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Abstract: Deep-sea object localization by underwater acoustic sensor networks is a current research
topic in the field of underwater communication and navigation. To find a deep-sea object using
underwater wireless sensor networks (UWSNs), the sensors must first detect the signals sent by the
object. The sensor readings are then used to approximate the object’s position. A lot of parameters
influence localization accuracy, including the number and location of sensors, the quality of received
signals, and the algorithm used for localization. To determine position, the angle of arrival (AOA),
time difference of arrival (TDoA), and received signal strength indicator (RSSI) are used. The
UWSN requires precise and efficient localization algorithms because of the changing underwater
environment. Time and position are required for sensor data, especially if the sensor is aware of its
surroundings. This study describes a critical localization strategy for accomplishing this goal. Using
beacon nodes, arrival distance validates sensor localization. We account for the fact that sensor nodes
are not in perfect temporal sync and that sound speed changes based on the medium (water, air,
etc.) in this section. Our simulations show that our system can achieve high localization accuracy
by accounting for temporal synchronisation, measuring mean localization errors, and forecasting
their variation. The suggested system localization has a lower mean estimation error (MEE) while
using RSSI. This suggests that measurements based on RSSI provide more precision and accuracy
during localization.

Keywords: localization; UWSN; mean estimation error; RSSI; TOA; TDOA

1. Introduction

Underwater wireless sensor networks (UWSNs) are networks comprised of sensors
positioned in or near water that are capable of communicating with one another and
sharing data. Environmental monitoring, underwater surveillance, and ocean exploration
are just a few of the possibilities for these networks [1]. The problems associated with
identifying sensor nodes in an underwater environment are a significant hurdle for UWSNs.
To overcome the difficulty of localization and achieve a level of precision previously
unattainable in UWSNs, a technology known as RSSI-based advanced efficiency-driven
localization was created [2–4]. RSSI is a statistic that evaluates the strength of a received
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radio signal and can be used to calculate the distance between two nodes. The placements
of the sensor nodes are determined using the RSSI values of the signals received by the
nodes surrounding them in this manner [5].

The RSSI-based advanced efficiency-driven localization approach optimises the local-
ization process by utilising time-saving strategies and protocols. This results in improved
localization accuracy. In order to accomplish precise and cost-effective localization, these
algorithms take into account a number of aspects, including power consumption, com-
munication overhead, and network scalability. Using cutting-edge algorithms makes the
localization process more durable and dependable in difficult situations, such as underwa-
ter environments with low bandwidth, significant propagation loss, and the influence of
multipath effects [6–8].

This localization technology’s exceptional accuracy is critical for a wide range of
applications. Accurate localization, for example, enables high-resolution monitoring of
subsea habitats and the migration of marine organisms in the context of environmental
monitoring [9]. The precise positioning of sensor nodes used in underwater surveillance
allows for the early detection of any anomalies or invasions in underwater infrastructure
such as pipelines or offshore locations. This increases the likelihood of early detection of
any potential dangers. This technique of localization also contributes to the advancement
of marine research. Researchers can uncover new ecosystems, underwater archaeological
sites, or geological formations more easily if they construct exact maps of underwater
regions and correctly place sensor nodes [10–13].

1.1. Problem Statement

The environment of a body of water poses a unique set of obstacles for wireless
communication and localization. Water’s high attenuation, multipath propagation, and
the confined bandwidth of aquatic environments all conspire against the efficiency and
precision of wireless sensor networks [14–16]. Finding the precise locations of sensor
nodes during the localization process is a difficult challenge made more difficult by the
lack of dependable Global Positioning System (GPS) signals and the necessity for steady
and trustworthy underwater positioning algorithms. So, in this study, we are proposing
RSSI-based advanced efficiency-driven localization.

