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Abstract: Defect detection in steel surface focuses on accurately identifying and precisely locating
defects on the surface of steel materials. Methods of defect detection with deep learning have gained
significant attention in research. Existing algorithms can achieve satisfactory results, but the accuracy
of defect detection still needs to be improved. Aiming at this issue, a hybrid attention network is
proposed in this paper. Firstly, a CBAM attention module is used to enhance the model’s ability
to learn effective features. Secondly, an adaptively spatial feature fusion (ASFF) module is used to
improve the accuracy by extracting multi-scale information of defects. Finally, the CIOU algorithm is
introduced to optimize the training loss of the baseline model. The experimental results show that
the performance of our method in this work is superior on the NEU-DET dataset, with an 8.34%
improvement in mAP. Compared with major algorithms of object detection such as SSD, EfficientNet,
YOLOV3, and YOLOV5, the mAP was improved by 16.36%, 41.68%, 20.79%, and 13.96%, respectively.
This demonstrates that the mAP of our proposed method is higher than other major algorithms.

Keywords: defect detection; deep learning; steel surfaces; ASFF; CIOU; mAP; SSD; EfficientNet;
YOLOV3; YOLOV5

1. Introduction

Steel is a crucial raw material for various industries including automobile manufac-
turing, aerospace equipment manufacturing, and infrastructure projects like bridges. It
has significantly contributed to the economic development and technological progress of
modern society. However, some issues such as equipment failure, operational errors, and
transportation damage can generate multiple surface imperfections and defects during
the production and transportation of these raw materials. For example, the steel surface
can produce cracks, scratches, patches, punches, indentations, and other defects, which
can significantly impact the safety and reliability of industrial manufacturing. Therefore,
research on surface defect detection is particularly important.

With the continuous development of machine vision and computer technology, the
methods for detecting the surface defects of metal have evolved from manual visual inspec-
tion to automated machine inspection. Liu et al. [1] utilized a multivariate discriminant
function to compute the parameters of a statistical histogram for extracting features in
cold-rolled steel strips. Similarly, Luo et al. [2] employed the GCLBP method, which utilizes
pattern and frequency information of LBP, to detect defects on metal surfaces. Ai et al. [3]
employed statistical features derived from the amplitude spectrum obtained through the
Fourier transform to detect cracks on steel plate surfaces. In a different approach, Medina
et al. [4] detected defects in steel coils using Gabor filters in both spatial and frequency
domains. There was a poor anti-interference ability of these manual methods of feature
extraction with complex parameter calculations. In summary, achieving high performance
in defect detection using conventional methods is challenging.

In recent years, there has been significant progress in the research of deep learning
methods in computer vision. Specifically, detection methods using deep learning can
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be categorized into two main types based on the network structure: one-stage detection
networks and two-stage detection networks. In a two-stage detection network, a region
generation network is employed to analyze the approximate locations of feature points
and generate multiple regions of interest. Subsequently, effective features are extracted
from these regions of interest to achieve precise object localization. Typical two-stage
networks of object detection include RCNN [5], Fast-RCNN [6], Faster-RCNN [7], and
Cascade-RCNN [8], all of which have demonstrated good performance. On the other
hand, in one-stage networks, the results of object detection are directly output using an
end-to-end format. The one-stage network achieves faster detection, but it sacrifices some
accuracy compared to the two-stage network. Some popular one-stage networks for object
detection are YOLO [9–13], SSD [14], FCOS [15], and ATSS [16]. In the context of defect
detection on metal surfaces, Yu [17] proposed SD-Net, a method that utilized Yolov3
as the baseline, which combined a Res-Net with an improved spatial pyramid module.
Ma et al. [18] developed a two-channel attention algorithm using Yolov4 for the surface
inspection of aluminum strips. In a similar vein, Guo et al. [19] introduced a transformer
module based on Yolov5, capable of extracting global features and achieving high accuracy
of object detection.

