Strategies for Bacterial Eradication from Human and Animal Semen Samples: Current Options and Future Alternatives
Abstract
:1. Introduction
2. Antibiotics
3. Antimicrobial Proteins, Biocompounds, Plant Extracts, and Nanoparticles
4. Centrifugation Techniques
5. Non-Thermal Plasma
6. Magnetic-Activated Cell Sorting
7. Microfluidics and Microelectrophoresis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hezavehei, M.; Sharafi, M.; Kouchesfahani, H.M.; Henkel, R.; Agarwal, A.; Esmaeili, V.; Shahverdi, A. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod. BioMed. Online 2018, 37, 327–339. [Google Scholar] [CrossRef]
- Sharma, Y.; Sharma, M. Sperm Cryopreservation: Principles and Biology. J. Infertil. Reprod. Biol. 2020, 8, 43–48. [Google Scholar] [CrossRef]
- Parekh, N.V.; Lundy, S.D.; Vij, S.C. Fertility considerations in men with testicular cancer. Transl. Androl. Urol. 2020, 9, S14–S23. [Google Scholar] [CrossRef]
- Tvrdá, E.; López-Fernández, C.; Sánchez-Martín, P.; Gosálvez, J. Sperm DNA fragmentation in donors and normozoospermic patients attending for a first spermiogram: Static and dynamic assessment. Andrologia 2018, 50, e12986. [Google Scholar] [CrossRef]
- Peris-Frau, P.; Soler, A.J.; Iniesta-Cuerda, M.; Martín-Maestro, A.; Sánchez-Ajofrín, I.; Medina-Chávez, D.A.; Fernández-Santos, M.R.; García-Álvarez, O.; Maroto-Morales, A.; Montoro, V.; et al. Sperm Cryodamage in Ruminants: Understanding the Molecular Changes Induced by the Cryopreservation Process to Optimize Sperm Quality. Int. J. Mol. Sci. 2020, 21, 2781. [Google Scholar] [CrossRef] [Green Version]
- Curry, M.R. Cryopreservation of semen from domestic livestock. Rev. Reprod. 2000, 5, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Fickel, J.; Wagener, A.; Ludwig, A. Semen cryopreservation and the conservation of endangered species. Eur. J. Wildl. Res. 2007, 53, 81–89. [Google Scholar] [CrossRef]
- Foote, R.H. The history of artificial insemination: Selected notes and notables. J. Anim. Sci. 2002, 80, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rusz, A.; Pilatz, A.; Wagenlehner, F.; Linn, T.; Diemer, T.; Schuppe, H.C.; Lohmeyer, J.; Hossain, H.; Weidner, W. Influence of urogenital infections and inflammation on semen quality and male fertility. World J. Urol. 2012, 30, 23–30. [Google Scholar] [CrossRef]
- Pergialiotis, V.; Karampetsou, N.; Perrea, D.N.; Konstantopoulos, P.; Daskalakis, G. The impact of bacteriospermia on semen parameters: A meta-analysis. J. Fam. Reprod. Heal. 2018, 12, 73–83. [Google Scholar]
- Tvrdá, E.; Ďuračka, M.; Benko, F.; Lukáč, N. Bacteriospermia—A formidable player in male subfertility. Open Life Sci. 2022, 17, 1001–1029. [Google Scholar] [CrossRef] [PubMed]
- Fraczek, M.; Hryhorowicz, M.; Gill, K.; Zarzycka, M.; Gaczarzewicz, D.; Jedrzejczak, P.; Bilinska, B.; Piasecka, M.; Kurpisz, M. The effect of bacteriospermia and leukocytospermia on conventional and nonconventional semen parameters in healthy young normozoospermic males. J. Reprod. Immunol. 2016, 118, 18–27. [Google Scholar] [CrossRef]
- Tvrdá, E.; Lovíšek, D.; Gálová, E.; Schwarzová, M.; Kováčiková, E.; Kunová, S.; Žiarovská, J.; Kačániová, M. Possible Implications of Bacteriospermia on the Sperm Quality, Oxidative Characteristics, and Seminal Cytokine Network in Normozoospermic Men. Int. J. Mol. Sci. 2022, 23, 8678. [Google Scholar] [CrossRef] [PubMed]
- Ďuračka, M.; Belić, L.; Tokárová, K.; Žiarovská, J.; Kačániová, M.; Lukáč, N.; Tvrdá, E. Bacterial communities in bovine ejaculates and their impact on the semen quality. Syst. Biol. Reprod. Med. 2021, 67, 438–449. [Google Scholar] [CrossRef]
- Tvrdá, E.; Kačániová, M.; Baláži, A.; Vašíček, J.; Vozaf, J.; Jurčík, R.; Ďuračka, M.; Žiarovská, J.; Kováč, J.; Chrenek, P. The Impact of Bacteriocenoses on Sperm Vitality, Immunological and Oxidative Characteristics of Ram Ejaculates: Does the Breed Play a Role? Animals 2022, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Lenický, M.; Slanina, T.; Kačániová, M.; Galovičová, L.; Petrovičová, M.; Ďuračka, M.; Benko, F.; Kováč, J.; Tvrdá, E. Identification of Bacterial Profiles and Their Interactions with Selected Quality, Oxidative, and Immunological Parameters of Turkey Semen. Animals 2021, 11, 1771. [Google Scholar] [CrossRef]
- Tvrdá, E.; Petrovičová, M.; Benko, F.; Ďuračka, M.; Kováč, J.; Slanina, T.; Galovičová, L.; Žiarovská, J.; Kačániová, M. Seminal Bacterioflora of Two Rooster Lines: Characterization, Antibiotic Resistance Patterns and Possible Impact on Semen Quality. Antibiotics 2023, 12, 336. [Google Scholar] [CrossRef]
- Gonçalves, M.F.M.; Fernandes, Â.R.; Rodrigues, A.G.; Lisboa, C. Microbiome in Male Genital Mucosa (Prepuce, Glans, and Coronal Sulcus): A Systematic Review. Microorganisms 2022, 10, 2312. [Google Scholar] [CrossRef]
- Zuber, A.; Peric, A.; Pluchino, N.; Baud, D.; Stojanov, M. Human Male Genital Tract Microbiota. Int. J. Mol. Sci. 2023, 24, 6939. [Google Scholar] [CrossRef]
- Onywera, H.; Williamson, A.L.; Ponomarenko, J.; Meiring, T.L. The Penile Microbiota in Uncircumcised and Circumcised Men: Relationships With HIV and Human Papillomavirus Infections and Cervicovaginal Microbiota. Front. Med. 2020, 7, 383. [Google Scholar] [CrossRef]