1.2. Motivation

Because of the specific obstacles that arise in underwater environments, wireless
sensor networks have had to develop their localization strategies in order to circumvent
underwater communication restrictions. The demand for more precise environmental
monitoring, better underwater surveillance, and enhanced exploration capabilities drove
the development of UWSNs with RSSI-based advanced efficiency-driven localization and
unprecedented precision [17–19]. Another motivation is to improve exploring abilities.
Accurate localization enables researchers to collect high-resolution data on marine life,
ecosystems, and environmental conditions, which aids in the protection of these areas and
the mitigation of natural disasters. Furthermore, UWSNs with precise positioning can effi-
ciently monitor underwater structures and detect anomalies in real time. This contributes
to the stability of critical infrastructure [20]. Finally, advances in localization technologies
have substantially improved the accuracy of underwater mapping and navigation. As a
result, previously unknown information about Earth’s geology, archaeology, and history
have been revealed. These technological developments make UWSNs live longer and be
more reliable by optimising their energy utilisation and ability to communicate with one
another. This enables UWSNs to continue data collection and processing even in difficult
underwater settings [21].

Because of the fluidity of water, the algorithms employed by UWSNs to estimate posi-
tions under the water may encounter significant challenges. Furthermore, the constituent
nodes of the UWSN may have difficulty communicating with one another. Estimating
the strength of a received signal with existing technology and hardware may appear to
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be a simple and low-cost process [22]. Underwater sensor nodes, on the other hand, have
limited energy reserves, are difficult to repair, and are susceptible to water damage. The
purpose of this study is to address the aforementioned issue front-on by presenting a
mechanism for 3D localization of UWSNs using current RSSI data. Using data that has been
edited and weighted is one technique for lowering the likelihood of making mistakes [23].
The method of least squares can be used to estimate the location of an unknown node in
three-dimensional space if the indicated strategy is followed. The easiest way to accomplish
this is to create a 3D model of the object’s position in the water. The proposed method
enhances dependability, is less likely to be disrupted by water movement, and allows for
more precise network node localization.

This manuscript makes the following contributions, which are most important:

â Investigation of Scaling Effect: The manuscript explores how object localization
changes as the number of UWSNs grows. This analysis helps in understanding
the impact of network size on the accuracy and effectiveness of object localization
in UWSNs.

â Evaluation of Distance-based Localization Algorithms: The manuscript examines
distance-based localization algorithms in the context of UWSNs. By evaluating these
algorithms, the study provides insights into their suitability, performance, and limita-
tions for underwater localization scenarios.

â Proposal of an Effective Localization Strategy: The manuscript proposes and rec-
ommends an acceptable localization strategy based on the desired RSSI data. This
strategy aims to optimize object localization in UWSNs, taking into account the
specific requirements and characteristics of the underwater environment.

The manuscript is structured into the following: Section 2 discusses the related works.
Section 3 discusses the proposed network design and simulation settings of the underwa-
ter localization algorithms. Section 4 presents an examination of the simulation results.
Section 5 contains an overview of the plan, followed by a series of final observations and
future scope.

2. Related Works

Li et al. [24] described a TDOA-based localization algorithm majorization-minimization
(T-MM) localization strategy. T-MM employs the majorization-minimization (MM) algo-
rithm in concert with the TDOA technique for acoustic localization. Since subsequent
iterations of the MM method depend on the beginning points, the T-MM system employs
a gradient-based initial point technique. The squared position error bound (SPEB) ex-
pression is calculated utilising the equivalent Fisher information matrix (EFIM) and is
used to evaluate the performance of the proposed T-MM localization method. Even in
the presence of substantial underwater noise, simulation results demonstrate that the pro-
posed T-MM method outperforms current localization algorithms in terms of accuracy and
computing cost.

Arbula et al. [25] estimated AoA with great accuracy by utilising low-range infrared
(IR) data in line of sight (LOS). The sensor provides a suitable option for localization.
To avoid propagation issues, this solution uses a wireless sensor network (WSN). We
put the method to the test in the tough context of grocery store cart movement. We
built a proof-of-concept navigation system using an IR-AoA sensor prototype and WSN
for cart localization, and a server-side and client application suite of smartphone and
wristwatch apps. Four evaluation methods—empirical and simulated—were used to
assess the localization efficiency of the proposed strategy. The study revealed that a
centimetre of accuracy in a static one-dimensional setting corresponded to a metre of
localization inaccuracy for a moving cart travelling at 140 cm/s in a two-dimensional
setup. These findings demonstrate that supermarket localization precision and real-time
navigation support may be achieved with widely available infrared technology and low-
cost hardware components.
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Ullah et al. [26] proposed methods for accurate underwater localization that are also
effective in terms of their use of energy. These approaches are based on measurements of
both distance and angle. The pinpointing of underwater nodes is a primary focus of the
systems that have been developed, particularly MEEs. A considerable amount of modelling
is required in order to compare the proposed systems to those of other organisations. The
proposed designs are an improvement on the MEEs in terms of both their location and
their energy use.