The current focus of research in object detection is to improve accuracy by increasing
the depth and width of the networks [20,21]. These methods have been able to achieve
better detection results for object detection, but it is difficult to maintain a high level of
accuracy for small-scale defective samples, especially for the defects in steel structures. A
new one-stage network that aims to improve the accuracy of defect detection is proposed
in this paper. Using YOLOX-S as the baseline algorithm, it is a single-stage network of
defect detection based on an approach of hybrid domain attention and adaptive spatial
weight in feature fusion. For the feature extraction network, CBAM, an attention module is
proposed to enhance the ability to learn effective features. For the feature fusion network,
ASFF, the adaptively spatial feature fusion module is used to improve its accuracy, which
extracts multi-scale information of defects. At the moment of training the last model, the
CIOU algorithm is introduced to optimize the training loss of the baseline model.

In summary, the main innovations and contributions in this work can be categorized
into the following three areas.

• Introduce the CBAM to Backbone to enhance the learning capability of the
whole network.

• Take advantage of ASFF in the Neck section to enhance the extraction of multi-scale
semantic information of defects.

• The loss function of CIOU is incorporated to address the issue of poor generalization
and enhance the model training process.

2. Related Work
2.1. Defect Detection Based on Traditional Machine Vision

Traditional machine vision technology has been previously developed and it has been
applied in the field of digital image processing for quite a long time. There are a large
number of published related papers. The traditional methods are listed below:

• Background Phase Subtraction: Subtracts the background image without defects
estimated or calculated in advance from the background image, leaving a residual
image containing defects and random noise.

• Traditional methods of image processing using filtering techniques. Guan et al.
used a non-static algorithm for batch-by-batch detection [22]. With the help of the
significance of textile defects, this algorithm was used to detect defects in textiles
located in the color space of HSV. It estimated the defects of different textiles better and
also had good generalization and generality. To study randomly textured color images,
Shafarenko et al. proposed a measurement of color similarity based on the watershed
algorithm [23], which achieved automatic detection of defects on surfaces in randomly
textured color images based on color, texture, edges, and other features of different
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images. Hoang et al. investigated how to detect defects on leather surfaces [24]. Firstly,
the corrosion operation was used, then automatic image segmentation was performed
using the method of OTSu. Finally, a clustering algorithm was used to classify various
defects, which was based on the Euclidean distance, and the experimental results
showed the effectiveness of this method.

• Feature detection based on manual features. Furthermore, these features were uti-
lized to train the classifier of machine learning and achieved the final defect detection.

In fact, there is a great deal of intersection between these methods, and several tra-
ditional methods may be used simultaneously. In general, traditional methods can only
detect defects under certain conditions, such as having a certain size or a distinct defect
profile with strong contrast and low noise under the conditions of certain lighting. Machine
learning has a certain robustness, but the disadvantages of artificial features are weak
characterization and poor adaptability. Thus, algorithms of machine learning do not learn
the features that need to be detected well.

2.2. Defect Detection Based on Deep Learning

Compared with the technology of traditional machine vision, deep learning has only
been widely used in recent years but has achieved outstanding results. The development
of big data and the continuous improvement in computer performance provide a broader
development platform for the application of deep learning in the technology of nonde-
structive detection. CNNs rely on large-scale training datasets and reasonable supervised
learning algorithms. Compared with manually designed features, they can obtain more
essential features, which can greatly improve the effect of detection of the algorithm.

Chen et al. investigated the automated defect detection of fasteners on cable support
units [25]. In this work, the cascade of the whole system consisted of two detectors, which
were based on YOLO and SSD. They were used to locate the cantilever joints and their
fasteners sequentially, and the structure also contained a classifier to determine which
class of defects the fasteners belonged to. When using SSD for localizing cantilever joints,
Conv3× 3, a larger convolution layer, was added to obtain more shallow information about
images since the input images contained many small-scale defects. This improvement
resulted in a definite increase in accuracy compared to the original model.

Tao et al. discussed the automatic defect detection of metals using a two-stage net-
work [26], which achieved precise localization and classification of defects appearing in
the input images captured from industrial environments. In this work, CASAE, the novel
architecture of a cascaded auto-encoder, was designed to segment and localize defects. It
is well known that an auto-encoder consists of encoder and decoder networks. The input
image is transformed into a feature map, which was more favorable for feature extraction
and feature matching by the encoder. The pixel-level labels are adjusted by merging se-
mantic and contextual information from a series of feature maps by the decoder. Based
on semantic segmentation, the input image is transformed into a mask by the cascaded
auto-encoder, while the defective regions after segmentation are classified into the specific
classes to which they belonged through a convolution neural network. The experiments
showed that the AE (auto-encoder) model outperformed the full convolution network, and
CASAE could also improve the value of IOU. Due to considering different sizes of receptive
fields, the four convolution layers in the encoder of the AE network had to be replaced
by dilated convolution. This demonstrated that dilated convolution was important for
learning the features of defects at different scales.

