Mutungi, C.M. Nutritional and microbial quality of extruded fish feeds containing black soldier fly (Hermetia illucens L.) larvae meal as a replacement for fish meal for Nile Tilapia (Oreochromis niloticus) and African sharptooth catfish (Clarius gariepinus). J. Appl. Aquac. 2022, 34, 1036–1052. [Google Scholar] [CrossRef]
- Alagappan, S.; Hoffman, L.C.; Mantilla, S.M.O.; Mikkelsen, D.; James, P.; Yarger, O.; Cozzolino, D. Near Infrared spectroscopy as a traceability tool to monitor black soldier fly larvae (Hermetia illucens) intended as animal feed. Appl. Sci. 2022, 12, 8168. [Google Scholar] [CrossRef]
- Wang, X. 7—Near-infrared spectroscopy for food quality evaluation. In Evaluation Technologies for Food Quality; Zhong, J., Wang, X., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 105–118. [Google Scholar]
- Cortés, V.; Blasco, J.; Aleixos, N.; Cubero, S.; Talens, P. Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends Food Sci. Technol. 2019, 85, 138–148. [Google Scholar] [CrossRef]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives–A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [PubMed]
- Cozzolino, D. 7—Near Infrared Spectroscopy and Food Authenticity. In Advances in Food Traceability Techniques and Technologies; Espiñeira, M., Santaclara, F.J., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 119–136. [Google Scholar]
- Achata, E.M.; Oliveira, M.; Esquerre, C.A.; Tiwari, B.K.; O’Donnell, C.P. Visible and NIR hyperspectral imaging and chemometrics for prediction of microbial quality of beef Longissimus dorsi muscle under simulated normal and abuse storage conditions. LWT 2020, 128, 109463. [Google Scholar] [CrossRef]
- Barbin, D.F.; Elmasry, G.; Sun, D.-W.; Allen, P.; Morsy, N. Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 2013, 17, 180–191. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W. Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT-Food Sci. Technol. 2015, 62, 1060–1068. [Google Scholar] [CrossRef]
- Liu, Y.; Dixit, Y.; Reis, M.M.; Prabakar, S. Towards the non-invasive assessment of staling in bovine hides with hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 289, 122220. [Google Scholar] [CrossRef]
- Tito, N.B.; Rodemann, T.; Powell, S.M. Use of near infrared spectroscopy to predict microbial numbers on Atlantic salmon. Food Microbiol. 2012, 32, 431–436. [Google Scholar] [CrossRef]
- AS 5013.29-2009; Standards Australia Committee FT-024 Food Products, Subcommittee FT-024-01 Food Microbiology. Method 29: Examination for Specific Organisms- Colony Count of Yeasts and Moulds. Standards Australia: Sydney, NSW, Australia, 2009.
- Cozzolino, D.; Power, A.; Chapman, J. Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond. Food Anal. Methods 2019, 12, 2469–2473. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Cozzolino, D. The Ability of Near Infrared (NIR) Spectroscopy to Predict Functional Properties in Foods: Challenges and Opportunities. Molecules 2021, 26, 6981. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.; Dardenne, P.; Flinn, P. Tutorial: Items to be included in a report on a near infrared spectroscopy project. J. Near Infrared Spectrosc. 2017, 25, 85–90. [Google Scholar] [CrossRef]
- Fearn, T. Assessing calibrations: SEP, RPD, RER and R2. NIR News 2002, 13, 12–13. [Google Scholar] [CrossRef]
- Vitenberg, T.; Opatovsky, I. Assessing Fungal Diversity and Abundance in the Black Soldier Fly and its Environment. J. Insect Sci. 2022, 22, 3. [Google Scholar] [CrossRef]
