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Abstract: Herein, a three-dimensional flower-like cobalt-nickel bimetallic metal-organic framework
(CoNi-MOF) coupled with two-dimensional graphene oxide (GO) nanocomposites was successfully
synthesized for the selective and simultaneous electrochemical determination of catechol (CC) and hy-
droquinone (HQ). The three-dimensional flower-like structure of the CoNi-MOF/GO nanocomposite
has a multilayer structure and a large surface area, which greatly improves its electrocatalytic activity
towards CC and HQ. Differential pulse voltammetry (DPV) results showed that the peak-to-peak
separation of CC (0.223 V) and HQ (0.120 V) was 103 mV at a CoNi-MOF/GO modified glassy carbon
electrode (CoNi-MOF/GO/GCE), suggesting that the proposed modified electrode can selectively
and simultaneously determine them. Under optimal conditions, the CoNi-MOF/GO/GCE showed
an excellent analytical performance for the simultaneous determination of CC and HQ, including a
wide linear range (0.1–100 µM), low detection limit (0.04 µM for HQ and 0.03 µM for CC) and high
anti-interference ability. As expected, the developed modified electrode has been used to analyze CC
and HQ in river water, with acceptable results.

Keywords: CoNi-MOF; graphene oxide; electrochemical; catechol; hydroquinone; simultaneous
determination

1. Introduction

Catechol (CC, o-dihydroxybenzene) and hydroquinone (HQ, p-dihydroxybenzene),
two isomers of dihydroxybenzene, play a critical role in the food, pharmaceutical and
chemical industries [1]. However, due to their strong irritation, high toxicity, high pollution
and the difficulty of degrading them in the environment [2,3], they cause certain hazards to
the ecosystem and human health. Moreover, it is difficult to selectively and simultaneously
determine CC and HQ because their molecular structures, physical properties and chemical
properties are very similar to each other. Therefore, several methods have been employed to
selectively determine them, such as high performance liquid chromatography [4], chemilu-
minescence [5], fluorescence [6], electrochemistry [7–10], ultraviolet spectrophotometry [11]
and so on. Among these detection methods, the electrochemical sensor has the features of
an easy operation, low cost, high sensitivity and selectivity and has been considered an
ideal tool for the rapid recognition and detection of CC and HQ [7–10].
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The metal organic framework (MOF) is a novel type of porous material formed by the
coordinated bonding of metal or metal cluster centers with organic ligands [12]. Recently,
MOF has become an emerging sensing material due to its regular pore structure and large
specific surface area [13–15]. However, its poor stability, low lattice vacancies and low
electrical conductivity still hinder its electrochemical sensing application. To solve these
problems, conductive materials and supporting substrates have been generally introduced
into the construction of MOF-hybridized nanocomposites [16,17]. For example, Wang et al.
introduced Co2+ ions to enhance the conductivity of Ni-based MOF nanocomposites. The
doped Co can generate more “free holes” to promote the electrochemical performance of
Co2-Ni-MOF nanocomposites [18]. Zhao et al. found that NiCo bimetal-organic framework
nanosheets (NiCo-UMOFNs) had a high electrocatalytic activity towards the oxygen evolu-
tion reaction (OER) in alkaline conditions due to the introduction of Ni and Co metals [19].
Another solving approach involves coupling MOF with conductive materials, such as car-
bon nanotubes [20], graphene oxide [21], porous carbon [22,23], and MXene [24]. Among
them, graphene oxide (GO) can efficiently increase the conductivity and stability of MOF-
based electrocatalysts, which are particularly beneficial in the field of electroanalysis [21].