Lan et al. used an improved algorithm of Faster R-CNN to detect defects in the images
from UAVs [27]. This improvement was divided into two parts: Firstly, the operations
of cropping and resizing were used to replace the pooling layer in the region of interest.
Secondly, to better recognize small-scale objects, all small-region candidate modules in the
improved network were retained and the regions with scales larger than 16 pixels in the
original network were removed. The following conclusions could be deduced from this
experiment: due to the increase in the size of the input image, the model achieves a better
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performance. With the dataset in this study, the mAP using VGG16 was 81.11%, and the
mAP for the improved method was only 67.92%. This was due to overfitting of the model
caused by unbalanced samples.

Yang proposed a CNN-based steel surface defect detection algorithm for problems
such as the low recognition rate of steel surface defects [28]. Zhang combined a residual
network and Faster R-CNN to detect steel surface defects [29]. This improved the detection
accuracy by a small margin compared to the traditional methods, but its computational
and parametric quantities were very large and the algorithm was poor in real time, which
was not favorable for industrial use.

Cheng et al. proposed an improved defect detection method based on YOLOv3 [30],
which was used to solve the problem of the small size and unclear features of defects on
metal surfaces, with good detection results. Shun et al. used the YOLOv5 network for the
detection of steel surface defects and improved the detection accuracy by 11.9% compared
to YOLOv4 [31].

3. Baseline

YOLOX [13] is a prominent network in object detection within the series of YOLO, known
for its optimal combination of accuracy and speed. Comprising three key components—
Backbone, Neck, and Yolo-Head—the structural framework of YOLOX is illustrated in
Figure 1.

Figure 1. The construction of YOLOX-S.
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3.1. Feature Extraction Network

As shown in Figure 1, CSP-Dark-Net is used as the backbone in the network of feature
extraction. In this study, a Focus structure was employed to downsample the images,
thereby reducing the complexity of the network and the number of computational parame-
ters. By increasing the number of channels of the feature map and reducing the image scale
in Focus, the model was able to effectively preserve semantic information. Additionally,
CSP-Layer, a cross-stage local network, was introduced into the whole stage, splitting the
gradient streams to propagate through different paths. This approach combined various
types of gradients in the feature extraction network, resulting in a reduction in the number
of network parameters. Finally, SPP, a Spatial Pyramid Pooling module, was used to
enhance the perceptual field of the feature layer in the network.

3.2. Feature Fusion Network

In YOLOX-S, the Path Aggregation Feature Pyramid Network (PAFPN) was utilized
to merge the features generated by the backbone network to extract deep information
more comprehensively. Initially, the features of various dimensions and scales were up-
sampled to allow the semantic information to flow from deep features to shallow ones.
Subsequently, the features were down-sampled to make the characterization information
flow from shallow features to deep ones. At this stage, the feature map was sampled
twice, resulting in relatively complete semantic and representational features. The
process of the PAFPN enhanced the defect features by providing them with meaningful
surface characteristics.

3.3. YOLOX-Head

In object detection, the module of YOLOX-Head is responsible for localizing and
classifying valid targets in the feature map. This is accomplished by localizing and re-
gressing the feature maps using effective features generated by the feature fusion network.
As depicted in Figure 1, the Baseline introduces the decoupling head approach, where
the feature maps of different channels are unified through a 3× 3 convolution layer. The
decoupling head is divided into two parallel branches, both utilizing the 3× 3 convolution
layer for target localization and classification calculations. Finally, the prediction results are
obtained through the operation of a 1× 1 convolution layer.

4. Our Methods

In this paper, YOLOX-S is used as the baseline for training on a dataset of the structure
of steel. Upon analysis, it was discovered that the model a exhibits low detection accuracy
and struggles with identifying small-scale defects in the NEU-DET dataset. To address these
problems in the defect detection of steel surfaces, an improved algorithm was proposed in
this paper. It illustrates three primary improvements based on the baseline in Figure 2.