Sahota et al. [27] examined the difficulty of locating wireless sensor network nodes
in above- and below-ground anchor nodes. Distance is measured by the time a signal
travels from a sensor node to a satellite node or vice versa. Estimating a joint distribution
of arrival times defines localization. The probability distribution of a signal’s arrival time
is derived from the sensor nodes’ geographical locations using sophisticated statistical
analysis. This lets signal arrival time express distribution. The network’s joint distribution
of time-of-arrival variables is based on maximum likelihood estimations of node geographic
coordinates. Sensitivity analysis evaluated the model and approach. This study investigates
the disparity between soil complex permittivity and magnetic permeability estimates
and measurements.

Dubrovinskaya et al. [28] investigated exploiting wideband arrays of opportunity
to construct practical algorithms that can accurately detect and estimate direction of ar-
rival, and estimate position. DoA and rough multilateration estimations remove spatial
uncertainty caused by the array’s architecture. We simulate underwater noise and acoustic
congestion to prove our strategy works. These simulations indicate that our method cor-
rectly calculates DoA and position and that chance arrays can beat well-constructed arrays.

Hayder et al. [29] used the three main methods for changeable transmission power-
based sparsity-conscious energy-efficient clustering (CTP-SEEC) in UWSNs used before.
These include the adaptive power control mechanism that converts to a suitable transmis-
sion power level (TPL) and deploys cooperation mobile sinks or autonomous underwater
vehicles (AUVs) to acquire local information for WSN energy and data management ef-
ficiency (security) for WSN security. After comprehensive simulations and testing, the
suggested approach is compared to other cutting-edge UWSN protocols, to validate it. The
continuous environmental condition simulation showed that the recommended protocol
performs well in network lifetime, packet delivery, and throughput.

Qin et al. [30] proposed the RSSI-based three-dimensional UWSN positioning algo-
rithm as one solution. A stationary node weights the signal strength it receives from
a mobile anchor node to compensate for water effects, improving range measurement.
Based on the distance between the unlocated node and the anchor node, a location esti-
mation model is merged with a three-dimensional underwater model using least squares
to calculate the missing node’s location. The novel method improves three-dimensional
underwater positioning algorithms and lowers the aquatic environment’s effect on range
algorithm accuracy. According to simulations, the proposed strategy may reduce the
undersea environment’s detrimental effects on positioning algorithms.

These studies contribute to the field of underwater localization by proposing novel
techniques, improving accuracy and energy efficiency, addressing propagation challenges,
and exploring the use of different technologies and algorithms for accurate positioning
in UWSNs.

3. Proposed Network Design and Simulation Settings

The proposed algorithm for calculating the intensity of an incoming received-signal-
strength-based ranging method aims to interpret the signal intensity from an anchor node
at a specific distance using an unnamed node. In this scenario, the anchor node is movable
and responsible for transmitting the signal. However, due to environmental factors, there
is some data loss during the transmission process. As the distance increases, the unlocated
node experiences higher signal attenuation, leading to a lower received RSSI. To calculate
the transmission loss, the route loss model is employed, which is reflected in the received
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signal strength. In real-world operations, the loss model is implemented using a log-normal
distribution model. This algorithm enables the estimation of signal intensity and helps
determine the distance between the unnamed node and the anchor node, based on the
received RSSI values.

To implement the distance-based localization technique, the first step is to analyse the
network field over a 100 m area. In this scenario, the underwater sensor nodes investigate
a square area that is exactly 100 m wide and 100 m deep. This analysis is conducted using
MATLAB, to ensure a smooth process. The goal of this scenario is to assess how distance
affects localization accuracy. The relative position of an object in space can be determined
by communicating with the four anchor nodes located at the four cardinal points of the
localization network. In this scenario, the network field is a 100 m square space, and
there are ten mobile nodes present. The mobile node that needs to be tracked is selected
as the target. The initial location of the target sensor node is randomly determined, and
multiple trials are conducted to refine its location. However, only a subset of these trials is
considered in this particular scenario.