- Varotto Boccazzi, I.; Ottoboni, M.; Martin, E.; Comandatore, F.; Vallone, L.; Spranghers, T.; Eeckhout, M.; Mereghetti, V.; Pinotti, L.; Epis, S. A survey of the mycobiota associated with larvae of the black soldier fly (Hermetia illucens) reared for feed production. PLoS ONE 2017, 12, e0182533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanga, C.M.; Waweru, J.W.; Tola, Y.H.; Onyoni, A.A.; Khamis, F.M.; Ekesi, S.; Paredes, J.C. Organic Waste Substrates Induce Important Shifts in Gut Microbiota of Black Soldier Fly (Hermetia illucens L.): Coexistence of Conserved, Variable, and Potential Pathogenic Microbes. Front. Microbiol. 2021, 12, 635881. [Google Scholar] [CrossRef]
- Gold, M.; von Allmen, F.; Zurbrügg, C.; Zhang, J.; Mathys, A. Identification of Bacteria in Two Food Waste Black Soldier Fly Larvae Rearing Residues. Front. Microbiol. 2020, 11, 582867. [Google Scholar] [CrossRef] [PubMed]
- Soetemans, L.; Uyttebroek, M.; Bastiaens, L. Characteristics of chitin extracted from black soldier fly in different life stages. Int. J. Biol. Macromol. 2020, 165, 3206–3214. [Google Scholar] [CrossRef]
- Alagappan, S.; Rowland, D.; Barwell, R.; Mantilla, S.; Mikkelsen, D.; James, P.; Yarger, O.; Hoffman, L. Legislative landscape of black soldier fly (Hermetia illucens) as feed. J. Insects Food Feed. 2021, 8, 343–355. [Google Scholar] [CrossRef]
- Purkayastha, D.; Sarkar, S. Sustainable waste management using black soldier fly larva: A review. Int. J. Environ. Sci. Technol. 2021, 19, 12701–12726. [Google Scholar] [CrossRef]
- Seyedalmoosavi, M.M.; Mielenz, M.; Veldkamp, T.; Daş, G.; Metges, C.C. Growth efficiency, intestinal biology, and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: A review. J. Anim. Sci. Biotechnol. 2022, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Lalander, C.H.; Fidjeland, J.; Diener, S.; Eriksson, S.; Vinnerås, B. High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agron. Sustain. Dev. 2015, 35, 261–271. [Google Scholar] [CrossRef] [Green Version]
- De Smet, J.; Vandeweyer, D.; Van Moll, L.; Lachi, D.; Van Campenhout, L. Dynamics of Salmonella inoculated during rearing of black soldier fly larvae (Hermetia illucens). Food Res. Int. 2021, 149, 110692. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.C.; Islam, M.; Sheppard, C.; Liao, J.; Doyle, M.P. Reduction of Escherichia coli O157: H7 and Salmonella enterica serovar enteritidis in chicken manure by larvae of the black soldier fly. J. Food Prot. 2004, 67, 685–690. [Google Scholar] [CrossRef] [Green Version]
- Bessa, L.W.; Pieterse, E.; Marais, J.; Dhanani, K.; Hoffman, L.C. Food Safety of Consuming Black Soldier Fly (Hermetia illucens) Larvae: Microbial, Heavy Metal and Cross-Reactive Allergen Risks. Foods 2021, 10, 1934. [Google Scholar] [CrossRef]
- Larouche, J.; Deschamps, M.-H.; Saucier, L.; Lebeuf, Y.; Doyen, A.; Vandenberg, G.W. Effects of Killing Methods on Lipid Oxidation, Colour and Microbial Load of Black Soldier Fly (Hermetia illucens) Larvae. Animals 2019, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.M.; Simeone, M.L.F.; Pimentel, M.A.G.; Sena, M.M. Non-destructive screening method for detecting the presence of insects in sorghum grains using near infrared spectroscopy and discriminant analysis. Microchem. J. 2019, 149, 104057. [Google Scholar] [CrossRef]
- Wenz, J.J. Examining water in model membranes by near infrared spectroscopy and multivariate analysis. Biochim. Biophys. Acta (BBA)-Biomembr. 2018, 1860, 673–682. [Google Scholar] [CrossRef]
- Kröncke, N.; Böschen, V.; Woyzichovski, J.; Demtröder, S.; Benning, R. Comparison of suitable drying processes for mealworms (Tenebrio molitor). Innov. Food Sci. Emerg. Technol. 2018, 50, 20–25. [Google Scholar] [CrossRef]