• CBAM is introduced into the Backbone to enhance the learning capability of the whole
network. CBAM is a hybrid attention mechanism that combines the advantages of the
attention of the bath channel and the spatial domain for feature detection. It improves
the ability of the model to extract deep features.

• ASFF is taken advantage of in the Neck section to enhance the extraction of multi-scale
semantic information of defects. ASFF is implemented in the feature fusion network,
which allows the model to learn the semantic information from different feature layers
and assign appropriate weights to each feature map layer. It can improve the accuracy
of the network detection.

• The loss function of CIOU is incorporated to address the issue of poor generalization
and enhance the model training process.
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Figure 2. The structure of the improved YOLOX-S.

4.1. Convolution Block Attention Module

The attentional mechanism is a method of adapting the parameters of a network that
mimics human visual perception by learning and focusing on specific parts. CBAM [32] is
a simple and effective attention module for feedforward convolutional neural networks,
as shown in Figure 3. CBAM contains two modules, namely a Channel Attention Module
(CAM) and a Spatial Attention Module (SAM). For an input feature map, CBAM will
infer the attention map along two independent dimensions in turn and then multiply the
attention map by the input feature map for adaptive feature optimization. CBAM has a low
number of parameters, so it can be added to all stages of convolutional neural networks for
end-to-end training.

Figure 3. CBAM Module.

The structure of CAM is depicted in Figure 4. It compresses the feature map in the
spatial dimension to obtain a thought vector and then correlates it. When compressing
in the spatial dimension, not only Average Pooling but also Max Pooling are considered.
Average Pooling and Max Pooling can be used to aggregate the spatial information of
feature maps sent to a shared network, compress the spatial dimensions of the input feature
maps, and merge them element-by-element to produce channel attention maps. In the case
of a map alone, attention is channelled; the focus is on what on that map is of importance.
Average Pooling has feedback for every pixel point in the feature maps, whereas Max
Pooling has feedback for the gradient only when the response is largest in the feature maps
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when computing the gradient of backward propagation. The specific implementation of
CAM can be expressed as:

Mc = σ(MLP(AvgPool(F))) + MLP(MaxPool(F)) (1)

Figure 4. The structure of CAM.

As depicted in Figure 5, SAM is a module of channel compression that utilizes Average
Pooling and Max Pooling in the channel dimension. It takes the feature map output from
channel attention as the input feature map for this module. Firstly, global Max Pooling and
global Average Pooling are performed for the channel’s features, and then the results are
concatenated based on the channel. Secondly, after a convolution operation, the dimensions
of the feature are reduced to one channel, and then the feature in spatial attention is
generated by the sigmoid function. At last, the feature is multiplied with the input feature
of this module to obtain the final generated feature.

Similarly, the spatial attention module (SAM) is a compression of the channels with
Average Pooling and Max Pooling in the channel dimension, respectively. The operation of
Max Pooling extracts the maximum value of the channel, and the number of extractions
is the product of the height and width of the feature. The operation of Average Pooling
extracts the average value of the channel, and the number of times it is extracted is also the
height multiplied by the width. Then, previously extracted feature maps are merged to
obtain a two-channel feature map. It can be expressed as:

Ms(F) = σ
(

f 7×7([AvgPool(F), MaxPool(F)])
)

(2)

Figure 5. The structure of SAM.

4.2. Adaptively Spatial Feature Fusion

In the stage of feature fusion, achieving effective fusion of smaller-scale features in
the dataset is challenging for the PAFPN. This can lead to a low accuracy of detection and
a high miss rate of defect features. To address these problems, ASFF, adaptively spatial
feature fusion [33], is proposed to optimize the Neck structure in this paper. It makes the
network adaptively learn the spatial weights of features in each feature map. The structure
of ASFF is illustrated in Figure 6.
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Figure 6. The process of ASFF.