To estimate the mobile node’s position, data from six trials are used initially. The
beacon sensor nodes, which are connected to a reference antenna, enable the calculation of
the distance between a mobile sensor node and a beacon node. This information allows
for the computation of the distance between the two vertices. Figure 1 represents the
visualization of the node distribution in the UWSN, illustrating the spatial arrangement of
the sensor nodes and anchor nodes within the 100 m square network field. This scenario
provides insights into how distance affects the accuracy of the localization technique and
allows for further analysis and optimization of the system.
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Figure 1. Node distribution visualization of UWSN.

The shape resembles a sphere when all the nodes in a network are in constant commu-
nication with one another [31]. Signals are transmitted from connecting ties to unidentified
nodes within range. The diameter of a communication path is the unit of measurement
for the path’s length. Unanchored nodes receive data from the anchor node with the most
reliable transmission. These nodes have a complete 360-degree view of the water depth.
The sensor is represented in Figure 2.
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Figure 2. UWSN node distribution.

In the given architecture, each node incorporates a pressure detector to obtain its own
independent depth data. When considering the node depth, it is possible to directly alter
the Z-axis coordinates of the node [32]. Let us denote the coordinates of the unknown
nodes as (A1, A2, and A3), and the coordinates of three anchor nodes as (A1, B1, C1), (A2,
B2, C2), and (A3, B3, C3). The anchor nodes are labelled as P, Q, and R, respectively.

Now, let us assume that the coordinates of the anchor nodes are known as (Ap, Aq,
and Ar). With this information, we can determine the distance between the unknown
nodes and the anchor nodes [33]. The distance between two locations can be calculated
using various distance measurement techniques, such as Euclidean distance or geometric
distance. Let us consider the Euclidean distance formula to calculate the distance between
two nodes. The Euclidean distance between two points (x1, y1, z1) and (x2, y2, z2) in 3D
space is given in Equation (1):

d =
√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 (1)

Based on this formula, we can calculate the distance between the unknown nodes (A1,
A2, and A3) and the anchor nodes (Ap, Aq, and Ar). Let us denote these distances as dPA,
dQA, and dRA, respectively. Now, we have the following Equations (2)–(4) for the distance
between unanchored nodes and anchor nodes:

dPA =

√
(A1 − Ap)2 + (A2 − Aq)2 + (A3 − Ar)2 (2)

dQA =

√
(B1 − Bp)2 + (B2 − Bq)2 + (B3 − Br)2 (3)

dRA =

√
(C1 − Cp)2 + (C2 − Cq)2 + (C3 − Cr)2 (4)

These equations represent the distances between the unknown nodes and the anchor
nodes, based on their respective coordinates [34]. By measuring these distances using the
pressure detectors and solving the equations, we can estimate the coordinates (A1, A2, and
A3) of the unknown nodes, and this is represented in Figure 3.
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Figure 3. Processes involved in the RSSI.

The proposed algorithm for calculating the intensity of an incoming received-signal-
strength-based ranging method aims to interpret the signal intensity from an anchor node
at a specific distance using an unnamed node. In this scenario, the anchor node is movable
and responsible for transmitting the signal. However, due to environmental factors, there
is some data loss during the transmission process. As the distance increases, the unlocated
node experiences higher signal attenuation, leading to a lower received RSSI. To calculate
the transmission loss, the route loss model is employed, which is reflected in the received
signal strength. In real-world operations, the loss model is implemented using a log-normal
distribution model. This algorithm enables the estimation of signal intensity and helps
determine the distance between the unnamed node and the anchor node, based on the
received RSSI values; this is depicted in Figure 4.
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4. Results and Discussion