Inspired by the above considerations, a nanocomposite consisting of graphene oxide
and a CoNi bimetallic MOF was synthesized. The preparation process of CoNi-MOF/GO
and electrochemical detection mechanism of this electrochemical sensor are illustrated in
Figure 1. In the initial step of the reaction process, Ni2+ and Co2+ could be easily adsorbed
onto the surface of GO due to a large number of carboxyl and hydroxyl groups located
on the surface of GO, resulting in the constitution of CoNi-MOF on the surface of GO.
On the basis of the successful synthesis, the CoNi-MOF/GO nanocomposite was used as
the electrode-modified material to construct a high-performance electrochemical sensor
for the selective and simultaneous determination of CC and HQ. Due to the synergistic
catalytic effect of the CoNi-MOF/GO nanocomposite, the as-prepared electrochemical
sensor exhibits an excellent sensitivity, selectivity and stability, which can be used to
determine CC and HQ in actual river water.
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2. Experimental Section
2.1. Reagents, Chemicals and Characterization

The reagents, chemicals and characterization equipment are listed in Supporting Information.

2.2. Synthesis of CoNi-MOF

The bimetallic MOF nanoflowers were synthesized based on the literature [25]. A total
of 12 mmol Co(NO3)2·6H2O and 4 mmol Ni(NO3)2·6H2O were co-dissolved in methanol.
A total of 4 mmol 2-methylimidazole was dissolved in methanol. Then, the two solutions
were rapidly mixed and stirred for 2 min. Subsequently, the mixed solution was left for
24 h for the growth and aging of MOF crystals. After growth, the mixture was centrifuged
and washed with methanol three times. Finally, the product was dried in a vacuum at
60 ◦C for 12 h to obtain an earthy yellow MOF powder.

2.3. Synthesis of Graphene Oxide (GO)

Graphene oxide was obtained based on Hummers’ method [26]. A concentrated
mixture of 9:1 H2SO4/H3PO4 was added to graphite flakes. Then, the mixture was heated
to 50 ◦C and stirred for 12 h. After reaction, the mixture was poured into ice with 30% H2O2
to obtain aqueous solvent GO. Subsequently, the obtained GO was washed and purified by
H2O, 30% HCl and ethanol, respectively. Finally, GO was dispersed in ethanol for storage.

2.4. Fabrication of the CoNi-MOF/GO

For the synthesis of CoNi-MOF/GO, 12 mmol Co(NO3)2·6H2O and 4 mmol Ni(NO3)2·6H2O
were firstly dissolved together in methanol. Then, 1.5 mL GO solution was added to the
above solution and sonicated for 30 min until complete dispersion. After that, 4 mmol
2-methylimidazole was added in the above suspension and stirred for 24 h. Subsequently,
the mixture was centrifuged and washed four times with methanol. Finally, the product
was lyophilized in a freeze dryer for 22 h.

2.5. Construction of the Modified Electrode

A total of 1 mg/mL CoNi-MOF/GO suspension was modified on the surface of the
pretreated bare glassy carbon electrode to obtain the expected modified electrode, which
was defined as CoNi-MOF/GO/GCE. Other modified electrodes were prepared with a
similar procedure.

3. Results and Discussion
3.1. Characterization of CoNi-MOF/GO Nanocomposites

The morphologies of CoNi-MOF and CoNi-MOF/GO nanocomposites were recorded
by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). From
Figure 2a,b, CoNi-MOF shows a typical porous flower-like structure with many channels.
With the introduction of GO, CoNi-MOF easily binds with GO to form CoNi-MOF/GO
nanocomposites (Figure 2d,e). One can note that the morphologies of CoNi-MOF are still
porous flower-like structures. TEM images were agreement with the SEM results, proving
the successful synthesis of CoNi-MOF/GO nanocomposites (Figure 2c,f). EDS results
show that C, N, O, Ni and Co elements are uniformly distributed in the CoNi-MOF/GO
nanocomposite, further confirming the successful combination of CoNi-MOF and GO
(Figure 2g–m). The hierarchical structure of CoNi-MOF/GO has a large number of active
sites, which can facilitate electron transfer on its interface in the redox process [27].