It takes three different scales of effective features X1, X2, and X3 from the PAFPN as
input in ASFF. By applying constant scaling, three features with equal dimensions X1→3,
X2→3, and X3→3 are obtained, generating semantic information at different scales. These
features are then combined with the corresponding adaptive weights to achieve adaptive
fusion. The method for adaptive feature fusion of feature maps is shown as:

Y3
i,j = α3

i,jX
1→3 + β3

i,jX
2→3 + γ3

i,jX
3→3 (3)

4.3. Loss Function of CIOU

The loss function of the baseline comprises three components: Losscls, Lossbox, and
LossGIOU . The approach of GIOU is employed for the loss of boundary regression, which is
calculated as shown in Equation (4). In this equation, C represents the minimum rectangular
area formed by the real frame and the predicted frame. A and B denote the area of the real
frame and the predicted frame, respectively, and D represents the intersection ratio of the
real frame and the predicted frame.

LossGIOU = 1− IOU(A, B) +
|C| − |A ∪ B|

|C| (4)

According to Equation (4), the calculation of GIOU also has certain limitations. In
cases where the real frame and the predicted frame have an inclusion relationship but
different positions, the values of GIOU remain the same, as illustrated in Figure 7.

Figure 7. The disadvantages of GIOU. We can notice that the values of the IOU for the three
different scenarios in this figure are the same, but this is something we don’t want to see. This is the
disadvantage of the GIOU.

For this problem, DIOU [34], a new loss function of the bounding box, was proposed,
which is calculated as shown in Equation (5).

LossDIOU = 1− IOU(A, B) +
ρ2(A, B)

c2 (5)

As shown in Figure 8, ρ2(A, B) denotes the Euclidean distance from the center of the
bounding box and c denotes the diagonal of rectangle C.
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Figure 8. Diagram of DIOU.

It considers the distance between the prediction frame and the real frame, the overlap
rate, and the scale problem for the metric of DIOU. This leads to more stable boundary
regression and optimizes model training.

According to Equation (5), it is determined that LossDIOU is inversely proportional
to the diagonal of rectangle C. When the bounding box has a fixed Euclidean distance, a
larger diagonal will result in a smaller value, which can affect the convergence of the loss
of boundary regression. In this paper, we proposed the loss of CIOU, which introduces an
impact factor to the penalty term of DIOU. The procedure of CIOU is expressed as follows:

LossCIOU = 1− IOU(A, B) +
ρ2(A, B)

c2 + αυ (6)

υ =
4

π2 (arctan
w
h
− arctan

wgt

hgt )
2 (7)

α =
υ

1− IOU(A, B) + υ
(8)

In the given equations, w
h represents the aspect ratio of the predicted box, wgt

hgt represents
the aspect ratio of the real box, α is the weighting factor, and υ is used to measure the
consistency of the relative proportions of the two rectangular boxes. υ takes into account
the relative scales of the two rectangular boxes based on DIOU, thereby enhancing the
accuracy of regression.

5. Experimental Results and Analysis
5.1. Dataset

The selected dataset for this paper is NEU-DET, which is a dataset of steel surfaces
published by Northeastern University. It consists of six types of defects found on surfaces:
Rolled-in Scale, Patches, Crazing, Pitted Surfaces, Inclusions, and Scratches. It includes a
total of 1800 grayscale images, with 300 samples for each defect type. The dataset provides
annotations that indicate the type and location of each defect. In the annotations, the defect
location is marked with a yellow box and the defect category and confidence level are
labeled with a green label, as shown in Figure 9.
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Figure 9. The label of defect category in NEU-DET.

5.2. Image Preprocessing

Before conducting the experiments, we need to perform image preprocessing opera-
tions on the original dataset. The specific flow is shown in Figure 10.

Figure 10. Preprocessing setups of the original dataset.

As shown in Figure 10, the image preprocessing operation consists of three steps:
grayscale transformation, scale transformation, and mosaic. The scale transformation
was to change the size of the input image to [224,224], which aimed to reduce the com-
putational complexity of the network, thus shortening the training time of the model.
Mosaic is a method of data enhancement, and the main idea is to randomly crop four
images and then splice them onto a single image as training data. Its advantages are
that it enriches the background of the picture and the four pictures spliced together can
increase the batch-size. Furthermore, we also calculated the four pictures when performing
batch normalization. It is not very dependent on its own batch-size, and it can be a good
way to save computational resources.

5.3. Evaluation Metrics

To assess the effectiveness of the proposed method, AP and mAP, the Average Precision
and mean of Average Precision, were used as evaluation metrics for the defect model of
steel surfaces. The calculation of AP and mAP is demonstrated in the equations below.