- Sannat, C.; Nair, A.; Sahu, S.B.; Sahasrabudhe, S.A.; Kumar, A.; Gupta, A.K.; Shende, R.K. Critical sources of bacterial contamination and adoption of standard sanitary protocol during semen collection and processing in Semen Station. Vet. World 2015, 8, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.L.; Guu, H.F.; Yi, Y.C.; Kung, H.F.; Chang, J.C.; Chen, Y.F.; Chen, L.Y.; Chen, M.J. Contamination of ART culture Media-The role of semen and strategies for prevention. Taiwan. J. Obstet. Gynecol. 2021, 60, 523–525. [Google Scholar] [CrossRef]
- Bustani, G.S.; Baiee, F.H. Semen extenders: An evaluative overview of preservative mechanisms of semen and semen extenders. Vet. World 2021, 14, 1220–1233. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.M.; Wallgren, M. Alternatives to antibiotics in semen extenders: A review. Pathogens 2014, 3, 934–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedwell, D.B. Effect of low temperature on microbial growth: Lowered affinity for substrates limits growth at low temperature. FEMS Microbiol. Ecol. 1999, 30, 101–111. [Google Scholar] [CrossRef]
- Levy, R.; Grattard, F.; Maubon, I.; Ros, A.; Pozzetto, B. Bacterial risk and sperm cryopreservation. Andrologia 2004, 36, 282–285. [Google Scholar] [CrossRef]
- Eini, F.; Kutenaei, M.A.; Zareei, F.; Dastjerdi, Z.S.; Shirzeyli, M.H.; Salehi, E. Effect of bacterial infection on sperm quality and DNA fragmentation in subfertile men with leukocytospermia. BMC Mol. Cell. Biol. 2021, 22, 42. [Google Scholar] [CrossRef]
- Gholami, M.; Moosazadeh, M.; Haghshenash, M.R.; Jafarpour, H.; Mousavi, T. Evaluation of the Presence of Bacterial and Viral Agents in the Semen of Infertile Men: A Systematic and Meta-Analysis Review Study. Front. Med. 2022, 9, 835254. [Google Scholar] [CrossRef]
- Rennemeier, C.; Frambach, T.; Hennicke, F.; Dietl, J.; Staib, P. Microbial quorum-sensing molecules induce acrosome loss and cell death in human spermatozoa. Infect. Immun. 2009, 77, 4990–4997. [Google Scholar] [CrossRef] [Green Version]
- Fraczek, M.; Piasecka, M.; Gaczarzewicz, D.; Szumala-Kakol, A.; Kazienko, A.; Lenart, S.; Laszczynska, M.; Kurpisz, M. Membrane stability and mitochondrial activity of human-ejaculated spermatozoa during in vitro experimental infection with Escherichia coli, Staphylococcus haemolyticus and Bacteroides ureolyticus. Andrologia 2012, 44, 315–329. [Google Scholar] [CrossRef]
- Fraczek, M.; Kurpisz, M. Mechanisms of the harmful effects of bacterial semen infection on ejaculated human spermatozoa: Potential inflammatory markers in semen. Folia Histochem. Cytobiol. 2015, 53, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Tvrdá, E.; Bučko, O.; Rojková, K.; Ďuračka, M.; Kunová, S.; Kováč, J.; Benko, F.; Kačániová, M. The Efficiency of Selected Extenders against Bacterial Contamination of Boar Semen in a Swine Breeding Facility in Western Slovakia. Animals 2021, 11, 3320. [Google Scholar] [CrossRef] [PubMed]
- Givens, M.D. Review: Risks of disease transmission through semen in cattle. Animal 2018, 12, s165–s171. [Google Scholar] [CrossRef] [Green Version]
- Samper, J.C.; Tibary, A. Disease transmission in horses. Theriogenology 2006, 66, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Martins Pereira, E.C.; Silva, A.; da Costa, E.P.; Real Pereir, C.E. Success in Artificial Insemination, 1st ed.; Lemma, A., Ed.; InTech: London, UK, 2013; pp. 117–139. [Google Scholar]
- Bielanski, A.; Bergeron, H.; Lau, P.C.; Devenish, J. Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology 2003, 46, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Krissi, H.; Orvieto, R.; Ashkenazi, J.; Gilboa, Y.; Shalev, J.; Moscovitch, I.; Bar-Hava, I. Effect of contaminated preprocessed semen on fertilization rate and embryo quality in assisted reproductive techniques. Gynecol. Endocrinol. 2004, 18, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Flasche, S.; Atkins, K.E. Balancing Benefits and Risks of Antibiotic Use. J. Infect. Dis. 2018, 218, 1351–1353. [Google Scholar] [CrossRef] [Green Version]
- Council Directive 88/407/EEC of 14 June 1988 Laying Down the Animal Health Requirements Applicable to Intra-Community Trade in and Imports of Deep-Frozen Semen of Domestic Animals of the Bovine Species. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31988L0407 (accessed on 15 June 2023).
- Council Directive 90/429/EEC of 26 June 1990 Laying Down the Animal Health Requirements Applicable to Intra-Community Trade in and Imports of Semen of Domestic Animals of the Porcine Species. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:31990L0429 (accessed on 15 June 2023).
- Council Directive 92/65/EEC of 13 July 1992 Laying Down Animal Health Requirements Governing Trade in and Imports Into the Community of Animals, Semen, Ova and Embryos not Subject to Animal Health Requirements Laid Down in Specific Community Rules Referred to in Annex A (I) to Directive 90/425/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31992L0065 (accessed on 15 June 2023).