- Benes, E.; Biró, B.; Fodor, M.; Gere, A. Analysis of wheat flour-insect powder mixtures based on their near infrared spectra. Food Chem. X 2022, 13, 100266. [Google Scholar] [CrossRef]
- Cruz-Tirado, J.P.; Amigo, J.M.; Barbin, D.F. Determination of protein content in single black fly soldier (Hermetia illucens L.) larvae by near infrared hyperspectral imaging (NIR-HSI) and chemometrics. Food Control 2023, 143, 109266. [Google Scholar] [CrossRef]
- Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Riu, J.; Vega, A.; Boqué, R.; Giussani, B. Exploring the Analytical Complexities in Insect Powder Analysis Using Miniaturized NIR Spectroscopy. Foods 2022, 11, 3524. [Google Scholar] [CrossRef] [PubMed]
Data Set | Details of Samples |
---|---|
Feed (n = 15) | Substrate used for rearing BSFL: SW, customised BV, supermarket waste, childcare waste, waste mixture. |
Larvae (n = 39) | 5th and 6th instar BSFL from SW and BV waste; unprocessed, blanched, and dried larvae from supermarket waste, childcare waste, waste mixture. |
Frass (n = 21) | 5 and 6th instar frass from soy and BV waste trials. 5th instar frass from supermarket waste, childcare waste, waste mixture |
Facility A (n = 30) | Feed, 5th and 6th instar BSFL and frass from soy waste and BV waste. Homogenous data set. |
Facility B (n = 45) | Feed, unprocessed, blanched, dried BSFL, and frass from supermarket waste, childcare waste, waste mixture. |
Both facilities together (n = 75) | Facility A + B |
Samples Set | N | Mean | SD | Max | Min | CV% |
---|---|---|---|---|---|---|
Feed | 15 | 2.9 | 1.4 | 4.6 | 1.4 | 48.2 |
Larvae | 39 | 2.1 | 1.1 | 4.4 | 1.4 | 52.3 |
Frass | 21 | 4.6 | 1.6 | 6.5 | 2 | 34.7 |
Facility A | 30 | 4.2 | 1.6 | 6.5 | 1.4 | 38.1 |
Facility B | 45 | 2.2 | 1.2 | 5.7 | 1.4 | 54.5 |
All samples (feed, frass and facilities) | 75 | 3 | 1.7 | 6.5 | 1.4 | 56.6 |
n | R2cv | SECV | Bias | Slope | LV | SEP | |
---|---|---|---|---|---|---|---|
Feed | 10 | 0.98 | 0.20 | 0.042 | 0.93 | 2 | 0.45 |
Frass | 18 | 0.81 | 0.90 | 0.13 | 0.80 | 2 | 0.98 |
Larvae | 30 | 0.91 | 0.27 | −0.029 | 0.95 | 8 | 0.65 |
Facility A | 20 | 0.90 | 0.45 | −0.006 | 0.95 | 5 | 0.67 |
Facility B | 30 | 0.80 | 0.62 | −0.007 | 0.93 | 6 | 0.97 |
All samples (feed, frass, and facilities) | 65 | 0.74 | 0.82 | −0.025 | 0.80 | 5 | 1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alagappan, S.; Dong, A.; Mikkelsen, D.; Hoffman, L.C.; Mantilla, S.M.O.; James, P.; Yarger, O.; Cozzolino, D. Near Infrared Spectroscopy for Prediction of Yeast and Mould Counts in Black Soldier Fly Larvae, Feed and Frass: A Proof of Concept. Sensors 2023, 23, 6946. https://doi.org/10.3390/s23156946
Alagappan S, Dong A, Mikkelsen D, Hoffman LC, Mantilla SMO, James P, Yarger O, Cozzolino D. Near Infrared Spectroscopy for Prediction of Yeast and Mould Counts in Black Soldier Fly Larvae, Feed and Frass: A Proof of Concept. Sensors. 2023; 23(15):6946. https://doi.org/10.3390/s23156946
Chicago/Turabian StyleAlagappan, Shanmugam, Anran Dong, Deirdre Mikkelsen, Louwrens C. Hoffman, Sandra Milena Olarte Mantilla, Peter James, Olympia Yarger, and Daniel Cozzolino. 2023. "Near Infrared Spectroscopy for Prediction of Yeast and Mould Counts in Black Soldier Fly Larvae, Feed and Frass: A Proof of Concept" Sensors 23, no. 15: 6946. https://doi.org/10.3390/s23156946
APA StyleAlagappan, S., Dong, A., Mikkelsen, D., Hoffman, L. C., Mantilla, S. M. O., James, P., Yarger, O., & Cozzolino, D. (2023). Near Infrared Spectroscopy for Prediction of Yeast and Mould Counts in Black Soldier Fly Larvae, Feed and Frass: A Proof of Concept. Sensors, 23(15), 6946. https://doi.org/10.3390/s23156946