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

AP =
∫ 1

0
P(R)dR (11)

mAP =
1
N

N

∑
i=1

APi (12)
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The performance of the model can be evaluated using TP (true positive), FP (false
positive), and FN (false negative) to represent different types of defects. Precision (P) and
recall (R) are used to measure the accuracy of each type of defect, usually with an IOU of
0.5. N represents the total number of defects. The model’s performance is considered better
when the values of AP and mAP are closer to 1.

5.4. Experimental Environment

The experimental environment of this paper includes Windows 11, NVIDIA GeForce
RTX 3060 graphics (Nvidia Corporation, Santa Clara, CA, USA), and a Pytorch 1.12.1
framework. The setting of specific parameters for the training of the model is provided in
Table 1.

Table 1. Configuration of experimental parameters.

Setting Parameters

CPU Intel Core i7-12700H (Intel Corporation, Santa Clara, CA, USA)
GPU NVIDIA RTX 3060 Laptop

System Windows 11
Pytorch Torch 1.12

IOU 0.5
Epoch 300

Batch size 8
Optimizer SGD

The settings of hyperparameters in the model during training are shown in Table 2.
In the process of model training, “mosaic” and “mixup” were used as data enhancement
methods. The probability of this after each step was set to the default value of 0.5. The
process of training was divided into a freezing phase and an unfreezing phase. During the
freezing phase, the feature extraction network did not change and the system occupied less
significant memory to fine-tune the network. “weight-decay” is the coefficient of weight
decay, which prevents the model from overfitting.

Table 2. Hyperparameter settings for training the model.

Parameter Value

num-classes 6
input-shape [224,224]
mosaic-prob 0.5
mixup-prob 0.5

special-avg-ratio 0.7
max-epoch 300

freeze-batch-size 16
unfreeze-batch-size 8

learning-rate 0.01
momentum 0.937

weight-decay 0.0005
num-workers 2

5.5. Ablation Experiment

To assess the effectiveness, the ablation experiments were conducted by combining
various improvement schemes with the baseline. Accuracy and PR curves are presented
in Table 3 and Figure 11, revealing that both the individual and combined improvement
schemes contribute to enhancing the accuracy of defect detection to some degree.

According to Table 3, the In of CBAM in the baseline led to a 2.09 percent improvement
in mAP. Similarly, when ASFF was incorporated separately, the mAP improved by 7.06 per-
cent. Furthermore, the addition of CIOU to the baseline resulted in a 6.78 percent increase
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in accuracy. Obviously, the above results demonstrate that each of three improvements
contribute significantly to the defect detection network. Comparative experiments were
conducted for all three improvements, and it was observed that the combined approach
yielded better results than the individual modules. The final set of experiments combined
all three improvements, resulting in a detection accuracy of up to 85.63 percent and an
8.34 percent improvement in mAP compared to the original algorithm.

Table 3. Results of ablation experiment.

Methods AP (%) mAP

CBAM ASFF CIOU Cr In Pa Ps Rs Sc (%)

41.45 84.52 95.24 92.55 69.68 90.82 79.04√
42.03 82.90 93.35 95.54 72.15 98.15 80.69√
58.59 87.39 93.14 93.44 77.89 97.30 84.62√
58.89 88.78 94.80 94.86 72.09 96.99 84.40√ √
61.12 87.09 93.68 94.13 79.61 97.05 85.45√ √
63.53 89.91 93.66 92.40 74.96 95.71 85.03√ √
67.08 86.43 93.94 92.95 74.91 95.59 85.08

√ √ √
63.65 89.00 93.89 94.14 77.63 95.48 85.63

Figure 11. The PR curve of different algorithms: (a) the baseline; (b) our algorithm.
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As depicted in Figure 11, our algorithm demonstrates a significantly superior PR curve
compared to the baseline. The AP of our method has also shown improvement to some
extent compared to the baseline. Hence, the ablation experiment successfully validates the
feasibility and effectiveness of the three improvements proposed in this paper.

5.6. Comparative Experiments

In this study, we utilized established deep-learning-based algorithms for object de-
tection to investigate the six mentioned defects. We compared the performance of these
different models and present the results of detection and the loss of training components in
Table 4 and Figure 12.