The structures of CoNi-MOF, CoNi-MOF/GO and GO were interpreted by XRD
(Figure 3a). A distinct diffraction peak belonged to the (001) crystal planes of the GO
spectrum, which was consistent with the previous characteristics of GO [28]. Additionally,
the diffraction peaks of CoNi-MOF were located at 9.88◦, 19.36◦, 33.81◦, and 60.47◦, which
is in agreement with previous observations of the Ni-Co metal organic skeleton [29]. One
can note that all patterns of CoNi-MOF and CoNi-MOF/GO are remarkably similar due
to the overlap of the diffraction peak around 9◦. The reason is ascribed to GO being used



Sensors 2023, 23, 6957 4 of 12

as a supporting substrate to load CoNi-MOF. As a result, the introduction of GO did
not disrupt the crystallinity of CoNi-MOF. The elemental composition of CoNi-MOF/GO
nanocomposites was investigated by X-ray photoelectron spectroscopy (XPS). As shown
in Figure 3b, the typical XPS survey spectra of Ni 2p, Co 2p and N 1s were observed in
CoNi-MOF/GO nanocomposites compared with GO, suggesting the successful synthesis
of bimetal CoNi-MOF. Notably, this result is in good agreement with the EDX results,
suggesting the successful synthesis of CoNi-MOF/GO nanocomposites.
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Figure 2. Characterization of CoNi-MOF and CoNi-MOF/GO nanocomposites. SEM images of
(a) CoNi-MOF and (d) CoNi-MOF/GO nanocomposites at low magnification (scale bar: 2 µm). SEM
images of (b) CoNi-MOF and (e) CoNi-MOF/GO nanocomposites at high magnification (scale bar:
500 nm). TEM images of (c) CoNi-MOF and (f) CoNi-MOF/GO nanocomposites. (g) HAADF-STEM
of CoNi-MOF/GO nanocomposites. (h–m) The corresponding EDS mapping images of C, N, O, Co
and Ni elements and the overlapped mapping images (scale bar: 1 µm).

In addition, the specific surface areas of CoNi-MOF and CoNi-MOF/GO nanocompos-
ite were studied. According to the nitrogen adsorption and desorption plots (Figure 3c),
the specific surface area of CoNi-MOF/GO nanocomposites (39.3605 m2·g−1) is larger
than that of CoNi-MOF (20.4520 m2·g−1). Both CoNi-MOF and CoNi-MOF/GO samples
show typical mesoporous structures with pore size distributions in the range of 20.0 to
60.0 nm (the inset of Figure 3c). Moreover, GO does not affect the pore size distributions of
CoNi-MOF. CoNi-MOF/GO nanocomposites have large specific surface areas and meso-
porous structures, which is favorable for the adsorption of CC and HQ and is beneficial to
improving the electrochemical performance.
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3.2. Electrochemical Behaviors of CoNi-MOF/GO/GCE

The electrochemical behaviors of CoNi-MOF/GO/GCE were tested by electrochemical
impedance spectroscopy (EIS) and cyclic voltammetry (CV). The impedance variations of
different electrodes in [Fe(CN)6]3−/4− solution are shown in Figure 4a. The impedance
value of Co-Ni-MOF/GCE (480 Ω) is smaller than that of bare GCE (738 Ω), suggesting that
Co-Ni-MOF improves the electron transfer to some extent. Meanwhile, the impedance value
of GO/GCE (450 Ω) is smaller than that of Co-Ni-MOF/GCE because of the good electrical
conductivity of GO. The impedance value of CoNi-MOF/GO/GCE is down to 186 Ω,
proving that the CoNi-MOF/GO nanocomposites have a better electrical conductivity.
The introduction of GO greatly improves the conductivity due to the synergistic effect of
CoNi-MOF and GO, which offers a possibility for the electrochemical determination of CC
and HQ.
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and CoNi-MOF/GO/GCE with a scan rate of 100 mV·s−1.