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; WHO Press: Geneva, Switzerland, 2021; 276p. [Google Scholar]
- Santos, C.S.; Silva, A.R. Current and alternative trends in antibacterial agents used in mammalian semen technology. Anim. Reprod. 2020, 17, e20190111. [Google Scholar] [CrossRef] [Green Version]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Santos, C.S.; Campos, L.B.; Praxedes, É.C.G.; Moreira, S.S.J.; Souza-Júnior, J.B.F.; Comizzoli, P.; Feijó, F.M.C.; Silva, A.R. Influence of antibiotics on bacterial load and sperm parameters during short-term preservation of collared peccary semen. Anim. Reprod. 2021, 18, e20210021. [Google Scholar] [CrossRef]
- Tímermans, A.; Vázquez, R.; Otero, F.; Gosálvez, J.; Johnston, S.; Fernández, J.L. Antibiotic toxicity on human spermatozoa assessed using the sperm DNA fragmentation dynamic assay. Andrologia 2022, 54, e14328. [Google Scholar] [CrossRef] [PubMed]
- Anel-Lopez, L.; Riesco, M.F.; Montes-Garrido, R.; Neila-Montero, M.; Boixo, J.C.; Chamorro, C.; Ortega-Ferrusola, C.; Carvajal, A.; Altonaga, J.R.; de Paz, P.; et al. Comparing the Effect of Different Antibiotics in Frozen-Thawed Ram Sperm: Is It Possible to Avoid Their Addition? Front. Vet. Sci. 2021, 8, 656937. [Google Scholar] [CrossRef]
- Olana, S.; Mazzilli, R.; Santino, I.; Martinelli, D.; Zamponi, V.; Macera, M.; Salerno, G.; Mazzilli, F.; Faggiano, A.; Gianfrilli, D. Sperm culture and bacterial susceptibility to antibiotics in a large andrological population: Prevalence and impact on seminal parameters. Int. Microbiol. 2023, 26, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Faisal, A.J.; Salman, H.A. Determination of Semen Quality and Antibacterial Susceptibility Pattern of Bacteria Isolated from Semen of Iraqi Subjects. Microbiol. Biotechnol. Lett. 2021, 49, 587–593. [Google Scholar] [CrossRef]
- Al-Jebouri, M.M.; Mdish, S.A. Tracing of antibiotic-resistant bacteria isolated from semen of Iraqi males with primary infertility. Open J. Urol. 2019, 9, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Isaiah, I.N.; Nche, B.T.; Nwagu, I.G.; Nnanna, I.I. Current studies on bacteriospermia the leading cause of male infertility: A protégé and potential threat towards mans extinction. N. Am. J. Med. Sci. 2011, 3, 562–564. [Google Scholar] [CrossRef]
- Machen, G.L.; Bird, E.T.; Brown, M.L.; Ingalsbe, D.A.; East, M.M.; Reyes, M.; Kuehl, T.J. Time trends for bacterial species and resistance patterns in semen in patients undergoing evaluation for male infertility. Bayl. Univ. Med. Cent. Proc. 2018, 31, 165–167. [Google Scholar] [CrossRef] [Green Version]
- Goularte, K.L.; Voloski, F.L.S.; Redú, J.F.M.; Ferreira, C.E.R.; Vieira, A.D.; Duval, E.H.; Mondadori, R.G.; Lucia, T., Jr. Antibiotic resistance in microorganisms isolated in a bull semen stud. Reprod. Domest. Anim. 2020, 55, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.M.; Holman, D.B.; Schmidt, K.N.; Crouse, M.S.; Dahlen, C.R.; Cushman, R.A.; Snider, A.P.; McCarthy, K.L.; Amat, S. A Longitudinal Characterization of the Seminal Microbiota and Antibiotic Resistance in Yearling Beef Bulls Subjected to Different Rates of Gain. Microbiol. Spectr. 2023, 11, e0518022. [Google Scholar] [CrossRef]
- Yániz, J.L.; Marco-Aguado, M.A.; Mateos, J.A.; Santolaria, P. Bacterial contamination of ram semen, antibiotic sensitivities, and effects on sperm quality during storage at 15 °C. Anim. Reprod. Sci. 2010, 122, 142–149. [Google Scholar] [CrossRef]
- Costinar, L.; Herman, V.; Pitoiu, E.; Iancu, I.; Degi, J.; Hulea, A.; Pascu, C. Boar Semen Contamination: Identification of Gram-Negative Bacteria and Antimicrobial Resistance Profile. Animals 2021, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, C.; Cabassi, C.S.; Morini, G.; Taddei, S.; Bettini, R.; Bigliardi, E.; Di Ianni, F.; Sabbioni, A.; Parmigiani, E. Boar Semen Bacterial Contamination in Italy and Antibiotic Efficacy in a Modified Extender. Ital. J. Anim. Sci. 2014, 13, 3082. [Google Scholar] [CrossRef] [Green Version]
- Alkali, I.M.; Asuku, S.O.; Umar, M.B.; Abba, A.; Mustapha, A.; Bukar, M.M.; Waziri, M.A. Microbial Contaminants in Fresh and Extended Turkey Semen and their Sensitivity to Antibiotics. Nig. Vet. J. 2020, 41, 1–6. [Google Scholar] [CrossRef]
- Maasjost, J.; Mühldorfer, K.; de Jäckel, S.C.; Hafez, H.M. Antimicrobial Susceptibility Patterns of Enterococcus faecalis and Enterococcus faecium Isolated from Poultry Flocks in Germany. Avian Dis. 2015, 59, 143–148. [Google Scholar] [CrossRef]
- Rakha, B.A.; Zafar, Z.; Ansari, M.S.; Akhter, S.; Qadeer, S.; Akhter, A.; Waseem, K.; Santiago-Moreno, J. Influence of Bacterial Contamination and Antibiotic Sensitivity on Cryopreserved Sperm Quality of Indian Red Jungle Fowl. Biopreservation Biobanking 2023. Advance online publication. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, H.; Lu, H.; Li, G.; Huang, Q. LAMP: A database linking antimicrobial peptides. PLoS ONE 2013, 8, e66557. [Google Scholar] [CrossRef] [Green Version]
- Epand, R.M.; Vogel, H.J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta. 1999, 1462, 11–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef]
- Hensel, B.; Jakop, U.; Scheinpflug, K.; Mühldorfer, K.; Schröter, F.; Schäfer, J.; Greber, K.; Jung, M.; Schulze, M. Low temperature preservation of porcine semen: Influence of short antimicrobial lipopeptides on sperm quality and bacterial load. Sci. Rep. 2020, 10, 13225. [Google Scholar] [CrossRef]
- Brender, J.R.; McHenry, A.J.; Ramamoorthy, A. Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front. Immunol. 2012, 3, 195. [Google Scholar] [CrossRef] [Green Version]
- Bussalleu, E.; Sancho, S.; Briz, M.D.; Yeste, M.; Bonet, S. Do antimicrobial peptides PR-39, PMAP-36 and PMAP-37 have any effect on bacterial growth and quality of liquid-stored boar semen? Theriogenology 2017, 89, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Dathe, M.; Waberski, D.; Müller, K. Liquid storage of boar semen: Current and future perspectives on the use of cationic antimicrobial peptides to replace antibiotics in semen extenders. Theriogenology 2016, 85, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, T.; Chetia, M.; Chatterjee, S. Antimicrobial peptides and proteins: From nature’s reservoir to the laboratory and beyond. Front. Chem. 2021, 9, 691532. [Google Scholar] [CrossRef] [PubMed]