Underwater studies have proven that the developed distance- and angle-based mea-
sures are effective, providing good support for their use in the RSSI process. The mean
estimation error is used to quantify localization performance in the study “Underwater
Wireless Sensor Networks with RSSI-Based Advanced Efficiency-Driven Localization and
Unprecedented Accuracy”. We used RSSI-based efficient advanced localization in this
study. The mean estimation error provides insight into the system’s accuracy by aver-
aging the disparities between the estimated and ground-truth positions of sensor nodes.
In terms of accuracy, the new RSSI-based localization method outperforms the baseline
approaches, as evaluated by the mean estimation error. The geolocation algorithm now
includes efficiency-driven methods to lower the overall impact of energy usage and com-
munication overhead. These strategies can also have an impact on the standard error
of estimates. On the mean estimation error, the effects of signal attenuation, multipath
fading, and environmental factors are thoroughly studied. Limitations such as signal
interference and deployment variances are recognized as opportunities for additional study
and enhancements to reduce mean estimation error and increase system reliability. The
achieved reduction in mean estimation error illustrates the suggested method’s practical
utility under underwater conditions. Future applications of the technology in the actual
world are also contemplated.

4.1. Analysis of Angle-Based MEEs

The results of an examination of the mean estimation errors (MEEs) based on angles
for each of the six rounds of the localization technique are shown in Table 1. The MEEs
display an indicator of the average divergence between the sensor node’s estimated posi-
tions and ground-truth locations based on angle-based measurements. The MEEs varied
greatly between trials, ranging from 51.3579 to 55.2470 m, according to the study which is
represented in Figure 5. Different MEEs reflect varying degrees of certainty in the antici-
pated placements. The MEE increases from Trial 1 to Trial 6, showing that the projected
locations are becoming increasingly varied. Trial 5 indicates a little drop as compared to
Trial 4, indicating a transient improvement. The highest MEE was discovered in Trial 6,
showing a significant difference between the observed and projected locations. These
findings shed light on the shortcomings and unpredictability of angle-based approaches for
locating specific positions. More research is needed to improve the accuracy and reliability
of the angle-based localization technique by taking measurement errors, environmental
circumstances, and the localization algorithm into account.

Table 1. Data analysis of angle-based MEEs for six iterations.

Trial Distance (m)

1 51.3579

2 52.2380

3 53.3379

4 53.9192

5 54.1750

6 55.2470

4.2. Analysis of Distance-Based MEEs

Table 2 shows the results of a distance-based study of the mean estimation errors
(MEEs) for each of the six rounds of the localization technique. The MEEs represent the
typical difference between distance-based measurements used to anticipate sensor node
locations and actual node positions. The MEEs varied between 2.1474 and 3.6079 m across
the six studies, according to the study which is depicted in Figure 6. MEE variations
imply that estimated positions vary in accuracy, to varying degrees. The MEE climbs
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from Trial 1 to Trial 6, demonstrating increasing discordance between actual and antici-
pated placements. This shows that when attempting to attain precise localization in this
situation, distance-based assessments may have limitations. The MEEs in Table 2 are, on
average, much smaller than those in Table 1 (which are based on angles). This would
imply that distance-based measurements provide substantially higher precision, albeit with
considerable opportunity for error. To improve the accuracy and reliability of the distance-
based localization strategy, more research and analysis of a variety of parameters, such as
measurement errors, environmental factors, and the localization algorithm, is necessary.
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Table 2. Data analysis of distance-based MEEs for six iterations.

Trial Distance (m)

1 2.1474

2 2.9743

3 3.0234

4 3.1299

5 3.3555

6 3.6079

Sensors 2023, 23, x FOR PEER REVIEW 10 of 16 
 

 

1 to Trial 6, demonstrating increasing discordance between actual and anticipated place-
ments. This shows that when attempting to attain precise localization in this situation, 
distance-based assessments may have limitations. The MEEs in Table 2 are, on average, 
much smaller than those in Table 1 (which are based on angles). This would imply that 
distance-based measurements provide substantially higher precision, albeit with consid-
erable opportunity for error. To improve the accuracy and reliability of the distance-based 
localization strategy, more research and analysis of a variety of parameters, such as meas-
urement errors, environmental factors, and the localization algorithm, is necessary. 

Table 2. Data analysis of distance-based MEEs for six iterations. 