According to their excellent conductivity, the electrochemical responses of different
modified electrodes for the determination of CC and HQ were recorded in Figure 4b. For
the 1.0 × 10−4 mol/L CC and HQ determination in phosphate buffer (pH 6.0), only a
board oxidation peak at 319 mV was observed at bare GCE, with a low oxidation peak
current (Ipa = 1.821 µA). Obviously, bare GCE cannot efficiently distinguish CC from HQ.
At the same detection condition, two pairs of well-defined redox peaks for HQ and CC
were found at GO/GCE, with an oxidation peak-to-peak separation of 101 mV, indicating



Sensors 2023, 23, 6957 6 of 12

that GO/GCE had a better electrocatalytic activity and could efficiently determine two
isomers. Two pairs of redox peaks located at 235 mV/156 mV for CC and 138 mV/53 mV
for HQ were also obtained at CoNi-MOF/GCE. The oxidation peak potential shifted
negatively, indicating that CoNi-MOF/GCE can lower the oxidation overpotential of CC
and HQ. The low oxidation is beneficial for the electrochemical determination of CC
and HQ. At CoNi-MOF/GO/GCE, two well-defined oxidations peaks of CC and HQ
appeared at 0.223 V and 0.120 V, respectively, further lowering the overpotential. The
oxidation peak–peak separation between CC and HQ is about 103 mV, suggesting that
it is enough for the simultaneous determination of CC and HQ. Moreover, the oxidation
peak currents of CC and HQ at CoNi-MOF/GO/GCE are about 4.897 µA and 5.359 µA,
respectively, which is almost twice those obtained at CoNi-MOF/GCE or GO/GCE. This
significant enhancement may be related to the combination of CoNi-MOF with GO. The
as-prepared CoNi-MOF/GO nanocomposites have an excellent electrical conductivity,
which is favorable for the improvement of the electrochemical response of CC and HQ on
the electrode surface.

3.3. Effect of pH Value and Scan Rate

The effects of the pH value and scan rate on the electrochemical behavior of CC and HQ
at CoNi-MOF/GO/GCE were studied. As shown in Figure 5a, the peak potentials of CC
and HQ shifted negatively with the increasing pH value ranging from 4.0 to 9.0, suggesting
that protons participated in the redox process [30,31] (Figure 5b). The relationship between
the pH value and the anodic peak potentials (Epa) of CC and HQ was expressed as follows:

Epa(HQ) = 0.3912 − 0.0545 pH (R2 = 0.9988), Epa(CC) = 0.4767 − 0.0516 pH (R2 = 0.9967)

The slopes of both linear equations are close to the Nernst equation (0.059 V/pH),
proving that an equal number of electrons and protons are involved in the oxidation pro-
cesses of CC and HQ. The corresponding oxidation mechanisms of CC and HQ at CoNi-
MOF/GO/GCE are given in Figure 1, which is consistent with the previous literature [10,32].
Meanwhile, the largest anodic peak currents of CC and HQ were obtained when the pH
value was 6.0. For the best detection performance, pH 6.0 is chosen as the optimal pH value
for the electrochemical determination (inset in Figure 5b).

For the purpose of researching the electrochemical reaction kinetics of CC and HQ at
CoNi-MOF/GO/GCE, the CV responses were performed by changing the scan rates from
20 to 400 mV/s (Figure 5c,e). From Figure 5d,f, it can be seen that the peak currents of CC
and HQ increased with the increase of the scan rate. Both redox peak currents of CC and
HQ are proportional to the square root of the scan rate. The fitting equations were listed
as follows:

CC: Ipa (µA) = 0.6068 v1/2 − 0.7667 (R2 = 0.9992), Ipc (µA) = −0.7413 v1/2 +0.8681 (R2 = 0.9995)

HQ: Ipa (µA) = 0.5814 v1/2 − 0.3879 (R2 = 0.9963), Ipc (µA) = −0.6005 v1/2 + 0.5456 (R2 = 0.9997)

According to the experimental data, the electrochemical catalyses of CC and HQ at
CoNi-MOF/GO/GCE are diffusion-controlled processes [33].