- Moretti, E.; Signorini, C.; Corsaro, R.; Giamalidi, M.; Collodel, G. Human Sperm as an In Vitro Model to Assess the Efficacy of Antioxidant Supplements during Sperm Handling: A Narrative Review. Antioxidants 2023, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Tvrdá, E.; Debacker, M.; Ďuračka, M.; Kováč, J.; Bučko, O. Quercetin and Naringenin Provide Functional and Antioxidant Protection to Stored Boar Semen. Animals 2020, 10, 1930. [Google Scholar] [CrossRef] [PubMed]
- Baňas, Š.; Benko, F.; Ďuračka, M.; Lukáč, N.; Tvrdá, E. Epicatechin Prevents Cryocapacitation of Bovine Spermatozoa through Antioxidant Activity and Stabilization of Transmembrane Ion Channels. Int. J. Mol. Sci. 2023, 24, 2510. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.; Sohail, T.; Kang, Y.; Sun, X.; Li, Y. Chlorogenic Acid Improves Quality of Chilled Ram Sperm by Mitigating Oxidative Stress. Animals 2022, 12, 163. [Google Scholar] [CrossRef]
- Tvrdá, E.; Petrovičová, M.; Benko, F.; Ďuračka, M.; Galovičová, L.; Slanina, T.; Kačániová, M. Curcumin Attenuates Damage to Rooster Spermatozoa Exposed to Selected Uropathogens. Pharmaceutics 2023, 15, 65. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Mazurova, J.; Kukla, R.; Rozkot, M.; Lustykova, A.; Slehova, E.; Sleha, R.; Opletal, L. Use of natural substances for boar semen decontamination. Vet. Med. 2015, 60, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Kou, Z.; Wang, C.; Gao, L.; Chu, G.; Yang, G.; Pang, W. Icariin improves pig sperm quality through antioxidant and antibacterial effects during liquid storage at 17 C. Livestock Sci. 2022, 256, 104827. [Google Scholar] [CrossRef]
- Cojkic, A.; Hansson, I.; Johannisson, A.; Morrell, J.M. Effect of Some Plant-Based Substances on Microbial Content and Sperm Quality Parameters of Bull Semen. Int. J. Mol. Sci. 2023, 24, 3435. [Google Scholar] [CrossRef]
- Elmi, A.; Prosperi, A.; Zannoni, A.; Bertocchi, M.; Scorpio, D.G.; Forni, M.; Foni, E.; Bacci, M.L.; Ventrella, D. Antimicrobial capabilities of non-spermicidal concentrations of tea tree (Melaleuca alternifolia) and rosemary (Rosmarinus officinalis) essential oils on the liquid phase of refrigerated swine seminal doses. Res. Vet. Sci. 2019, 127, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Tsakmakidis, I.A.; Samaras, T.; Anastasiadou, S.; Basioura, A.; Ntemka, A.; Michos, I.; Simeonidis, K.; Karagiannis, I.; Tsousis, G.; Angelakeris, M.; et al. Iron Oxide Nanoparticles as an Alternative to Antibiotics Additive on Extended Boar Semen. Nanomaterials 2020, 10, 1568. [Google Scholar] [CrossRef] [PubMed]
- Tsakmakidis, I.A.; Samaras, T.; Anastasiadou, S.; Basioura, A.; Ntemka, A.; Michos, I.; Simeonidis, K.; Karagiannis, I.; Tsousis, G.; Angelakeris, M.; et al. Toxic and Microbiological Effects of Iron Oxide and Silver Nanoparticles as Additives on Extended Ram Semen. Animals 2021, 11, 1011. [Google Scholar] [CrossRef]
- Yousef, M.I.; Abd, H.H.; Helmy, Y.M.; Kamel, M.A. Synergistic effect of curcumin and chitosan nanoparticles on nano-hydroxyapatite-induced reproductive toxicity in rats. Environ. Sci. Pollut. Res. Int. 2021, 28, 9362–9376. [Google Scholar] [CrossRef]
- Viudes-de-Castro, M.P.; Marco-Jimenez, F.; Vicente, J.S.; Marin, C. Antibacterial Activity of Some Molecules Added to Rabbit Semen Extender as Alternative to Antibiotics. Animals 2021, 11, 1178. [Google Scholar] [CrossRef]
- Björndahl, L.; Mortimer, D.; Barratt, C.; Castilla, J.; Menkveld, R.; Kvist, U.; Alvarez, J.G.; Haugen, T. A Practical Guide to Basic Laboratory Andrology, 1st ed.; Cambridge University Press: Cambridge, UK, 2010; p. 336. [Google Scholar]
- Friedman, A.J.; Juneau-Norcross, M.; Sedensky, B. Antisperm antibody production following intrauterine insemination. Hum. Reprod. 1991, 6, 1125–1128. [Google Scholar] [CrossRef]
- Mortimer, D. Sperm preparation techniques and iatrogenic failures of in-vitro fertilization. Hum. Reprod. 1991, 6, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, M.; Baker, G. Assessment and Preparation of Semen for In Vitro Fertilization. In Clinical In Vitro Fertilization, 1st ed.; Wood, C., Trounson, A., Eds.; Springer London: London, UK, 1984; pp. 83–97. [Google Scholar] [CrossRef]
- Henkel, R.R.; Schill, W.B. Sperm preparation for ART. Reprod. Biol. Endocrinol. 2003, 1, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Hasani, S.; Küpker, W.; Baschat, A.A.; Sturm, R.; Bauer, O.; Diedrich, C.; Diedrich, K. Mini-swim-up: A new technique of sperm preparation for intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 1995, 12, 428–433. [Google Scholar] [CrossRef]
- Volpes, A.; Sammartano, F.; Rizzari, S.; Gullo, S.; Marino, A.; Allegra, A. The pellet swim-up is the best technique for sperm preparation during in vitro fertilization procedures. J. Assist. Reprod. Genet. 2016, 33, 765–770. [Google Scholar] [CrossRef]
- Arias, M.E.; Andara, K.; Briones, E.; Felmer, R. Bovine sperm separation by Swim-up and density gradients (Percoll and BoviPure): Effect on sperm quality, function and gene expression. Reprod Biol. 2017, 17, 126–132. [Google Scholar] [CrossRef]
- Magdanz, V.; Boryshpolets, S.; Ridzewski, C.; Eckel, B.; Reinhardt, K. The motility-based swim-up technique separates bull sperm based on differences in metabolic rates and tail length. PLoS ONE 2019, 10, e0223576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, N.C.; Diniz, S.A.; Viegas, R.N.; Arigoni, A.L.; Freitas, M.M.; Lana, Â.Q.; Lagares, M.A. Action of swim-up and caffeine on equine frozen sperm. Anim. Reprod. 2022, 19, e20220056. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jiang, L.; Wang, H.; Quan, W.; Yang, L.; Ou, C.; Sun, L. Elimination of bacteria from semen using a combination of density gradient centrifugation and swim-up. J. Men’s Health 2022, 18, 124. [Google Scholar] [CrossRef]
- Oshio, S.; Kaneko, S.; Iizuka, R.; Mohri, H. Effects of gradient centrifugation on human sperm. Arch. Androl. 1987, 19, 85–93. [Google Scholar] [CrossRef]
- Lindahl, P.E.; Kihlström, J.E. Alterations in specific gravity during ripening of bull spermatozoa. J. Dairy. Sci. 1952, 35, 393–402. [Google Scholar] [CrossRef]
- Lavon, U.; Volcani, R.; Danon, D. The specific gravity of bull spermatozoa. J. Reprod. Fert. 1966, 11, 447–449. [Google Scholar] [CrossRef] [Green Version]