Trial Distance (m) 
1 2.1474 
2 2.9743 
3 3.0234 
4 3.1299 
5 3.3555 
6 3.6079 

 

  
(a) (b) 

  
(c) (d) 

Sensors 2023, 23, x FOR PEER REVIEW 11 of 16 
 

 

  
(e) (f) 

Figure 6. Data analysis of distance-based MEEs of six iterations: (a) Trial 1 (b) Trial 2 (c) Trial 3 (d) 
Trial 4 (e) Trial 5 (f) Trial 6. 

4.3. Analysis of RSSI-Based MEEs 
Table 3 shows a breakdown of the mean estimation errors (MEEs) based on the RSSI 

distance for each of the six rounds of localization. The MEEs represent the average differ-
ence between the predicted sensor node positions and the ground-truth positions as es-
tablished by RSSI’s distance-based measurements. The study discovered that MEEs vary 
substantially from experiment to experiment, ranging from 0.12213 to 0.48601 m which is 
represented in Figure 7. MEE variations imply that estimated positions vary in accuracy, 
to varying degrees. The MEE grows rapidly from Trial 1 to Trial 6, suggesting that the 
projected positions deteriorate. Table 3’s MEEs are far closer to reality than those of Tables 
1 and 2, which are based on angles and distances. This suggests that the RSSI distance-
based metrics provide more precision and accuracy in the overall localization process. 
However, even with lower MEEs, there is still significant discordance between the pro-
jected and actual positions. This is a critical factor to consider. To increase the accuracy 
and reliability of the RSSI distance-based localization strategy, more research, optimiza-
tion, and thorough examination of aspects such as measurement errors, ambient circum-
stances, and the localization algorithm are required. 

Table 3. Data analysis of RSSI distance-based MEEs for six iterations. 

Trial Distance (m) 
1 0.12213 
2 0.17615 
3 0.18138 
4 0.19792 
5 0.24921 
6 0.48601 

 

Figure 6. Data analysis of distance-based MEEs of six iterations: (a) Trial 1 (b) Trial 2 (c) Trial 3
(d) Trial 4 (e) Trial 5 (f) Trial 6.



Sensors 2023, 23, 6973 11 of 15

4.3. Analysis of RSSI-Based MEEs

Table 3 shows a breakdown of the mean estimation errors (MEEs) based on the
RSSI distance for each of the six rounds of localization. The MEEs represent the average
difference between the predicted sensor node positions and the ground-truth positions
as established by RSSI’s distance-based measurements. The study discovered that MEEs
vary substantially from experiment to experiment, ranging from 0.12213 to 0.48601 m
which is represented in Figure 7. MEE variations imply that estimated positions vary in
accuracy, to varying degrees. The MEE grows rapidly from Trial 1 to Trial 6, suggesting
that the projected positions deteriorate. Table 3’s MEEs are far closer to reality than those
of Tables 1 and 2, which are based on angles and distances. This suggests that the RSSI
distance-based metrics provide more precision and accuracy in the overall localization
process. However, even with lower MEEs, there is still significant discordance between the
projected and actual positions. This is a critical factor to consider. To increase the accuracy
and reliability of the RSSI distance-based localization strategy, more research, optimization,
and thorough examination of aspects such as measurement errors, ambient circumstances,
and the localization algorithm are required.

Table 3. Data analysis of RSSI distance-based MEEs for six iterations.

Trial Distance (m)

1 0.12213

2 0.17615

3 0.18138

4 0.19792

5 0.24921

6 0.48601

4.4. Comparative Analysis

The distance between sensor and anchor nodes must be measured for network local-
ization. As a result of using this strategy, the network takes on a square shape, with nodes
separated by 100 m along the perimeter. Because there are no fixed sensor nodes present,
mobile sensor nodes are free to traverse the allotted space at their leisure. The network has
fourteen nodes, four of which are fixed and ten of which are mobile. Each sensor node in
the network has the ability to communicate with one of the anchor nodes. These anchor
nodes are deliberately located at each of the network’s four corners. These devices are 90%
accurate in terms of distance estimation, with an error ratio of 0.1 m. This concept is best
illustrated by an accuracy of one metre or near it. Before proceeding with real distance
measurements between sensor nodes, it is important to make a calculation to prove that the
sensor nodes are not evenly distributed. After installing the sensor nodes, the procedure of
collecting MEEs and assessing the findings is repeated several times. This procedure has
been extensively tried and tested; data from six separate experiments on angle, distance,
and RSSI are considered. The MEEs oscillate between 51.3579 m and 55.2470 m, with
respect to angular measurements, MEEs’ distance-based measurements ranged from 2.1474
to 3.6079 m, and MEEs range from 0.12213 to 0.4860 m for RSSI-based measurements, as
depicted in Table 4.