3.4. Selective and Simultaneous Detection of CC and HQ

Differential pulse voltammetry (DPV) was used to evaluate the performance of CoNi-
MOF/GO/GCE for the determination of CC and HQ. For the selective determination,
one substance concentration is changing when the other substance concentration is fixed.
Figure 6a shows that the anodic peak currents of HQ increase proportionally to the in-
creasing HQ concentration in the range of 0.2–100 µM, while the peak currents of 20 µM
CC remain unchanged. The linear regression equation of CoNi-MOF/GO/GCE for HQ
detection was Ipa (µA) = 0.1149 C (µM) + 0.2199 (R2 = 0.9903), and the limit of detec-
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tion (LOD) was estimated to be 0.005 µM (Figure 6b, S/N = 3). A similar phenomenon
was obtained for the CC determination at CoNi-MOF/GO/GCE (Figure 6c). The ox-
idation peak currents of CC were linear with a CC concentration ranging from 0.2 to
100 µM, while the HQ concentration (20 µM) remained constant. The fitting equation
for CC detection is Ipa (µA) = 0.091 C (µM) + 0.0351 (R2 = 0.9936) with a LOD of 0.004 µM
(Figure 6d, S/N = 3).
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different pH (4.0–9.0). (b) pH value versus peak potential of CC and HQ. Inset: Relationship between
pH value and peak current of CoNi-MOF/GO/GCE for CC and HQ determination. CV curves of
1 × 10−4 M (c) HQ and (e) CC at CoNi-MOF/GO/GCE at different scan rates (20~400 mV·s−1), and
(d,f) plots of Ipa/Ipc of CC and HQ versus the square root of the scan rate.
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Figure 6. (a) DPV curves of CoNi-MOF/GO/GCE for 0.2~100 µM HQ determination in the pres-
ence of 20 µM CC. (b) The corresponding linear range between oxidation peak current and HQ
concentration. (c) DPV curves of CoNi-MOF/GO/GCE for 0.2~100 µM CC by fixing HQ con-
centration (20 µM). (d) The relationship between the peak current and the CC concentration.
(e) DPV curves of CoNi-MOF/GO/GCE for simultaneous determination of 0.1~100 µM CC and
0.1~100 µM HQ. (f) Calibration plots of the oxidation peak currents as a function of CC and HQ
concentration, respectively.

Besides the selective determination, the simultaneous analysis of CC and HQ at CoNi-
MOF/GO/GCE was also investigated by changing their concentration synchronously. As
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shown in the result represented in Figure 6e, two well-separated anodic peaks for HQ and
CC are exhibited. The anodic peak currents of CC and HQ increased with the addition of two
isomer concentrations ranging from 0.1 to 100 µM, respectively. The obtained linear equations
for the CC and HQ determination were Ipa (µA) = 0.0968 C (µM) + 0.3109 (R2 = 0.9915) and
Ipa (µA) = 0.1024 C (µM) + 0.5144 (R2 = 0.9923), respectively (Figure 6f). According to
regression equations, the LODs for HQ and CC detection were calculated to be 0.04 µM
and 0.03 µM, respectively. All experimental data suggested that CoNi-MOF/GO/GCE
can selectively and simultaneously determine CC and HQ without them interfering with
each other.

The analytical performance of CoNi-MOF/GO/GCE for the CC and HQ determination
is better or comparable to some published modified electrodes (Table 1), suggesting that the
outstanding synergistic activity of CoNi-MOF/GO can efficiently improve electrochemical
detection performance.

Table 1. Comparison of different modified electrodes for simultaneous analysis of CC and HQ.

Materials
Linear Range (µM) Detection Limit (µM)

References
HQ CC HQ CC

Ce-MOF/CNTs/GCE 10–100 5–50 5.3 3.5 [8]
RGO-MWNTs 8–391 5.5–540 2.6 1.8 [9]

MCHSs/Co@N-CNTs/GCE 1.0–100 2.5–100 0.27 0.46 [12]
AuPdNF/rGO/GCE 1.6–100 2.5–100 0.5 0.8 [2]
Co3O4@carbon/GCE 0.8–127.1 0.6–116.4 0.03 0.03 [34]

CuS-CNF/GCE 3–200 7–150 0.293 0.259 [35]
COFs/MWCNT/GCE 4–450 4–450 0.38 0.36 [36]
UiO-66-NH2/COCl-
MWCNT/CB/GCE 1–1000 1–1000 0.27 0.11 [37]