- Hough, S.R.; Foote, R.H. Effect of density gradient osmolality on specific gravity of bull sperm and their separation, but not on the basis of sex. J. Rep. Develop. 2002, 48, 399–407. [Google Scholar] [CrossRef]
- Sharma, R.; Agarwal, A. Sperm Processing and Selection. In Male Infertility, 1st ed.; Parekattil, S., Esteves, S., Agarwal, A., Eds.; Springer: Cham, Germany, 2020; pp. 647–659. [Google Scholar]
- Ali, A.H.; Ajina, T.; Ali, M.B.; Mehdi, M. Efficacy of density gradient centrifugation technique (DGC) in enhancing sperm cell DNA quality for assisted reproductive technique. Middle East Fertil. Soc. J. 2022, 27, 22. [Google Scholar] [CrossRef]
- Nicholson, C.M.; Abramsson, L.; Holm, S.E.; Bjurulf, E. Bacterial contamination and sperm recovery after semen preparation by density gradient centrifugation using silane-coated silica particles at different g forces. Hum. Reprod. 2000, 15, 662–666. [Google Scholar] [CrossRef] [Green Version]
- Ďuračka, M.; Husarčíková, K.; Jančov, M.; Galovičová, L.; Kačániová, M.; Lukáč, N.; Tvrdá, E. Staphylococcus-Induced Bacteriospermia In Vitro: Consequences on the Bovine Spermatozoa Quality, Extracellular Calcium and Magnesium Content. Animals 2021, 11, 3309. [Google Scholar] [CrossRef] [PubMed]
- Gloria, A.; Carluccio, A.; Wegher, L.; Robbe, D.; Befacchia, G.; Contri, A. Single and double layer centrifugation improve the quality of cryopreserved bovine sperm from poor quality ejaculates. J. Anim. Sci. Biotechnol. 2016, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrell, J.M.; Klein, C.; Lundeheim, N.; Erol, E.; Troedsson, M.H.T. Removal of bacteria from stallion semen by colloid centrifugation. Anim. Reprod. Sci. 2014, 145, 47–53. [Google Scholar] [CrossRef]
- Fourie, J.; Loskutoff, N.; Huyser, C. Elimination of bacteria from human semen during sperm preparation using density gradient centrifugation with a novel tube insert. Andrologia 2012, 44, 513–517. [Google Scholar] [CrossRef] [Green Version]
- Morrell, J.M.; Wallgren, M. Colloid centrifugation of boar semen. Reprod. Domest. Anim. 2011, 46, 18–22. [Google Scholar] [CrossRef]
- Guimarães, T.; Lopes, G.; Pinto, M.; Silva, E.; Miranda, C.; Correia, M.J.; Damásio, L.; Thompson, G.; Rocha, A. Colloid centrifugation of fresh stallion semen before cryopreservation decreased microorganism load of frozen-thawed semen without affecting seminal kinetics. Theriogenology 2015, 83, 186–191. [Google Scholar] [CrossRef]
- Crespo, F.; Gutiérrez-Cepeda, L.; Gosalvez, J.; Serres, C.; Johnston, S.D. Colloidal centrifugation of stallion semen results in a reduced rate of sperm DNA fragmentation. Reprod. Domest. Anim. 2013, 48, e23–e25. [Google Scholar] [CrossRef] [PubMed]
- Muratori, M.; Tarozzi, N.; Carpentiero, F.; Danti, S.; Perrone, F.M.; Cambi, M.; Casini, A.; Azzari, C.; Boni, L.; Maggi, M.; et al. Sperm selection with density gradient centrifugation and swim up: Effect on DNA fragmentation in viable spermatozoa. Sci. Rep. 2019, 9, 7492. [Google Scholar] [CrossRef] [Green Version]
- Zini, A.; Finelli, A.; Phang, D.; Jarvi, K. Influence of semen processing technique on human sperm DNA integrity. Urology 2000, 56, 1081–1084. [Google Scholar] [CrossRef]
- Todorova, Y.; Benova, E.; Marinova, P.; Yotinov, I.; Bogdanov, T.; Topalova, Y. Non-Thermal Atmospheric Plasma for Microbial Decontamination and Removal of Hazardous Chemicals: An Overview in the Circular Economy Context with Data for Test Applications of Microwave Plasma Torch. Processes 2022, 10, 554. [Google Scholar] [CrossRef]
- Gupta, T.T.; Ayan, H. Application of Non-Thermal Plasma on Biofilm: A Review. Appl. Sci. 2019, 9, 3548. [Google Scholar] [CrossRef] [Green Version]
- Marinova, P.; Benova, E.; Todorova, Y.; Topalova, Y.; Yotinov, I.; Atanasova, M.; Krcma, F. Surface-wave-sustained plasma torch for water treatment. J. Phys. Conf. Ser. 2018, 982, 012009. [Google Scholar] [CrossRef]
- Jha, N.; Ryu, J.J.; Choi, E.H.; Kaushik, N.K. Generation and role of reactive oxygen and nitrogen species induced by plasma, lasers, chemical agents, and other systems in dentistry. Oxid. Med. Cell. Longev. 2017, 2017, 7542540. [Google Scholar] [CrossRef] [PubMed]
- Graves, D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012, 45, 263001. [Google Scholar] [CrossRef]
- Hippler, R.; Kersten, H.; Schmidt, M.; Schoenbach, K.H. Low Temperature Plasmas: Fundamentals, Technologies and Techniques, 2nd ed.; Wiley-VCH: Berlin, Germany, 2008; p. 945. [Google Scholar]
- Stoffels, E.; Sakiyama, Y.; Graves, D.B. Cold atmospheric plasma: Charged species and their interactions with cells and tissues. IEEE Trans. Plasma Sci. 2008, 36, 1441–1457. [Google Scholar] [CrossRef]
- Laroussi, M. Low-Temperature Plasmas for Medicine? IEEE Trans. Plasma Sci. 2009, 37, 714–725. [Google Scholar] [CrossRef]
- Kogelschatz, U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 2003, 23, 1–46. [Google Scholar] [CrossRef]
- Ehlbeck, J.; Schnabel, U.; Polak, M.; Winter, J.; Von Woedtke, T.; Brandenburg, R.; Von dem Hagen, T.; Weltmann, K.D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D Appl. Phys. 2010, 44, 13002. [Google Scholar] [CrossRef] [Green Version]
- Kogelschatz, U. Atmospheric-pressure plasma technology. Plasma Phys. Control. Fusion 2004, 46, B63. [Google Scholar] [CrossRef]
- Winter, J.; Brandenburg, R.; Weltmann, K.D. Atmospheric pressure plasma jets: An overview of devices and new directions. Plasma Sources Sci. Technol. 2015, 24, 64001. [Google Scholar] [CrossRef]
- Isbary, G.; Shimizu, T.; Li, Y.-F.; Stolz, W.; Thomas, H.M.; Morfill, G.E.; Zimmermann, J.L. Cold atmospheric plasma devices for medical issues. Expert Rev. Med. Devices 2013, 10, 367–377. [Google Scholar] [CrossRef]
- Ayan, H.; Staack, D.; Fridman, G.; Gutsol, A.; Mukhin, Y.; Starikovskii, A.; Fridman, A.; Friedman, G. Application of nanosecond-pulsed dielectric barrier discharge for biomedical treatment of topographically non-uniform surfaces. J. Phys. D Appl. Phys. 2009, 42, 125202. [Google Scholar] [CrossRef]
- Isbary, G.; Stolz, W.; Shimizu, T.; Monetti, R.; Bunk, W.; Schmidt, H.-U.; Morfill, G.E.; Klämpfl, T.G.; Steffes, B.; Thomas, H.M. Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: Results of an open retrospective randomized controlled study in vivo. Clin. Plasma Med. 2013, 1, 25–30. [Google Scholar] [CrossRef]
- Kong, M.G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; Van Dijk, J.; Zimmermann, J.L. Plasma medicine: An introductory review. New J. Phys. 2009, 11, 115012. [Google Scholar] [CrossRef]
- Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A.B.; Vasilets, V.N.; Fridman, A. Applied plasma medicine. Plasma Process. Polym. 2008, 5, 503–533. [Google Scholar] [CrossRef]
- Moreau, M.; Orange, N.; Feuilloley, M.G.J. Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnol. Adv. 2008, 26, 610–617. [Google Scholar] [CrossRef]
- Hoffmann, C.; Berganza, C.; Zhang, J. Cold Atmospheric Plasma: Methods of production and application in dentistry and oncology. Med. Gas Res. 2013, 3, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, J.; Sun, K.; Liang, Y.; Sun, P.; Yang, X.; Wang, J.; Zhang, J.; Zhu, W.; Fang, J.; Becker, K.H. Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. J. Endod. 2013, 39, 105–110. [Google Scholar] [CrossRef]
- Molnar, I.; Papp, J.; Simon, A.; Anghel, S.D. Deactivation of Streptococcus mutans biofilms on a tooth surface using the dielectric barrier discharge at atmospheric pressure. Plasma Sci. Technol. 2013, 15, 535. [Google Scholar] [CrossRef] [Green Version]
- Marchal, F.; Robert, H.; Merbahi, N.; Fontagne-Faucher, C.; Yousfi, M.; Romain, C.E.; Eichwald, O.; Rondel, C.; Gabriel, B. Inactivation of Gram-positive biofilms by low-temperature plasma jet at atmospheric pressure. J. Phys. D Appl. Phys. 2012, 45, 345202. [Google Scholar] [CrossRef]
- Joshi, S.G.; Paff, M.; Friedman, G.; Fridman, G.; Fridman, A.; Brooks, A.D. Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. Am. J. Infect. Control 2010, 38, 293–301. [Google Scholar] [CrossRef]
- Ziuzina, D.; Patil, S.; Cullen, P.J.; Boehm, D.; Bourke, P. Dielectric barrier discharge atmospheric cold plasma for inactivation of Pseudomonas aeruginosa biofilms. Plasma Med. 2014, 4, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.; Liu, D.; Xiang, Q.; Ahn, J.; Chen, S.; Ye, X.; Ding, T. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 2017, 75, 83–91. [Google Scholar] [CrossRef]
- Laroussi, M. Low temperature plasma-based sterilization: Overview and state-of-the-art. Plasma Process. Polym. 2005, 2, 391–400. [Google Scholar] [CrossRef]
- Maisch, T.; Shimizu, T.; Isbary, G.; Heinlin, J.; Karrer, S.; Klämpfl, T.G.; Li, Y.-F.; Morfill, G.; Zimmermann, J.L. Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma. Appl. Environ. Microbiol. 2012, 78, 4242–4247. [Google Scholar] [CrossRef] [Green Version]
- Mazhir, S.N.; Al-Ahmed, H.I.; Hanon, M.S.; Ali, A.H. Influence of cold plasma on sperm motility and oxidative stress in patient with asthenospermia. Biosci. Res. 2019, 16, 480–484. [Google Scholar] [CrossRef]
- Tvrdá, E.; Lovíšek, D.; Kyzek, S.; Kováčik, D.; Gálová, E. The Effect of Non-Thermal Plasma on the Structural and Functional Characteristics of Human Spermatozoa. Int. J. Mol. Sci. 2021, 22, 4979. [Google Scholar] [CrossRef]
- Zhang, J.J.; Do, H.L.; Chandimali, N.; Lee, S.B.; Mok, Y.S.; Kim, N.; Kim, S.B.; Kwon, T.; Jeong, D.K. Non-thermal plasma treatment improves chicken sperm motility via the regulation of demethylation levels. Sci. Rep. 2018, 8, 7576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunewald, S.; Paasch, U.; Glander, H.J. Enrichment of non-apoptotic human spermatozoa after cryopreservation by immunomagnetic cell sorting. Cell Tissue Bank. 2001, 2, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, S.; Paasch, U.; Said, T.M.; Rasch, M.; Agarwal, A.; Glander, H.J. Magnetic-activated cell sorting before cryopreservation preserves mitochondrial integrity in human spermatozoa. Cell Tissue Bank. 2006, 7, 99–104. [Google Scholar] [CrossRef]
- Said, T.M.; Grunewald, S.; Paasch, U.; Glander, H.J.; Baumann, T.; Kriegel, C.; Li, L.; Agarwal, A. Advantage of combining magnetic cell separation with sperm preparation techniques. Reprod. BioMed. Online 2005, 10, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Sar-Shalom, V.; Melendez Sivira, Y.; Carreras, R.; Checa, M.A. Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: A systematic review and meta-analysis. J. Assist. Reprod. Genet. 2013, 30, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods 1995, 184, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Glander, H.J.; Schaller, J. Binding of annexin V to plasma membranes of human spermatozoa: A rapid assay for detection of membrane changes after cryostorage. Mol. Hum. Reprod. 1999, 5, 109–115. [Google Scholar] [CrossRef]
- Makker, K.; Agarwal, A.; Sharma, R.K. Magnetic activated cell sorting (MACS): Utility in assisted reproduction. Indian J. Exp. Biol. 2008, 46, 491–497. [Google Scholar]
- Aziz, N.; Buchan, I.; Taylor, C.; Kingsland, C.R.; Lewis-Jones, I. The sperm deformity index: A reliable predictor of the outcome of oocyte fertilization in vitro. Fertil. Steril. 1996, 66, 1000–1008. [Google Scholar] [CrossRef]
- Aziz, N.; Said, T.; Paasch, U.; Agarwal, A. The relationship between human sperm apoptosis, morphology and the sperm deformity index. Hum. Reprod. 2007, 22, 1413–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, T.; Agarwal, A.; Grunewald, S.; Rasch, M.; Baumann, T.; Kriegel, C.; Li, L.; Glander, H.J.; Thomas, A.J., Jr.; Paasch, U. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: An in vitro model. Biol. Reprod. 2006, 74, 530–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunewald, S.; Reinhardt, M.; Blumenauer, V.; Said, T.M.; Agarwal, A.; Abu Hmeidan, F.; Glander, H.J.; Paasch, U. Increased sperm chromatin decondensation in selected nonapoptotic spermatozoa of patients with male infertility. Fertil. Steril. 2009, 92, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Dirican, E.K.; Ozgün, O.D.; Akarsu, S.; Akin, K.O.; Ercan, O.; Uğurlu, M.; Camsari, C.; Kanyilmaz, O.; Kaya, A.; Unsal, A. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J. Assist. Reprod. Genet. 2008, 25, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Said, T.M.; Grunewald, S.; Paasch, U.; Rasch, M.; Agarwal, A.; Glander, H.J. Effects of magnetic-activated cell sorting on sperm motility and cryosurvival rates. Fertil. Steril. 2005, 83, 1442–1446. [Google Scholar] [CrossRef]
- Vaughan, D.A.; Sakkas, D. Sperm selection methods in the 21st century. Biol. Reprod. 2019, 101, 1076–1082. [Google Scholar] [CrossRef]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef]