According to Table 4, it was observed that several deep learning algorithms (VGG,
DenseNet, ResNet50, SSD, Yolov3, and Yolov5) are capable of achieving satisfactory
results for defect detection in steel structures. The mAP remains consistently around 70
percent. However, due to the small size of steel surface defects and their corresponding
pixels, there are more challenges for these algorithms in accurately recognizing such
small-scale defects.

Table 4. Comparative experiments of different algorithms.

Algorithm
AP (%)

mAP (%)
Cr In Pa Ps Rs Sc

VGG 30.73 79.52 93.15 86.98 61.01 89.06 73.41
DenseNet 31.18 73.96 73.71 82.27 49.90 85.81 69.47
GhostNet 12.98 66.29 76.02 78.76 31.21 59.73 54.16
ResNet50 29.68 78.92 91.36 84.42 53.95 85.56 70.65

SSD 33.30 80.18 94.74 88.43 64.68 80.22 73.59
EnfficientNet 21.30 70.04 83.51 77.46 44.71 65.61 60.44

Yolov3 25.98 75.48 89.94 85.43 60.39 88.12 70.89
Yolov5 34.75 81.81 90.92 86.98 66.09 90.50 75.17

Baseline 41.45 84.52 95.24 92.55 69.68 90.82 79.04

Ours 63.65 89.00 93.89 94.14 77.63 95.48 85.63

Figure 12. Curves of accuracy and loss as a function of different epochs: (a) the curve of mAP; (b) the
curve of training loss.

The relationships between the changes in mAP and training loss of different algorithms
in the training process are shown in Figure 12. Since the mAP is calculated for the validation
set after each epoch of training, it is slightly lower than the final evaluation value. It
is easy to notice that our proposed algorithm yields the highest and most stable mAP
throughout the training process compared to other major algorithms. Moreover, there are a
few algorithms whose mAP decreased near the 300th epoch, which is due to overfitting.
Obviously, this indicates that these algorithms are not applicable to this dataset. The loss
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function converged after 70 epochs of training, while the other main algorithms require
multiple iterations to achieve convergence. The results indicate that the improved algorithm
converges faster and is more effective in optimizing the model parameters.

The results presented in Table 4 demonstrate that our method achieves precise identifi-
cation of small-scale defects with a high mAP of 85.63 percent. It indicates an improvement
of 8.34 percent in accuracy compared to the baseline. Furthermore, compared to other
major algorithms, it performs exceptionally well on the NEU-DET dataset. Additionally,
the baseline outperforms other networks with a significantly higher AP of 95.24 percent on
the Padefect .

The experiments demonstrate that our method for defect detection in steel structures
significantly improves the accuracy compared to the baseline and other networks. This
paper provides evidence of the superiority of our algorithm.

6. Conclusions

In this study, we investigated the defect detection of steel structures and utilized an
open-source dataset to conduct experiments. Firstly, to address the issue of small-scale
defect images, CBAM was proposed as an enhancement to the baseline model. CBAM
improved the extraction of surface information of deep features and enhanced the model’s
ability to learn sample defects. Secondly, ASFF was introduced to make the model adap-
tively learn weight information from different scale feature maps, thereby increasing the
recognition rate of positive example samples. Finally, the loss of CIOU was used to address
the problem of the scale consistency of the bounding box and expedite the convergence
time of the whole model. The experiments demonstrate that our method exhibits a no-
table improvement in the accuracy of defect detection, highlighting its superiority when
compared to the baseline.

The methods in this work have improved the mAP to some extent, but the study did
not consider the computational efficiency of the model. We found that the training time of
the algorithm proposed in this work was almost the same as that of the baseline during
our comparison experiments. Furthermore, the specific hardware environment is shown
in Table 1. Methods that achieve a trade-off between the accuracy and computational
efficiency of defect detection are also a future research interest. After that, we will consider
using a lightweight feature extraction network instead of a backbone network to reduce
the training time of the model.

The selected steel structure samples for this experiment are too homogeneous, which
inevitably leads to the problem of poor adaptation of the model. Therefore, future research
will include other types of metal defects. Considering the time consumed by the current
algorithm, future research will focus on designing a lightweight neural network that
balances the accuracy and time of detection.
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