Table 4 shows the mean estimation errors (MEEs) for each of the three measurement
methods—angle of arrival (AOA), time difference of arrival (TDOA), and received signal
strength indication (RSSI). The MEEs illustrate how far the sensor nodes’ estimated locations
differ from where they actually are on the map. The MEEs’ AOA could range from 51.3579 to
55.2470 m. MEE variations can be understood as variances in the dependability of predicted
positions generated from angle-based measurements. The MEEs’ TDOA ranges from 2.1474
to 3.6079 m. These MEEs show the spread of distance-based position estimates based on
time-of-arrival data. The RSSI values of the MEEs range from 0.12213 to 0.48601 m. These
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MEEs depict the errors in estimated positions based on received signal strength indicators
(RSSI). When MEEs estimated using RSSI measurements are compared to MEEs calculated
using AOA and TDOA, it is evident that the former are substantially smaller. This implies
that RSSI-based measurements provide more precision and accuracy during localization.
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Table 4. Data analysis of MEEs for six iterations.

Trial
Distance (m)

AOA TDOA RSSI

1 51.3579 2.1474 0.12213

2 52.2380 2.9743 0.17615

3 53.3379 3.0234 0.18138

4 53.9192 3.1299 0.19792

5 54.1750 3.3555 0.24921

6 55.2470 3.6079 0.48601

5. Conclusions and Future Scope

This article explores and covers the distance-dependent RSSI localization approaches.
After determining the positions of the subsea nodes, the MEEs may be approximated. To
take distance measurements, a network field of one hundred metres on each side and one
hundred metres in total length was required. Mobile sensor nodes were given the freedom
to wander freely throughout the networked space and engage in two-way communication
with one another. The four surviving nodes in the network, known as the anchor nodes,
were the only nodes in the network that did not migrate from their initial position at any
point in time. To gather readings from the MEE, the location of a sensor node was chosen
at random, and the process occurred while the readings were being obtained. A number
of experiments were performed following the arbitrary placement of the sensor nodes;
however, only a subset of these trials were considered for the sake of the baseline scenario.
This is because the experiment began with the arbitrary placement of the sensor nodes.
We carried out research and analysis on a total of six different trial count permutations in
order to compute the MEEs. In terms of angle measurements, the MEEs have a range of
51.3579 to 55.2470 m. The distance-based measurements of the MEEs range from 2.1474 to
3.6079 m, whereas the RSSI-based observations range from 0.12213 to 0.4860 m. When MEEs
calculated with AOA and TDOA are compared to MEEs estimated with RSSI measurements,
it is obvious that the latter are substantially bigger. This implies that RSSI measurements
provide a higher level of precision and accuracy during the localization process. The future
scope involves advancing the understanding and capabilities of distance-dependent RSSI
localization, addressing limitations, and exploring new avenues to achieve higher precision
and accuracy in underwater localization scenarios.
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Abbreviations

Underwater wireless sensor networks (UWSNs)
TDOA majorization-minimization (T-MM)
Majorization-minimization (MM)
Squared position error bound (SPEB)
Global positioning system (GPS)
Infrared (IR)
Changeable transmission power-based sparsity-conscious energy-efficient clustering (CTP-SEEC)
Angle of arrival (AOA)
Time difference of arrival (TDoA)
Received signal strength indicator (RSSI)
Mean estimation error (MEE)
Equivalent Fisher information matrix (EFIM)
Line-of-sight (LOS)
Wireless sensor network (WSN)
Autonomous underwater vehicles (AUVs)
Transmission power level (TPL)
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