- Cho, B.S.; Schuster, T.G.; Zhu, X.; Chang, D.; Smith, G.D.; Takayama, S. Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 2003, 75, 1671–1675. [Google Scholar] [CrossRef]
- Schuster, T.G.; Cho, B.; Keller, L.M.; Takayama, S.; Smith, G.D. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod. Biomed. Online 2003, 7, 75–81. [Google Scholar] [CrossRef]
- Ainsworth, C.; Nixon, B.; Aitken, R.J. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum. Reprod. 2005, 20, 2261–2270. [Google Scholar] [CrossRef] [Green Version]
- Shirota, K.; Yotsumoto, F.; Itoh, H.; Obama, H.; Hidaka, N.; Nakajima, K.; Miyamoto, S. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil. Steril. 2016, 105, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohta, A.T.; Garcia, M.; Valley, J.K.; Banie, L.; Hsu, H.Y.; Jamshidi, A.; Neale, S.L.; Lue, T.; Wu, M.C. Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers. Lab Chip 2010, 10, 3213–3217. [Google Scholar] [CrossRef]
- Zhang, X.; Khimji, I.; Gurkan, U.A.; Safaee, H.; Catalano, P.N.; Keles, H.O.; Kayaalp, E.; Demirci, U. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab Chip 2011, 11, 2535–2540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, R.; Xie, L.; Han, C.; Su, K.; Qiu, T.; Wang, L.; Huang, G.; Xing, W.; Qiao, J.; Wang, J.; et al. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal. Chem. 2011, 83, 2964–2970. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Ma, R.; Han, C.; Su, K.; Zhang, Q.; Qiu, T.; Wang, L.; Huang, G.; Qiao, J.; Wang, J.; et al. Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin. Chem. 2010, 56, 1270–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, Y.-J.; Maeng, J.-H.; Lee, B.-C.; Lee, S.; Hwang, S.Y.; Ahn, Y. Separation of progressive motile sperm from mouse semen using on-chip chemotaxis. Anal. Sci. 2012, 28, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Eamer, L.; Vollmer, M.; Nosrati, R.; San Gabriel, M.C.; Zeidan, K.; Zini, A.; Sinton, D. Turning the corner in fertility: High DNA integrity of boundary-following sperm. Lab Chip 2016, 16, 2418–2422. [Google Scholar] [CrossRef]
- Ko, Y.J.; Maeng, J.H.; Hwang, S.Y.; Ahn, Y. Design, Fabrication, and Testing of a Microfluidic Device for Thermotaxis and Chemotaxis Assays of Sperm. SLAS Technol. 2018, 23, 507–515. [Google Scholar] [CrossRef]
- Matsuura, K.; Uozumi, T.; Furuichi, T.; Sugimoto, I.; Kodama, M.; Funahashi, H. A microfluidic device to reduce treatment time of intracytoplasmic sperm injection. Fertil. Steril. 2013, 99, 400–407. [Google Scholar] [CrossRef]
- Samuel, R.; Badamjav, O.; Murphy, K.E.; Patel, D.P.; Son, J.; Gale, B.K.; Carrell, D.T.; Hotaling, J.M. Microfluidics: The future of microdissection TESE? Syst. Biol. Reprod. Med. 2016, 62, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Parrella, A.; Keating, D.; Rosenwaks, Z.; Palermo, G.D. A microfluidic device for selecting the most progressively motile spermatozoa yields a higher rate of euploid embryos. Fertil. Steril. 2018, 110, e342. [Google Scholar] [CrossRef] [Green Version]
- Tsai, V.F.; Chang, H.-C.; Hsieh, J.-T.; Wo, A.M. Application of microfluidic technologies to the quantification and manipulation of sperm. Urol. Sci. 2016, 27, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Nosrati, R.; Vollmer, M.; Eamer, L.; San Gabriel, M.C.; Zeidan, K.; Zini, A.; Sinton, D. Rapid selection of sperm with high DNA integrity. Lab Chip 2014, 14, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.G.; Haubert, K.; Beebe, D.J.; Ferguson, C.E.; Wheeler, M.B. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip 2005, 5, 1229–1232. [Google Scholar] [CrossRef]
- Suh, R.S.; Zhu, X.; Phadke, N.; Ohl, D.A.; Takayama, S.; Smith, G.D. IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm. Hum. Reprod. 2006, 21, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, H.; Cremers, C.; Le, D.; Abell, J.; Han, J. Multi-dimensional-double-spiral (MDDS) inertial microfluidic platform for sperm isolation directly from the raw semen sample. Sci. Rep. 2022, 12, 4212. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Hanson, A.R.; Kuczera, L. Electrophoretic sperm isolation: Optimization of electrophoresis conditions and impact on oxidative stress. Hum. Reprod. 2011, 26, 1955–1964. [Google Scholar] [CrossRef] [Green Version]
- Fleming, S.D.; Ilad, R.S.; Griffin, A.M.; Wu, Y.; Ong, K.J.; Smith, H.C.; Aitken, R.J. Prospective controlled trial of an electrophoretic method of sperm preparation for assisted reproduction: Comparison with density gradient centrifugation. Hum. Reprod. 2008, 23, 2646–2651. [Google Scholar] [CrossRef] [Green Version]
- Lassalle, B.; Testart, J. Human zona pellucida recognition associated with removal of sialic acid from human sperm surface. J. Reprod. Fertil. 1994, 101, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Shapouri, F.; Mahendran, T.; Govindarajan, M.; Xie, P.; Kocur, O.; Palermo, G.D.; Bakos, H.W.; Ahlström, A.; Caisander, G.; Xu, B.; et al. A comparison between the Felix™ electrophoretic system of sperm isolation and conventional density gradient centrifugation: A multicentre analysis. J. Assist. Reprod. Genet. 2023, 40, 83–95. [Google Scholar] [CrossRef]
Subjects | Sample | Outcomes | Ref. |
---|---|---|---|
Men with or without urogenital inflammation | Fresh semen | Out of the isolated Gram-positive microorganisms, 33.7% were resistant to tetracycline and 46.9% were resistant to sulfamethoxazole-trimethoprim. In the case of Gram-negative microorganisms, 51.5% were resistant to ampicillin, 43.5% to piperacillin, 25.0% to amoxicillin-clavulanic acid, 23.4% to ciprofloxacin, and 20.3% to levofloxacin. | [48] |
Fertile and infertile men | Fresh semen | 78.9% Escherichia coli isolates were resistant to tetracycline, 73.6% to levofloxacin, 57.8% to tobramycin or chloramphenicol. A total of 66.6% of Klebsiella pneumoniae isolates were resistant to gentamicin, tobramycin, tetracycline, and cefotaxime. A total of 80.0% Staphylococcus epidermidis isolates were resistant to gentamycin and 60% to streptomycin. | [49] |
Normozoospermic men | Fresh semen | A total of 35.0% Enterococcus faecalis isolates were resistant to ampicillin. A total of 75.0% Staphylococcus haemolyticus isolates were resistant to tobramycin or tetracycline. A total of 70.0% Staphylococcus hominis and 32.0% Staphylococcus capitis isolates were resistant to tobramycin. A total of 68.0% Staphylococcus epidermidis were resistant to tetracycline. | [13] |