CoNi-MOF/GO/GCE 0.1–100 0.1–100 0.03 0.04 This work

3.5. Reproducibility, Stability and Selectivity

Six independent CoNi-MOF/GO/GCEs were used to detect 20 µM CC and 20 µM
HQ. The relative standard deviations (RSDs) of the anodic peak currents were found to
be 1.79% and 2.04% for CC and HQ, respectively (Figure S1). After eight consecutive
determinations for the same sensor, the RSDs of anodic peak currents were about 2.83% and
1.97% for the CC and HQ determination, respectively (Figure S2). These results indicate that
CoNi-MOF/GO/GCE has a satisfactory reproducibility and repeatability. After the CoNi-
MOF/GO/GCE was stored at room temperature for three weeks, the anodic peak currents
of CC and HQ still remained above 90% of the original current (Figure S3), indicating that
CoNi-MOF/GO/GCE possesses an excellent long-storage stability.

The anti-interference ability of CoNi-MOF/GO/GCE for the CC and HQ deter-
mination was also verified. Figure 7a exhibits the amperometric responses of CoNi-
MOF/GO/GCE for HQ (10 µM) and other interfering substances’ (100 µM of Na+, K+,
Mg2+ and Ca2+, 20 µM of L-aspartic acid, glycine, BPF, tertbutyl-hydroquinone and glucose,
10 µM of p-nitrophenol, nonylphenol and acetaminophen) determination. The applied
potential is 0.14 V. Obviously, other interfering substances did not affect the performance of
CoNi-MOF/GO/GCE for HQ determination. A similar phenomenon was observed for CC
detection at CoNi-MOF/GO/GCE (Figure 7b), proving that these co-existing substances
did not significantly interfere in the detection of CC. All experimental data suggested that
CoNi-MOF/GO/GCE has a good selectivity for CC and HQ determination.

The reliability of CoNi-MOF/GO/GCE was investigated. A standard addition method
was employed to determine the content of CC and HQ in Huaihe River water. The prepa-
ration of Huaihe River samples is listed in the Supporting Information. As tabulated in
Table 2, the recoveries of CoNi-MOF/GO/GCE for the HQ and CC determination ranged
from 98.1–103.7% (RSD < 3%, n = 3) and 96.9–102.9% (RSD < 4%, n = 3). Therefore, the
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fabricated CoNi-MOF/GO/GCE has a good practicality for the detection of CC and HQ,
proving that it has a great application in real sample analysis.
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Table 2. Determination of CC and HQ in Huaihe River samples by using CoNi-MOF/GO/GCE
(n = 3).

Sample Analyte Added (µM) Found a (µM) RSD b (%) Recovery (%)

1
HQ 20 20.33 ± 0.42 2.06 111.7
CC 20 19.46 ± 0.68 3.50 97.4

2
HQ 40 39.24 ± 0.94 2.40 98.1
CC 40 38.75 ± 0.82 2.12 96.9

3 HQ 50 51.83 ± 1.48 2.85 103.7
CC 50 51.45 ± 1.27 2.47 102.9

a Standard addition method. b Measurement values taken from three experiments.

4. Conclusions

In conclusion, a hybridized nanocomposite combining cobalt-nickel bimetallic MOFs
with graphene oxide was synthesized and was used as an electrode modifier to construct
an electrochemical sensor for the selective and simultaneous determination of CC and HQ.
Owing to the high catalytic activity, good conductivity and specific surface area of CoNi-
MOF/GO nanocomposites, the proposed sensor is endowed with an excellent analytical
performance for CC and HQ, such as a wide linear range, excellent selectivity and good
stability. This work provides a feasible model for constructing simple, high-performance
bimetallic MOF-based electrochemical sensors in environmental monitoring.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s23156957/s1, Figure S1: Reproducibility study of six
individual electrodes for CC and HQ detection under the same conditions; Figure S2: The same
electrode for 8 consecutive determinations under the same conditions; Figure S3: Stability of CoNi-
MOF/GO/GCE.
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