Men with primary infertility | Fresh semen | High resistance of Gram-positive bacteria to rifampicin (48.0% isolates), clindamycin (40.0% isolates), and vancomycin (44.0% isolates). High resistance of Gram-negative bacteria to ceftazidime (20.0% isolates) and cefuroxime (40.0% isolates). | [50] |
Infertile men with urogenital inflammation | Fresh semen | High Staphylococcus aureus resistance to ceftazidime and ceftriaxone (53.9% isolates), fluoroquinolone (69.3% isolates), cefotaxime (42.3% isolates), and oxacixicillin (61.5% isolates). High Escherichia coli resistance to ceftazidime (55.6% isolates), lindamycin and cefotaxime (66.7% isolates), and oxacixicillin (77.8% isolates). High Klebsiella spp. resistance to ceftriaxone (60.0% isolates) and oxacixicillin (90.0% isolates). High Pseudomonas aeruginosa resistance to ceftazidime, ofloxacine, and oxacixicillin (83.3% isolates), gentamycin, vancomycin, and cefotaxime (66.7% isolates). | [51] |
Men undergoing fertility evaluation | Fresh semen | A rising trend for streptococci resistance to erythromycin. A rising trend for staphylococci to penicillin and ampicillin/sulbactam. | [52] |
Bovine studs | Fresh, cooled, and packed semen | A total of 23.6% out of the isolated microorganisms presented with resistance to gentamicin, while 92.7% were resistant to streptomycin. Resistance to lincomycin/spectinomycin was observed for more than 23.6% of all isolates. A total of 22% of all isolates were resistant to all tested antibiotics. | [53] |
Yearling bulls | Fresh semen | All Serratia liquefaciens and Serratia quinivorans isolates were resistant to cefazolin. All Cronobacter sakazakii, Escherichia fergusonii, and Shigella boydii were resistant to tetracycline. 2 Shigella and 1 Salmonella isolates were resistant to cefazolin, amikacin, and gentamicin. | [54] |
Breeding rams | Fresh semen | One Staphylococcus equorum and one Staphylococcus vitulinus isolate were resistant to ciprofloxacin. | [15] |
Breeding rams | Fresh and diluted semen | A total of 53% of all isolates were resistant to penicillin, 47% to erythromycin, 33% to oxytetracycline, 20% to ampicillin, 15% to streptomycin, 15% to co-trimoxazole, 13% to polymixin B, and 4% to spectinomycin. | [55] |
Duroc boars | Diluted semen | All Enterococcus hirae, Staphylococcus aureus, as well as 50% of Staphylococcus simulans and Staphylococcus chromogenes isolates, were resistant to tigecycline. All Acinetobacter iwoffi, Pseudomonas aeruginosa, and Pseudomonas putida isolates (100%) were resistant to ciprofloxacin. | [32] |
Breeding boars | Fresh semen | A total of 56.5% out of the isolated microorganisms presented with resistance to gentamicin and penicillin, while 58.7% were resistant to neomycin. Resistance to ceftiofur and lincomycin was observed for more than 47.8% of all isolates. A total of 50.0% of all isolates were resistant to ampicillin. | [56] |
Breeding boars | Fresh and diluted semen | Escherichia coli isolates showed 50% resistance to amikacin and 70% resistance to gentamicin; Staphylococcus epidermidis was 12.5% resistant to amikacin and 50% to gentamicin; Serratia marcescens showed a resistance of 66.6% to amikacin and 50% to gentamicin; Proteus spp. isolates were 25% resistant to amikacin and 50% to gentamicin; Streptococcus spp. isolates were 50% resistant to gentamicin; Staphylococcus aureus isolates were 100% resistant to gentamicin. | [57] |
Big 6 turkeys | Fresh semen | All Staphylococcus lentus isolates were resistant to chloramphenicol, linezolid, and tigecycline. Enterococcus faecium isolates showed resistance against imipenem, while ertapenem was shown to be ineffective against Escherichia coli and Vagococcus fluvialis isolates. | [16] |
Breeding turkeys | Fresh and stored semen | All Enterococcus faecalis, Bacillus subtilis and corynebacteriaisolates were resistant to ampicillin-cloxacillin, cefuroxime, amoxicillin, and ceftriaxone. All Escherichia coli isolates were resistant to co-trimoxazole, ofloxacin, and nalidixic acid. | [58] |
Lohmann Brown and ROSS 308 roosters | Fresh semen | Citrobacter braakii (75% isolates), Enterococcus faecalis (25% isolates), Escherichia coli (46% isolates), and Staphylococcus epidermidis (20% isolates) were resistant to ampicillin. Resistance to tetracycline was observed in Staphylococcus epidermidis isolates (60%), while 36% Escherichia coli isolates were resistant to chloramphenicol. Multiresistance patterns against several antibiotics were recorded, particularly in the cases of Citrobacter braakii, Enterococcus faecalis, Escherichia coli, and Staphylococcus epidermidis. | [17] |
Broilers, layers, and fattening turkeys | Fresh semen | High resistance rates were identified in Enterococcus faecalis and Enterococcus faecium for lincomycin (72–99% isolates) and tetracycline (67–82% isolates). More than half of Enterococcus isolates were resistant to gentamicin (54–72% isolates), erythromycin (44–61% isolates), and tylosin (44–56% isolates). At total of 89 out of 145 Enterococcus isolates were resistant to three or more antimicrobial classes. | [59] |
Indian red jungle fowl | Cryopreserved semen | Escherichia coli showed high resistance towards streptomycin. Staphylococcus spp. isolates were resistant to kanamycin. Bacillus spp. isolates were resistant to neomycin and streptomycin | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ďuračka, M.; Benko, F.; Chňapek, M.; Tvrdá, E. Strategies for Bacterial Eradication from Human and Animal Semen Samples: Current Options and Future Alternatives. Sensors 2023, 23, 6978. https://doi.org/10.3390/s23156978
Ďuračka M, Benko F, Chňapek M, Tvrdá E. Strategies for Bacterial Eradication from Human and Animal Semen Samples: Current Options and Future Alternatives. Sensors. 2023; 23(15):6978. https://doi.org/10.3390/s23156978
Chicago/Turabian StyleĎuračka, Michal, Filip Benko, Milan Chňapek, and Eva Tvrdá. 2023. "Strategies for Bacterial Eradication from Human and Animal Semen Samples: Current Options and Future Alternatives" Sensors 23, no. 15: 6978. https://doi.org/10.3390/s23156978
APA StyleĎuračka, M., Benko, F., Chňapek, M., & Tvrdá, E. (2023). Strategies for Bacterial Eradication from Human and Animal Semen Samples: Current Options and Future Alternatives. Sensors, 23(15), 6978. https://doi.org/10.3390/s23156978